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Abstract

Summary The role of acid—base metabolism in bone health is
controversial. In this meta-analysis, potassium bicarbonate
and potassium citrate lowered urinary calcium and acid ex-
cretion and reduced the excretion of the bone resorption
marker NTX. These salts may thus be beneficial to bone
health by conserving bone mineral.

Introduction The role of acid—base homeostasis as a determi-
nant of bone health and the contribution of supplemental alkali
in promoting skeletal integrity remain a subject of debate. The
objective of this study was, therefore, to conduct a meta-
analysis to assess the effects of supplemental potassium bicar-
bonate (KHCO;) and potassium citrate (KCitr) on urinary
calcium and acid excretion, markers of bone turnover and
bone mineral density (BMD) and to compare their effects with
that of potassium chloride (KCI).

Methods A total of 14 studies of the effect of alkaline potas-
sium salts on calcium metabolism and bone health, identified
by a systematic literature search, were analysed with Review
Manager (Version 5; The Cochrane Collaboration) using a
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random-effects model. Authors were contacted to provide
missing data as required. Results are presented as the
standardised (SMD) or unstandardized mean difference
(MD) (95 % confidence intervals).

Results Urinary calcium excretion was lowered by interven-
tion with both KHCO; (P=0.04) and KCitr (P=0.01), as was
net acid excretion (NAE) (P=0.002 for KHCO; and P=
0.0008 for KCitr). Both salts significantly lowered the bone
resorption marker NTX (£<0.00001). There was no effect on
bone formation markers or BMD. KHCO; and KCitr lowered
calcium excretion to a greater extent than did KCI.
Conclusions This meta-analysis confirms that supplementa-
tion with alkaline potassium salts leads to significant reduc-
tion in renal calcium excretion and acid excretion, compatible
with the concept of increased buffering of hydrogen ions by
raised circulating bicarbonate. The observed reduction in bone
resorption indicates a potential benefit to bone health

Keywords Alkali - Bone mineral density - Markers of bone
turnover - Potassium

Introduction

The role of acid-base balance as a determinant of bone health
and the potential contribution of potassium, abundant in fruit
and vegetables, in promoting skeletal integrity is contentious.

Acid-base homeostasis in the body is tightly controlled
(pH 7.35-7.45) by buffering or neutralisation by plasma pro-
teins and other tissues, including bone, the excretion of pro-
tons (H") and reabsorption of bicarbonate by the kidneys and
the excretion of carbon dioxide in the lungs. Acid loading in
healthy subjects which exceeds the capacity of these systems

@ Springer


http://dx.doi.org/10.1007/s00198-014-3006-9

1312

Osteoporos Int (2015) 26:1311-1318

leads to higher levels of H" and lower levels of plasma
bicarbonate, within the range considered to be normal, in-
creasing the requirement for buffering/neutralisation. This is
known as low-grade metabolic acidosis. Diet contributes to
acid-base balance according to the type of acid or alkaline
precursors which it provides, with fruit and vegetables among
the contributors of alkaline precursors [1]. Long-term con-
sumption of a high acid-generating diet, typical of “Western’
diets, promotes a chronic state of low-grade metabolic acido-
sis. This is compounded by the decline in renal function with
ageing that leads to the decreased ability of the kidney to
excrete H' ions [2, 3].

Severe acute and chronic metabolic acidosis have well-
established physiological effects on bone [4], which provides
a large reserve of alkaline calcium salts. These are released in
response to the increased acid load. Whilst bicarbonate and
other anions buffer the increased circulating H', the excess
calcium and other cations released are excreted in the urine. /n
vitro and in disease states with severe metabolic acidosis, the
rise in extracellular acid concentrations promotes an increase
in osteoclastic activity [5, 6] and decrease in osteoblast activ-
ity [7-9]. What is less clear is whether a milder diet-induced
chronic state of metabolic acidosis has similar detrimental
effects on bone and calcium homeostasis in the long term.

