
ORIGINAL ARTICLE

L. P. Breitling

Received: 21 March 2014 /Accepted: 8 December 2014 /Published online: 31 January 2015
# International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Abstract
Summary Non-linearity is a likely phenomenon in bone me-
tabolism, but is often ignored in pertinent epidemiological
studies. Using NHANES III data on calcium intake and bone
mineral density, the most important non-linear methods are
introduced and discussed. The results should motivate re-
searchers to consider non-linearity in this field more
frequently.
Introduction Many relationships in bone metabolism and ho-
meostasis are likely to follow non-linear patterns. Detailed
dose-response analyses allowing for non-linear associations
nonetheless remain scarce in this field.
Methods A detailed analysis of NHANES III data on dietary
calcium intake and bone mineral density was used to demon-
strate the application and some of the challenges of the most
important dose-response methods, including LOESS, categor-
ical analysis, fractional polynomials, restricted cubic splines,
and segmented regression.
Results The spline estimate suggested increasing bone miner-
al density up to a calcium intake of about 1 g/day and a plateau
thereafter. In segmented regression, the break-point marking

the beginning of the plateau was placed at an intake of 0.58
(95 % confidence interval, 0.33 to 0.82)g/day. Sensitivity
analyses suggested a less curved dose-response in women.
Conclusions Knowing about the possibilities and limitations
of non-linear dose-response approaches should encourage
researchers to consider these methods more frequently in
studies on bone health and disease. The example analysis
suggested bone mineral density to reach a plateau slightly
below current calcium intake recommendations, with fairly
pronounced differences of the dose-response shape by sex and
menopausal status.

Keywords Broken-line regression . Dose-response .

Joinpoint regression . Piecewise regression . Spline regression

Introduction

Regression models are one of the most important tools in
modern epidemiological and biomedical data analysis [17].
They allow adjustment for multiple covariables and con-
founders, and diverse types of outcome and predictor vari-
ables can be handled in a usually straightforward fashion in
widely available software packages (e.g., [13, 14]). The use of
regression models allowing for more complex, namely non-
linear associations, has become popular only somewhat more
recently. Such models may obviously reflect natural relation-
ships more closely than standard linear regression equations.
The most often applied methods include fractional polyno-
mials and spline regression, many subtypes of which nowa-
days are available in standard statistical software packages
[10, 36]. Other methods, which try to fit specific non-linear
shapes to dose-response data based on mechanistic assump-
tions, are rarely used in epidemiological settings, but firmly
established in pharmacological studies [42]. Segmented re-
gression, which also is less widely known, explicitly takes into

Electronic supplementary material The online version of this article
(doi:10.1007/s00198-014-2996-7) contains supplementary material,
which is available to authorized users.

L. P. Breitling (*)
German Cancer Research Center, Division C070 Clinical
Epidemiology and Aging Research, PO Box 101949,
69009 Heidelberg, Germany
e-mail: lutz.breitling@gmail.com

L. P. Breitling
Klinik für Geriatrie und Altersmedizin, Allgemeines Krankenhaus
Celle, Siemensplatz 4, 29223 Celle, Germany

L. P. Breitling
Klinik für Innere Medizin I, University Hospital Regensburg,
Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany

Osteoporos Int (2015) 26:1271–1281
DOI 10.1007/s00198-014-2996-7

Calcium intake and bone mineral density as
an example of non-linearity and threshold analysis

http://dx.doi.org/10.1007/s00198-014-2996-7


account that an association may change at discrete break-point
values and locates such thresholds as part of the model-fitting
process [23, 27].

Bone metabolism and homeostasis involve a complex in-
terplay of nutritional intakes and hormonal feedback loops
[33, 43]. Associations between the components of such a
balancing regulatory system a priori must be expected to
feature non-linear dose-response relationships. The existence
of threshold phenomena also can reasonably be assumed. For
instance, the availability of a nutrient involved may be the
limiting factor of physiological processes, such as bone for-
mation, in the lower range of intake. If its availability exceeds
a possibly rather distinct threshold at which it is sufficient for
an optimal level of bone formation, regulatory mechanisms of
some kind obviously should counteract excessive osteoid
mineralization or soft tissue calcification with potentially ad-
verse effects on bone health [33].