A meta-analysis was therefore undertaken to assess the effect
of alkaline potassium salts on calcium metabolism and bone
health. The specific objective was to investigate the effects of
potassium bicarbonate (KHCOj3) and potassium citrate (KCitr),
compared with placebo, on urinary calcium and acid excretion,
markers of bone turnover and bone mineral density. A secondary
objective was to examine the role of KHCO; and KCitr com-
pared with potassium chloride (KCI) on the same outcome
measures, in order to attempt to clarify the respective roles of
the potassium cation and the basic anions.

We hypothesised that supplementary KHCO3; and KCitr
would decrease urinary excretion of calcium and net acid
excretion (NAE), as well as reducing bone turnover as ob-
served by a decrease in urine and serum markers of bone
formation and resorption. The supplements would also lead
to an increase in bone mineral density (BMD).

Methods
Search strategy and study selection

A systematic search of the literature was conducted to identify
randomised controlled trials in which the effects of either
potassium bicarbonate or potassium citrate on a number of
indicators of bone health were investigated. ISI Web of
Knowledge (which includes Web of Science, BIOSIS,
Scientific Web Plus and Medline) and PubMed were used
for electronic searches of studies published between 1959
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and February 2013. In addition, the Cochrane Central
Register of Controlled Trials (CENTRAL) and the
International Randomised Controlled Trials Number
Register were searched for unpublished trials. Reference lists
from relevant papers were also searched.

Studies eligible for inclusion were randomised, controlled
studies and metabolic studies in human adult men or women.
Parallel or cross-over design, metabolic or community-based
intervention studies were eligible for inclusion.
Administration of KHCOj3; or KCitr at all dosages and for
any duration was considered. Outcome measures were: uri-
nary calcium excretion, markers of bone resorption and for-
mation, BMD and NAE. Studies were also included if sup-
plementation was combined with other forms of dietary or
pharmaceutical manipulation, such as high protein or salt
intake or diuretic administration.

Studies were not eligible if they did not fulfil the above
criteria, if they were conducted in patients with kidney dis-
ease, metabolic bone disease or following renal, bariatric or
other surgery or in pregnant or lactating women. Studies were
also excluded from the main analysis if the control group
received a treatment other than placebo or ‘no-treatment’.
However, a secondary analysis was conducted comparing
the effects of alkaline potassium salts with that of potassium
chloride.

Search terms used for the electronic searches were ‘potas-
sium’ or ‘potassium citrate’ or ‘potassium bicarbonate’ or
‘alkali’ and ‘bone’, ‘bone mineral density’, ‘bone turnover
markers’, ‘fracture’ or ‘bone health’, then filtered by ‘clinical
trials’ or ‘randomised trials’ and ‘human’.

Publications meeting the relevant criteria were assessed for
inclusion by SLN and HL.

Data extraction

Information extracted from eligible studies included: first
author, year of publication, study design, characteristics of
study participants, type and dose of supplementation, frequen-
cy of supplementation, duration of study, method of
randomisation, type of control, extent of blinding, outcome
measures, results.

In studies using multiple parallel interventions (for exam-
ple, comparing KHCO3; with NaHCO3), only data relating to
the KHCO; or KCitr and placebo (or KCl, for the secondary
analysis) arms of the study were used.

Mean, standard deviation and number of participants were
obtained for all outcome measures. Where means were pre-
sented with the SE, this was converted to the SD (SE = SD/
\n). Where possible, both final measurements and change
scores were extracted. For studies using different doses of
supplement, outcomes for the highest dose were used. For
studies measuring outcomes at multiple time points, data for
the final time point was used.
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For studies where the required data was not reported,
authors were contacted for further information or clarification.

Quality analysis

Studies that met the inclusion criteria were assessed for risk of
bias by HL using the Cochrane Collaboration criteria [10], on
the basis of five domains: random sequence generation, allo-
cation concealment, blinding of outcome assessment, incom-
plete outcome data and selective reporting.

Meta-analysis

Analysis was conducted using Review Manager (Version 5;
The Cochrane Collaboration). The comparisons investigated
were: KHCOj3 vs placebo, KCitr vs placebo and either KCitr
or KHCOj; vs placebo or KCl, for all relevant outcome
measures.