Despite the preceding considerations, detailed dose-
response analyses are not regularly presented in epidemiolog-
ical studies on bone metabolism. A notable exception clearly
demonstrating the importance of considering non-linearity in
this context described a strongly curvilinear association be-
tween dietary calcium intake and risk of hip fracture
employing spline regression [46]. Another study examined
the dose-response relationship between serum vitamin D and
parathyroid hormone using a segmented regression variant
and other methods, revealing thresholds of optimal vitamin
D levels that differ between Caucasians and African Ameri-
cans [48]. The association between dietary calcium intake and
bone mineral density in NHANES III furthermore has served
as an example of non-linearity in the methodological literature
[10]. In the present work, the latter data are revisited and
reanalyzed with a focus on different approaches to non-
linear dose-response modelling and threshold estimation.
Brief non-technical introductions and comparisons are given,
positing that more widespread consideration of these methods
would benefit the research in the area of bone metabolism and
related matters.

Methods

Data source and study sample

Data used in the present work originated from public-use files
of the Third National Health and Nutrition Examination Sur-
vey (NHANES III) as provided by the Centers for Disease
Control and Prevention, National Center for Health Statistics,
Hyattsville, MD. NHANES III was a survey conducted from
1988 to 1994 in order to address questions of health and
nutrition in national probability samples of the non-
institutionalized population of the USA [30].

NHANES III participants were included in the current
analysis if information on dietary calcium intake and bone
mineral density of the femur neck region were available, as
well as age, sex, race/ethnicity, education, and smoking status.

Measurements and procedures

Key socio-demographic and health-related characteristics ob-
tained from standardized interviews included age, sex,
race/ethnicity (White, African American, Mexican American,
or other), education (less than 12, 12, or more than 12 years of
school completed), and self-reported current smoking. Sub-
jects were classified as physically inactive, if they reported
never walking a mile or more, as well as never engaging in
jogging/running, cycling, swimming, aerobics, dancing, cal-
isthenics, gardening, weight lifting, or any other physical
exercises during the past month [32].

Nutrient intakes were estimated from recall information
pertaining to foods and beverages consumed during the pre-
vious 24-h time period [2]. For the present study, the total
daily calcium, protein, and total energy intakes calculated
based on the University of Minnesota Nutrition Coordinating
Center nutrient composition database (which used a multi-
version design and was updated as required to reflect changes
in food composition throughout the survey period, see ftp.cdc.
gov/pub/Health_Statistics/NCHS/nhanes/nhanes3/2A/
EXAMDR-acc.pdf) were used. Furthermore, the intake of
vitamins or minerals in the past month was queried.

Body mass index was determined during visits to a mobile
examination clinic. Areal bone mineral density (BMD) of the
femoral neck area was measured using dual energy X-ray
absorptiometry [24]. Furthermore, blood samples were taken
and serum vitamin D levels examined by radioimmunoassay
[49].

Statistical analyses

The study sample first was described according to socio-
demographic and medical characteristics analysed, using
counts and percentages for categorical variables, mean (stan-
dard deviation) for normally distributed variables, and median
(interquartile range) for quantitative variables whose distribu-
tion showed a pronounced deviation from normality. Normal-
ity was assessed by inspecting histograms of the respective
variables.

Local polynomial regression

The bivariate association between bone mineral density and
calcium intake was explored by local polynomial regression
fitting (LOESS). LOESS is a smoothing method that essen-
tially summarizes the association between outcome and expo-
sure by fitting a multitude of regression models to adjacent
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subsets of the data [8]. For each x, the mean y then can be
predicted from the regression equation estimated from the
neighboring data points. The smoothing can be influenced
by changing the width of the subsets used for each local
regression. Furthermore, different importance (weights) can
be assigned to data points included in a local subset according
to their distance from the respective data point. The locally
fitted regression models usually are linear (first-degree
LOESS) or quadratic (second-degree LOESS).

Linear regression analysis

The covariable-adjusted association between calcium intake
and bone mineral density was first examined by multiple
linear regression of bone mineral density on calcium intake
as a continuous untransformed predictor. Furthermore, models
using quartiles or quintiles of calcium intake as predictors of
BMD were examined.

These and all subsequent models were adjusted for age,
sex, race/ethnicity, education, and smoking status, which a
priori were considered potential major confounders of the
association of interest. The adjustment for age was linear,
and the categorical characteristics were coded using dummy
variables. Additional characteristics were addressed in sensi-
tivity analyses (see below).

Fractional polynomial regression

In fractional polynomial modelling, multiple models are fit using
various transformations of the predictor for which a non-linear
association with the outcome is assumed [34]. Using a standard
approach, the transformations examined were 1/x2, 1/x, square
root of x, log(x), x, x2, and x3. Fractional polynomials were
investigated up to the second degree, that is, all possible models
including one or any combination of up to two of the transfor-
mations were examined. The final fractional polynomial model
was selected using the RA2 algorithm [36], which keeps the
predictor of interest only if an overall association exists and selects
a second-degree polynomial only if it provides a significant
improvement over the best-fitting first-degree polynomial. Non-
linearity can be assessed using standard likelihood ratio tests.

Restricted cubic spline regression

In spline regression, the association between outcome and
predictor essentially is allowed to differ in a piecewise fashion
between a chosen set of knots [39]. Usually, the regression
equation is formulated in such a way that no jumps occur in
the relationship. In the case of restricted cubic splines, the
association is piecewise defined by cubic functions, i.e., cur-
vilinear associations can readily be fit. They are restricted in
that the association is defined as linear beyond the outermost
knots and no kinks occur in the relationship. In the present

analysis, increasingly flexible restricted cubic spline models
with three to seven knots were examined, using the software’s
standard knot placement. The best model was selected accord-
ing to the AIC value, which balances flexibility vs. overfitting
[41]. In the case of a restricted cubic spline model with three
knots, the p value of the spline term as shown in standard
regression output allows a direct assessment of non-linearity
[10].

Emax modelling

As pointed out by a reviewer, specific non-linear dose-response
shapes can sometimes be assumed due to considerations re-
garding the underlying biology. Non-linear regression methods
may fit such shapes defined by explicit non-linear formulae. In
the case of the so-called Emax model, a sigmoid dose-response
curve is fit to the data [25]. The dose-response shape in this
model consists of plateaus at low and high exposure values
connected by a sigmoid increase or decrease in between. The
steepness (slope factor N) and location of the sigmoid part of
the dose-response are estimated by the modelling procedure,
which produces readily interpretable estimates, including the
difference between the two plateau values (commonly consid-
ered the maximum effect attributable to the exposure, Emax) and
the exposure value ED50, at which half the Emax is observed.

Segmented regression

In segmented regression, the association between predictor and
outcome is allowed to change at discrete break-points [27]. In
contrast to the knots in spline regression, the location of one or
more such break-points is estimated as part of the model-fitting
process by likelihood maximization. The resulting break-point
estimates may depend on the starting values, fitting parameters
and random aspects of the model estimation algorithm, which
includes a so-called bootstrapping procedure [47]. Thus, a rea-
sonable set of starting values and parameters were explored in
the present work, and relevant models were fit repeatedly.

Sensitivity analyses

In sensitivity analyses, the effect of including age2 in the
adjustment set was explored. Restricted cubic spline and
segmented regression models were examined separately for
female and male participants. Furthermore, the importance of
mineral and vitamin supplements was examined by restricting
the analysis to subjects reporting no intake during the past
month. Similarly, the impact of excluding subjects reporting
no physical activity or those suffering from severe obesity
(BMI 35+ kg/m2) was explored. Further models were fit
stratified on vitamin D sufficiency (cutoff 20 ng/mL) status.