A random-effects model was chosen to account for hetero-
geneity of the included studies and the inverse variance meth-
od used, in which the intervention effects of individual studies
are multiplied by 1/SE?, so that larger studies are given more
weight than smaller studies. Results are presented as
standardised mean differences (SMDs), for outcomes other
than BMD and NTX, as measurement of these outcomes
differed across studies. The observed differences between
means are standardised by dividing by the standard deviation
(SD) and thus presented as units of SD. For BMD and NTX,
units of measurement did not differ across studies and there-
fore the unstandardized mean differences are reported. Mean
differences are reported with 95 % confidence intervals.

Sensitivity analysis

Sub-group analyses were carried out to ensure that results of
the meta-analysis were not affected by decisions relating to
study inclusion, such as study design, or data extraction, such
as choice of dose or time points used.

Reporting

The meta-analysis is reported according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [11].

Results
Study selection

The process of selection of studies for meta-analysis is shown
in the PRISMA flow diagram (Fig. 1).

Characteristics of included studies/included data

The characteristics of included studies are shown in supple-
mental table 1. A total of 14 studies met the criteria for
inclusion in the main meta-analysis (intervention vs placebo).
Of these, 7 studies used potassium bicarbonate as a supple-
ment [12-18], and 7 used potassium citrate [19-25]. Seven
studies were randomised, placebo-controlled intervention
studies (4 weeks—3 years) with a parallel design, [13-15, 19,
21, 22, 25], and seven were metabolic cross-over studies of
short duration (<4 weeks). Four of these were randomised,
placebo-controlled [12, 16, 20, 24], and three used the ‘treat-
ment-free’ phase as the control [17, 18, 23]. Two of the
studies used in the main meta-analysis were included in
the secondary analysis (intervention vs KCl), both of
which used KHCOj3 [14, 16]. Two additional randomised,
double-blind studies were included in this secondary anal-
ysis, one comparing KHCO; with KCI [26] and one using
KCitr [27].

Authors of eight studies were contacted for clarification of
their data, and all responded by providing the information
requested.

Risk of bias

Eight studies explicitly stated the method of randomisation.
The majority of the studies (n=8) were deemed to be at low
risk of bias with respect to randomisation, blinding, analysis
and reporting (supplemental table 2). Separate meta-analysis
of available baseline data showed no significant differences
between treatment and control groups with respect to age,
calcium intake, urinary calcium excretion, BMD and N-
terminal telopeptide of type 1 collagen (NTX), suggesting
adequate randomisation for these studies (data not shown).
There was no heterogeneity among studies in these analyses
(=0 %).

Results of main meta-analysis
Urinary calcium excretion

Both KHCO; and KCitr supplementation significantly re-
duced calcium excretion compared to a placebo (Fig. 2a).
For KHCOs, the overall standardised mean difference (95 %
CI) in the change in calcium excretion was —1.03 SD (—2.03,
—0.03), P=0.04. For KCitr, the SMD was similar, —1.03 SD
(-1.85, =0.21), P=0.01. When results for both KHCO; and
KCitr were combined, the overall effect of a potassium sup-
plement on calcium excretion was —1.30 SD (=2.06, —0.54),
P=0.0008 (data not shown). The results did not differ if
crossover studies were excluded.
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Fig. 1 Summary of study
selection: PRISMA statement
flow diagram. *Studies included

Records identified
through database

Additional records identified
through other sources
* personalcontactl

in secondary analysis of KHCO5 searching + from reference lists 1
or KCitr vs KCI n=558 n=2
Records after Records excluded - not
duplicates removed relevant
n=524 n=462
Records excluded because not
eligible (inanimals, children,
Records screened by disease states, postsurgery, no
title and abstract full paper published)
n=62 n=30
Full-text articles Full-text articles excluded n=8
assessed for eligibility
n=22 * Observationalstudy 2 (Zhu 2009, Frassetto 2012)
* Intervention was K-depletion 1 (Jones 1982)
* Controlsreceived KCl (Jehle 2006, Frassetto 2000)*
* NaHCOs; given with KHCOs 1 (Maurer 2002)
studies included in * Kidney disease 1 (Domrongkitchaiporn 2002)
meta-analysis * Not RCT (Marangella 2003)
n=14
NAE KHCO; or KCitr vs KCI

There was a clear effect of both KHCO3 and KCitr on NAE.
The SMD was —5.73 SD (—9.30, —2.16), P=0.002 for KHCO;
and —4.88 SD (—7.73, —2.04), P=0.0008 for KCitr (Fig. 2b).