As effects of calcium on bone mineral density were limited
to subjects with higher protein intake in some studies, models
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were also fit after stratification on protein intake (expressed as
% of total energy intake), additionally adjusting for total
energy intake [9]. To explore the importance of age and
menopause, spline and segmented regression models were
also fit separately to males up to or above the median age of
44 years, and to pre- or postmenopausal females (where
postmenopausal participants were identified by being 70+
years of age, or being non-pregnant and 40+years of age with
no period during the past 12 months, or having had hysterec-
tomy or removal of both ovaries [45]). Further models were fit
adjusting for or stratifying on body height.

All analyses were done using R v3.0.2 for Linux (R Foun-
dation for Statistical Computing 2013). The add-on package
“mfp” v1.4.9 was used for fractional polynomial analysis [3].
Restricted cubic spline regression employed the package
“rms” v4.1-1 [19], whereas “segmented” v0.3-0.0 [27, 28]
was used to fit segmented regression models. Emax modelling
was done using the package “DoseFinding” v0.9-12 [7].

Results

Descriptives

Table 1 shows the socio-demographic and medical character-
istics of the 14,116 NHANES III participants for whom suf-
ficient data for inclusion in the present study were available.
The two sexes were equally represented in the analysis sam-
ple. Almost half of the population were classified as non-
Hispanic white.

The dietary calcium intakes derived from nutritional recall
information were right-skewed and ranged from 0.002 to
9.87 g/day, the latter being a single outlier with the next
highest intakes being 6.69 and 6.62 g/day. Bone mineral
densities at the femoral neck ranged from 0.23 to 1.84 g/cm2

and followed a normal distribution rather well.
Missing values occurred for supplement intake (n=9),

physical activity (n=23), BMI (n=19), and vitamin D
(n=532).

Local polynomial regression

The LOESS estimate for the bivariate association between
calcium intake and bone mineral density is shown in
Fig. 1a. The width of the local subsets here was defined
as 40 % of the data points, and the default tricubic
weighting scheme was used. The local polynomials fitted
were linear functions.

Relative to the scatter of the measurements, the
LOESS estimate seemed to suggest little systematic
variation in BMD associated with calcium, though there
seemed to be an overall positive association and a

distinct kink in the relationship, which became more
apparent when examining the LOESS estimate at a
higher resolution (Fig. 1b).

Linear regression analysis

In multiple linear regression analysis, calcium intake was
associated with bone mineral density with an increase in
BMD by 0.0058 [95 % CI: 0.0014–0.0101]g/cm2 per g/day
calcium. Though the confidence intervals in both quartile and
quintile models all excluded the null effect, they widely over-
lapped. In reference to the lowest quartile, the second, third,
and fourth quartile of calcium intake (break-points of 0.39,
0.62, and 0.96 g/day) were associated with higher BMD with
coefficients of 0.0091 [0.0028–0.0153], 0.0081 [0.0018–
0.0144], and 0.0117 [0.0052–0.0182]g/cm2 per g/day. In ref-
erence to the lowest quintile, the second, third, fourth, and
fifth quintile (break-points of 0.34, 0.52, 0.74, and 1.07 g/day)
were associated with increases in BMD with coefficients of
0.0075 [0.0005–0.0144], 0.0110 [0.0040–0.0179], 0.0103
[0.0032–0.0173], and 0.0138 [0.0065–0.0210]g/cm2 per
g/day.

Table 1 Description of the 14116NHANES III participants included in
the present study

Socio-demographic and medical characteristics

Age, years (median [IQR]) 44 [32–64]

Sex (n [%])

Female 7286 (52%)

Male 6830 (48%)

Race/ethnicity (n [%])

Non-Hispanic white 5978 (42%)

Non-Hispanic black 3861 (27%)

Mexican American 3725 (26%)

Other 552 (4%)

Education (n [%])

<12 years 5649 (40%)

12 years 4371 (31%)

>12 years 4096 (29%)

Current smoking (n [%])

Yes 3702 (26%)

No 10,414 (74%)

Dietary daily calcium intake, g/day
(median [IQR])

0.62 [0.39–0.96]

Femoral neck bone mineral density, g/cm2

(mean [SD])
0.83 (0.17)

Mineral/vitamin supplements in past month (n [%]) 5218 (37%)

No physical activity in past month (n [%]) 2961 (21%)

Body mass index, kg/m2 (median [IQR]) 26.2 [23.2–30.0]

Serum vitamin D, ng/mL (median [IQR]) 24.3 [17.7–32.2]

IQR interquartile range, SD standard deviation
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Fractional polynomial analysis

In fractional polynomial modelling, the first-degree polyno-
mial with log-transformed calcium intake as the predictor was
selected as the final model (p for non-linearity: 0.0079). The
association is graphically depicted in Fig. 2a. As in the fol-
lowing figures, the mean predicted bone mineral density is
shown for covariable values of median age, male sex, non-
Hispanic White, less than 12 years of education, and non-
smoking. Reflecting the nature of the logarithmic exposure
transformation, the shape of the dose-response curve was
characterised by an extremely steep slope at very low calcium
intake and a more and more shallow but monotonously pos-
itive association at higher exposure values.

The best-fitting second-degree fractional polynomial addi-
tionally included (calcium intake)3 and did not differ visibly
from the log-only model for intakes up to 2 g/day (Fig. 2b).
Beyond this value, the dose-response turned into a negative
association.

Restricted cubic spline analysis

The restricted cubic spline model with three knots (placed at
the 10th, 50th, and 90th percentile) was selected as the best
model. It also was superior to the simple linear model
(AICspline=-17027 vs. AIClinear=−17021; p=0.0050). The

shape of the estimated dose-response relationship is shown
in Fig. 3a. The spline estimate essentially consisted of a
positive association at calcium intake values below 1.0 g/day
and a plateau at higher values. The shape of the splines with
four and five knots did not differ to any relevant degree from
the best spline. The spline with six knots (5th, 23rd, 41st, 59th,
77th, 95th percentile), showed some more pronounced fluc-
tuations, but even these stayed within the confidence interval
of the best model (Fig. 3b).

Emax modelling

The sigmoid Emax model yielded the dose-response estimate
presented in Fig. 4, suggesting a dietary calcium intake-
associated maximum increase in bone mineral density (95 %
confidence interval) of Emax=0.0159 (0.0009–0.0308)g/cm2.
With an estimated ED50=0.36 (0.12–0.60)g/day, the dose-
response curve seemed to approach the upper plateau some-
what more steeply and at lower exposure values than in the
spline regression models (Fig. 3). Note, however, that a sim-
plified, so-called hyperbolic Emax model, which featured a
positive association at low exposure values approaching a
plateau at higher exposure values, yielded a minimally smaller
AIC (−17,027 vs. −17,026; details not shown).

Fig. 1 Scatter plot of dietary calcium intake and bone mineral density in
NHANES III, showing the corresponding LOESS estimate and
approximate confidence bands (dotted lines; defined as ± two standard
errors around the estimate)

Fig. 2 Fractional polynomial modelling of the association of calcium
intake with bone mineral density. a Final model with 95 % confidence
interval (shaded). b Like panel a, but with best-fitting second-degree
polynomial overlayed in red
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Segmented regression

The segmented regression estimate shown in Fig. 5a was
obtained with a break-point location starting value of 0.7.
The dose-response in this modelling approach was estimated
to be a positive association turning into a plateau beyond a
calcium intake of 0.58 [95 % CI, 0.33 to 0.82]g/day. The
estimated slopes [95 % CI] below and above the break-point
were 0.0314 [0.0069 to 0.0559], respectively, 0.0009
[−0.0050 to 0.0068]g/cm2 per g/day.

On the basis of the spline in Fig. 3a, one might have chosen
a starting point of 1.0.With that starting value, a break-point at
0.91 [95 % CI: 0.47 to 1.35] was obtained. Notably, starting

values from 0.4 to 0.9 consistently converged on break-points
narrowly ranging from 0.57 to 0.59, whereas starting values of
1.1 and 1.2 or higher produced break-point estimates of 1.16
[95 % CI, 0.61 to 1.70] and around 1.87, respectively. As
shown in Fig. 5b, the models with higher break-points fea-
tured increasingly implausible negative slopes beyond the
estimated break-points. Models trying to estimate two break-
points did not converge.