Bone turnover markers

The mean difference in the effect of a potassium supplement
on the bone resorption marker NTX was —7.62 nmolBCE/
mmol creatinine (—14.97, —0.26), P=0.04 for KHCO;; and
—4.36 nmolBCE/mmol creatinine (—5.19, —3.53), P<0.00001
for KCitr (Fig. 2¢). The effect on markers of bone formation
was not significant (Fig. 2d).

Bone mineral density

Two studies reported bone mineral density following supple-
mentation, both of which supplemented with KCitr for 2 years
[19, 21]. The mean difference in BMD at the lumbar spine
(LS2-4) was 0.05 g/em?® (-0.01, 0.11), P=0.09; and for the
total hip (TH) 0.02 g/cm?® (-0.03, 0.07), P=0.43 (Fig. 3). Jehle
et al. reported a significant positive effect of KCitr relative to
placebo at both sites [21], whereas MacDonald et al. did not
observe any significant differences at either site [19].

@ Springer

Urinary calcium excretion and NAE were both lower follow-
ing supplementation with KHCO; or KCitr than with KCI,
and this difference was significant for NAE, with a SMD of
—5.27 SD (-10.30, —0.24), P=0.04 (Fig. 4).

Sensitivity analysis and heterogeneity

Sub-group analyses exploring the effect of study duration,
study design and the inclusion of premenopausal women on
outcomes revealed no significant effects.

The reasons for the high heterogeneity among the included
studies with respect to calcium excretion and NAE is not clear
but could be due to size of study groups, as well as age and
bone health. Although the majority of studies (n=10) were in
postmenopausal women and older men, two were in young
men, one in young women and one covered ages 18-75 years
in men and women; study group size ranged from n=5 to n=
276. T-scores for baseline BMD were all >1 in the four studies
where this was reported, but this may not have been so for the
other studies. Baseline calcium intakes were all in the range
650-1080 mg/day, and baseline urinary calcium excretion
was in the range 100-240 mg/day. It is therefore unlikely that
there were major differences in intakes of other nutrients (such
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KHCO3