Based on the convergence patterns described above, taking
into account the LOESS and especially the restricted cubic
spline estimates, and furthermore considering biological plau-
sibility, the model fits with break-points around 0.58 were
considered the most relevant and plausible segmented regres-
sion estimates of the dose-response relationship. The results
thus suggested that bone mineral density increased with die-
tary calcium intake up to 0.58 g/day, whereas intake in excess
of this value was not associated with any further beneficial
effects in terms of BMD.

Sensitivity analyses

The inclusion of age2 in the adjustment set did not affect the
shape of the spline model or the break-point estimates to any
relevant degree. Though statistically significant, age2 was not
included in the main models for the sake of parsimony and

Fig. 3 Restricted cubic spline modelling of the association of calcium
intake with bone mineral density. a. Best model with 95 % confidence
interval (shaded). b Like panel a, but with the results of models with four,
five, and six knots overlayed in red, blue, and green, respectively

Fig. 4 Emax modelling of the association of calcium intake with bone
mineral density. Main model with 95 % confidence interval (shaded)

Fig. 5 Segmented regression modelling of the association of calcium
intake with bone mineral density. a Main model with 95 % confidence
interval (shaded), also showing the break-point estimate and its 95 %
confidence interval. b Like panel a, but with the results of models
converging on higher break-points overlayed; for details, see text
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precision. In sex-stratified analyses (Supplemental Figure 1a),
the spline estimate for the male participants (n=6830) hardly
differed from the main analysis. The break-point estimated in
a corresponding segmented regression model likewise was
essentially the same (0.62 [95 % CI, 0.33 to 0.92]g/day).
The spline for the female participants (n=7286) clearly ap-
peared less curved (Supplemental Figure 1b). Segmented
regression estimation placed a break-point at a calcium intake
of 0.36 [0.06 to 0.67]g/day. The exclusion of 5218 subjects
reporting vitamin or mineral intake during the past month did
not affect the shape of the dose-response or break-point esti-
mates to any relevant degree (Supplemental Figure 2). The
models fit after excluding participants reporting no physical
activity (n=2961) or those being severely obese (n=1243)
also produced spline curves similar to the main models. The
break-point estimates were somewhat more ambiguous,
though the confidence intervals around these estimates were
widely overlapping (Supplemental Figure 3). For participants
with vitamin D deficiency (n=4554), the spline estimate fea-
tured rather wide confidence intervals, but otherwise was
rather similar to the previous model (Supplemental
Figure 4a). A break-point at 0.61 g/day dietary calcium intake
was estimated very consistently. Finally, the spline estimate
for the 9030 subjects with sufficient serum vitamin D levels
started off with a more shallow slope, though the overall dose-
response shape was preserved (Supplemental Figure 4b). The
segmented regression models converged either on a break-
point of 0.44 or 0.91 g calcium per day.

As shown in Supplemental Figure 5, the impact of stratifi-
cation on dietary protein intake and adjustment for total ener-
gy intake was limited, and the variation of the spline curves
and break-point estimates showed no really clear pattern. Age-
stratification had only a moderate effect on the dose-response
and break-point estimates in men, but the stratification on
menopausal status in women produced an almost linear
dose-response estimate in the premenopausal subcohort, con-
trasting clear non-linearity in the postmenopausal participants
(Supplemental Figure 6). Adjustment for or stratification on
body height had no relevant impact on the dose-response
relationships investigated (Supplemental Figure 7).