a Calcium excretion

Std. Mean Difference Std. Mean Difference

KCitr

KHCO3 placebo . KCitrate Placebo Std. Mean Difference Std. Mean Difference
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Test for overall effect: Z = 2.03 (P = 0.04) KHCO3  Control Test for overall effect: Z = 2.46 (P = 0.01) KGitr Control
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Ceglia 2009 231 22 9 339 82 10 252% -3.36 [-4.85, -1.86] - Jehle 2013 -16 23 8 337 15 84 36.7% -1.81[-2.17, -1.45] -
Dawson-Hughes 2009  -33.94 3.09 37 184 27 44 24.4% -12.29[-14.28,-10.30] - Moseley 2012 398 3134 17 56 14 18 36.0%  -1.39[2.14,-0.64] =
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Total (95% CI) 128 128 100.0%  -4.88 [7.73, -2.04] >
Total (95% CI) 73 81 100.0%  -5.73[9.30,-2.16] - Tau? = 5.70; Chi? = 70.47, df = 2 (P < 0.00001); I* = 97% 1
Heterogeneity: Tau? = 12.58; Chi = 65.77, df = 3 (P < 0.00001); I* = 95% Cv—rs Py 20 Test for overall effect: Z = 3.36 (P = 0.0008) 20 -1201 e Gonti ‘10 20
Test for overall effect: Z = 3.15 (P = 0.002) KHCOS  Control itrate - Control
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Study or Subgroup Mean SD_Total Mean SD_Total Weight 1V, Random, 95% C1 1V, Random, 95% C1 Study or Subgroup Mean SD_Total Mean SD_Total Weight 1V, Random, 95% CI 1V, Random, 95% CI
Buehimeier 2012 1,051.56 354 8 1,141.46 293.16 8 0.1% -89.90 [-408.40,228.60) | Jehle 2013 46.9 16.8 85 50.4 205 84 22% -3.50[-9.15, 2.15] -
Ceglia 2009 2 58 9 -0.6 14 10 321% -1.40[-10.87, 8.07] ‘ Karp 2009 16.3442  10.44661 12 226542 11.81724 12 0.9%  -6.31[-15.23, 2.61] ™
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Total (95% CI) 54 62 100.0% 7.62[-14.97, -0.26] L
Heterogeneity: Tau® = 20.60; Chi* = 3.75, df = 2 (P = 0.15); I = 47% 200 100 100 200 Total (95% CI) 141 140 100.0%  -4.36 [-5.19, -3.53] +
Test for overall effect: Z = 2.03 (P = 0.04) KHCO3  Control Heterogeneity: Tau? = 0.00; Chiz = 1.22, df =3 (P = 0.75), = 0% T h
Test for overall effect: Z = 10.29 (P < 0.00001) Keitr Gontrol
d Combined formation markers*
KHCO3 placebo Std. Mean Difference Std. Mean Difference KCitrate Placebo Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI Study or Subgroup Mean SD_Total Mean SD_Total Weight 1V, Random, 95% CI 1V, Random, 95% CI
Ceglia 2009 66 29 9 69 43 10 129%  -0.08[-0.98 082 —— Jehle 2013 98 39 8 97 32 84 203% 003[:027,0.33] +
He 2010 19 54 46 188 52 46 62.7% 0.04 [-0.37, 0.45] - Karp 2009 -0.1417 1.03607 12 0.5308 1.38326 12 13.5% -0.53[-1.35, 0.29] —T
Sebastian 1994 61 28 18 5528 18 244% 0.21[0.45, 0.86] e Macdonald 2008 2 154 50 23 83 47 191% 002037, 0.42] T
Moseley 2012 18 33 17 -095 339 18 155%  -0.25[0.91,042] —
Total (95% CI) 73 74 100.0% 0.06 [-0.26, 0.39] * za;""‘ee K200 o 22 ;Z o 022‘15 ;z X g:f Ao T
Heterogeneity: Tau? = 0.00; Chi? = 0.30, df = 2 (P = 0.86); I = 0% — elimeyer 200 o 023 08 6.0% [0.94,2.19)
Test for overall effect: Z = 0.39 (P = 0.70) KHCO3  Control Total (95% CI) 208 205 100.0% 0.14[-0.34, 0.62] >
Heterogeneity: Tau? = 0.27; Chi? = 24.94, df = 5 (P = 0.0001); I* = 80% 5

*Specific bone formation markers used for comparisons

Ceglia Osteocalcin ng/ml
He A Osteocalcin p/L
Sebastian Osteocalcin ng/ml

Fig. 2 Forest plots for effects of KHCO; and KCitr supplementation on
calcium excretion, NAE and bone turnover markers. a, b, d Squares
represent standardised mean difference (SMD) (95 % CI), with total

as sodium and protein) that might affect calcium metabolism.
Removing crossover studies from the analysis did not alter the
heterogeneity. It should, however, be noted that heterogeneity
with respect to bone turnover markers was low (7 0-47 %).

Discussion

This meta-analysis of the effect of alkaline potassium salts on
calcium and bone metabolism provides compelling evidence
for a calcium- and bone-sparing effect of these salts.

The results strongly favour evidence for a reduction in bone
resorption following supplementation with KHCO; or KCitr,

Test for overall effect: Z = 0.57 (P = 0.57) 2 ot contral

Jehle
Karp
MacDonald

BAP pmol/L
ABAP U/L
AP1NP pg/L

Moseley ABAP ng/ml
Sakhaee Osteocalcin ng/ml
Sellmeyer AOsteocalcin ng/ml

SMD represented by diamonds. ¢ Squares represent mean difference
(95 % CI), with total mean difference represented by diamonds

as well as a reduction in calcium and net acid excretion, in
support of our hypothesis. Meanwhile, the proposed effects on
bone formation and BMD are not supported by the present
data.

Whilst the effect of KHCO; and KCitr on calcium and acid
excretion is not widely disputed, the implications of these
effects for bone health have been debated. It has been argued
that the effects of alkaline potassium salts on calcium do not
impact on bone as losses/gains are compensated for by chang-
es in absorption [28]. However, none of the included balance
studies [17, 18, 22] found changes in calcium absorption.
Moreover, our analysis also provides evidence for an inhibi-
tion of skeletal degradation with supplementation, with the
majority of studies that measured bone turnover markers

@ Springer
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Effect of KCitr on BMD

alLS2-3
KCitrate Placebo Mean Difference Mean Difference
Study or Subgroup Mean SD_Total Mean SD_Total Weight 1V, Random, 95% CI IV, Random, 95% CI
Jehle 2013 1.134 0.21 85 1.08 0.2 84 99.8% 0.05[-0.01, 0.12]
Macdonald 2008 -2.0924 3.33023 60 -1.8018 3.89853 66 0.2% -0.29 [-1.55, 0.97]
Total (95% Cl) 145 150 100.0% 0.05 [-0.01, 0.11] »
Heterogeneity: Tau? = 0.00; Chiz = 0.29, df = 1 (P = 0.59); I2= 0% t t t t
Test f Il effect: Z = 1.69 (P = 0.09 A 08 0 05
est for overall effect: Z = 1.69 (P = 0.09) Control KCitr
b Total hip
KCitrate Placebo Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Jehle 2013 0.984 0.15 85 0.964 0.16 85 99.6% 0.02 [-0.03, 0.07] ]
Macdonald 2008 -1.6211 2.04849 58 -1.2539 2.29547 65 0.4% -0.37 [-1.13, 0.40] + >
Total (95% Cl) 143 150 100.0% 0.02 [-0.03, 0.07] ’
Heterogeneity: Tau? = 0.00; Chi? = 0.97, df = 1 (P = 0.32); I2= 0% t t 1 ; t
Test f Il effect: Z=0.78 (P = 0.43 01 -005 0 005 O
est for overall effect: Z=0.78 (P = 0.43) Control KCitr

Fig.3 Forest plots for effect of KCitr supplementation on BMD. Squares represent mean difference (95 % CI), with total mean difference represented by

diamonds

showing a decrease in bone resorption [12, 14, 16, 18]. In
particular, we showed a significant overall reduction in NTX
excretion with both KHCO; and KCitr, with very low hetero-
geneity among these studies. Thus, there is clearly an effect of
potassium or bicarbonate/citrate on osteoclastic activity. On
the other hand, few of the studies included in this analysis
showed an effect on markers of bone formation, and there was
no overall effect. In one long-term intervention [21], there was
a sustained increase in N-terminal propeptide of type 1 colla-
gen (but not bone alkaline phosphatase), after 2 years of KCitr.
In another short-term metabolic study [18], there was an

Comparison of KHCO; or KCitr with KCI

a Calcium excretion

KHCO3 or citrate KCI

increase in osteocalcin after 18 days of KHCOs. In that study,
NaHCOs; had no such effect, suggesting that potassium might
work independently of the alkaline anion. Similarly, Sakhaee
[23] found that KCitr but not NaCitr was effective in lowering
urinary calcium excretion. A plausible explanation is that the
beneficial effect of the base could be mitigated by the negative
effect of increased Na intake [17, 23, 29], with the resulting
increased Na excretion being accompanied by an increase in
calcium excretion. This is supported by the study by Lemann
et al. in which 24-h urinary Na excretion increased following
NaHCOj3 supplementation [17]. In that study, there was no