Discussion

Non-linearity is a likely phenomenon in studies on bone
metabolism and homeostasis. Going through the currently
most important dose-response methods, the present work
extended previous results regarding the non-linear association
between calcium intake and bone mineral density in
NHANES III, which were obtained in a methodological study
[10]. The results especially of the less widely used segmented
regression models suggested that femoral neck bone mineral

density (as a measure of bone health) levels off somewhat
below current calcium intake recommendations [31]. Further-
more, sex-stratified models suggested that the association of
calcium with BMD possibly differs more substantially be-
tween men and women than currently appreciated. Some
important limitations of the various approaches to dose-
response analysis also were encountered and can be exempli-
fied by the present work.

Smoothing the scatter plot

The LOESS approach [8] was used to summarize the bivariate
association between calcium intake and bone mineral density
as visualized in the scatter plot. As LOESS makes no assump-
tion whatsoever about the shape of the dose-response relation-
ship, it essentially is the most flexible of the methods
employed in the present work. Such flexible smoothing may
be particularly useful as a first step in dose-response analysis,
though in the present example the non-linearity in the LOESS
estimate was more or less lost in the scatter of the BMD
measurements.

Notably, there is not one LOESS estimate for a given
dataset, as the result depends on the various smoothing pa-
rameters, weighting schemes, and optional extensions such as
corrections for outlying values [22]. In the present work,
exploring a reasonable set of smoothing parameters did not
affect the LOESS estimate to any relevant degree (not shown).
Statistical procedures are available for testing LOESS esti-
mates of different degrees against each other and an ordinary
linear model. Multivariate extensions exist, but their results
lack the intuitive interpretability of the standard LOESS
curves [8, 21].

Classical categorical analysis

The linear regressionmodels using categorized calcium intake
were consistent with a positive association with bone mineral
density, but did not provide much more insight into the dose-
response relationship. Grouping a quantitative exposure into
quantiles, e.g. quartiles or quintiles, or according to predefined
cutoffs is a very common approach in biomedical data analy-
sis. Strengths of this approach include its practical simplicity,
the ease of presenting the results, and the fact that no assump-
tions on the overall shape of the dose-response relationship are
made. Non-linear patterns thus may well be captured by this
approach.

Although models with a categorized predictor flexibly
allow for non-linearity, they effectively fit a step function with
discrete changes in the outcome at the category limits [39].
Mechanistically, this will hardly ever make sense. Whether or
not non-linearity is discovered obviously may depend on the
choice of category limits [16]. The non-linear parts of a dose-
response relationship may disappear within a single broad
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category, or they may get lost in the imprecision of estimates
associated with more narrow categories.

In the absence of predefined cutoffs, researchers most often
resort to grouping the study participants into exposure quar-
tiles or quintiles, perceiving the equal group size and pre-
sumed comparability across studies as advantages. These
are, to some extent, misperceptions. In the case of binary
outcomes, such as occurrence of a hip fracture, it would be
statistically preferable not to form equal-sized groups, but
groups with the same number of outcome counts [39]. Fur-
thermore, comparability across studies can only be assumed if
the underlying dose-response relationship is linear across the
entire exposure range, or if the categories have similar bound-
aries in the various studies. As discussed throughout, the
linearity assumption cannot generally be made in studies on
bone biology, and the exposure range for some important
variables varies substantially in this field. Comparing
category-based estimates between studies thus requires much
more caution than often is appreciated.

Smooth dose-response modelling

The currently most widely used smooth non-linear modelling
strategies, fractional polynomial, and spline regression,
yielded somewhat different results. As the log-transformation
selected as the best-fitting fractional polynomial model goes to
negative infinity as x goes to zero, the dose-response curve
obtained by this approach was extremely steep at its begin-
ning. Restricted cubic spline modelling suggested a more
shallow slope followed by a plateau beyond a calcium intake
near 1 g/day.

There is no consensus regarding the superiority of either
approach or their variants [15, 16, 39]. Neither method at-
tempts to estimate mechanistically relevant parameters (in
contrast to non-linear modelling based on differential equa-
tions in pharmacology, ecology, and so forth), and the overall
shapes rather than exact coefficients of the dose-response
curve may be considered the main result in this type of
analysis.