Std. Mean Difference Std. Mean Difference

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Dawson-Hughes 2009  -12.63 8.34 37 14.93 7.61 40 33.1% -3.42[-4.14,-2.71] -
Frassetto 2000 -1.82  1.15 18 -0.8 1 13 32.9% -0.91 [-1.66, -0.16] ]
He 2010 3.7 1.8 42 43 23 42  341% -0.29[-0.72, 0.14] =
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effect on urinary hydroxyproline excretion, possibly due to the
change in calcium balance being too small. Those authors also
suggest that K, independent of HCO3, might have had a direct
positive effect on tubular reabsorption of Ca. However, the
relative role of the cation and anion in these KHCO; or KCitr
supplementation studies still remains unclear. Our analysis of
studies comparing KHCO; or KCitr with KCl indicates that
the alkaline salts are significantly more effective than KCI in
reducing urinary acid excretion and bone resorption markers
[16, 26,27, 30]. One of these studies [27] also shows KCitr to
have a significant beneficial effect on BMD compared with
KCIL

Of course, the key question is whether these results have
implications for fracture risk. There is evidence that calcium
excretion and NAE are negatively associated with BMD [31,
32], and Shi et al. have shown that high calcium excretion is
particularly associated with lower BMD in children with
higher dietary acid load [33]. Two of the studies included in
our meta-analysis investigated BMD as an end-point [19, 21],
a small number of studies with which to detect an overall
effect—indeed we failed to show an effect of supplementation
on BMD. However, in one of these studies [21], there was a
marked increase in BMD at the lumbar spine relative to the
placebo after 2 years of KCitr supplementation, which was
shown by pQCT to be predominantly due to increases in
trabecular thickness, volume and number. As a result, fracture
prediction score (FRAX) was significantly reduced in both
men and women. A previous study by the same group, com-
paring KCitr with KCl, also demonstrated a positive effect of
KCitr (but not KCI) on BMD [27]. Conversely, a similar 2-
year study of KCitr supplementation in healthy postmeno-
pausal women failed to show any effect on BMD [19], and
thus no overall effect was seen in the meta-analysis. Why the
two similar studies produced such divergent results is not
clear. The subjects in the former study [21] included men
and women and were approximately 10 years older than those
in the latter study [19]. They also had slightly lower LS BMD
at baseline (T-scores —0.61+1.54 vs —0.08+1.33 g/em? for
placebo groups). It may be that the effect on the bone is
inversely related to baseline BMD. The women in the study
by Jehle et al. cited above were osteopenic with LS T-scores of
<2 [27]. Alternatively, the diets of the women in the Scottish
study were not sufficiently acidogenic for a beneficial effect of
alkaline potassium salts to be demonstrated [34]. It has also
been suggested that areal BMD measured by DEXA may not
be the most appropriate outcome for assessing the effects of
nutritional factors on the bone [35].

Intervention studies using alkaline salts of potassium allow
investigation of the effect of increasing dietary alkali without
the confounding effects of other nutrients and dietary or
lifestyle patterns associated with fruit and vegetable intake,
nor the well-established problems with dietary assessment. In
the present analysis, we show that, overall, administration of

alkaline potassium salts, whether in the short- or long-term,
leads to significant reduction in renal calcium excretion and
acid excretion, compatible with the concept of increased buff-
ering or neutralisation of hydrogen ions by raised circulating
bicarbonate. That this neutralisation of dietary acid load has
beneficial effects on bone is demonstrated by the reduction in
bone resorption that this analysis confirms.

The main limitation of this analysis is the heterogeneity of
included studies in terms of study design, primary outcome
measures and populations studied. Although all the studies
included were randomised controlled trials, there were marked
differences in dosage, duration and method of administration
of the supplement, as well as age and gender of the study
populations. In addition, there were very few studies with
BMD as the primary end-point, which fulfilled the inclusion
criteria, which limits the applicability of our findings, partic-
ularly with respect to fracture risk. Nevertheless, it is impor-
tant to note that the novel finding of an effect of alkaline
potassium salts on bone resorption was seen among studies
with little or no heterogeneity.

Thus, the effect of alkaline potassium salts on calcium,
acid-base and bone metabolism that has been demonstrated
in this meta-analysis has the potential to translate into preven-
tative measures for osteoporosis. In particular, dietary mea-
sures which include increasing intakes of fruit and vegetables,
and thus alkaline precursors, should be considered as valuable
contributors to bone health.

Conlflicts of interest None.
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