As mentioned above, procedures are readily available to
test for the significance of non-linearity or to judge whether an
even more flexible model indeed fits the data better [10, 36].
One should consider the possibility that strictly relying on
statistical testing might not be the most sensible approach in
many situations in this context [16]. If a non-linear association
is assumed based on prior knowledge, it might often make
sense to present a dose-response curve estimated by fractional
polynomial or spline methods regardless of statistical signifi-
cance. With sufficient confidence in the applicability of a
sigmoid relationship, for example, one could even employ
an explicitly non-linear model, such as the Emax model in the
present study. Similarly, even if a spline model with three
knots—as in the current analysis—is selected as the best

model based on the AIC, it may still make sense to explore
more flexible splines that can reveal additional non-linearity
of the dose-response relationship.

Threshold estimation by segmented regression

Among the methods used in the present work, segmented
regression probably is the least well known. The results in
the main analysis were consistent in particular with the spline
estimate. The break-point, at which the positive association
turned into a plateau, most consistently was placed at a calci-
um intake of about 0.6 g/day, somewhat lower than one might
have guesstimated based on the smooth modelling procedure.
Though estimating such a threshold by an objective procedure
should be preferable to eyeballing curvilinear graphs, the
example analysis also highlighted some major challenges of
segmented regression.

Especially if the data are relatively noisy, the break-point
estimated may depend on the starting value and parameters
chosen, as multiple true or spurious break-points may be
identified by the fitting algorithm [27, 28]. Recent versions
of the software used here implement techniques trying to
overcome this issue by a bootstrapping approach, which in-
troduces a random component that may lead to different
break-point estimates even when using identical starting
values and modelling parameters (see package documenta-
tion; [47]). It then depends on subject matter knowledge and/
or results of additional dose-response analyses, whether one
chooses to discard a specific break-point estimate or not.

Altogether, segmented regression clearly is a useful and
certainly underused addition to the epidemiological methods
repertoire, which inmost cases should complement rather than
replace other dose-response approaches. Although this meth-
od generally can accommodate all kinds of outcomes and
exposures, its use to date has been limited almost exclusively
to time trend analyses (e.g., [4, 29, 37]).

Statistical tests have been proposed to check for the exis-
tence of a break-point [28], but these pertain to the comparison
with an unsegmented linear rather than with a smooth non-
linear model as the alternative. In some situations, there might
be an exceptionally strong rationale for focusing on a seg-
mented regression approach [12]. In a field like bone metab-
olism, discrete changes in a dose-response relationship often
might be less expected, as complex feedback loops are in-
volved that should be more likely to result in a smooth change
in associations. They could nonetheless occur, for example,
when an essential nutrient intake reaches a distinct sufficient
level.

Dietary calcium intake and bone mineral density

In a previous study on the female participants of NHANES III,
dietary calcium intake was not associated with bone mineral
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density in the femoral neck region [5]. In the present analysis,
calcium intake as a continuous variable was significantly
associated with BMD also in a females-only model
(p=0.0018 in covariable-adjusted linear regression; details
not shown). Bone mineral density in the study by Bass et al.
[5] was dichotomized, which might explain the discrepancy of
the results. Another NHANES III study described an associ-
ation of calcium intake with (total hip) bone mineral density
only in female participants with low serum vitamin D levels,
but not in other women or in men of any vitamin D status [6].
The present sensitivity analyses were consistent with this to
the extent that the initial slope of the dose-response curve was
much steeper in vitamin D-deficient subjects, whereas the
inconsistency with respect to an association among the male
participants might be due to treating calcium intake as
grouped into quartiles. An association of calcium intake
(quartiles) with bone mineral density (dichotomized) also
has been shown in another large study including both sexes
[20], and an association of dietary calcium intake with bone
health altogether is widely accepted, though evidence for
some subgroups remains scarce or inconclusive [43].

The NIH-recommended dietary allowances for calcium are
1.0 g/day for young adults, and 1.2 g/day for women and men
aged 51+ and 71+years, respectively [31]. The present study
was not designed to derive novel dietary recommendations,
and the relevance and generalizability of findings like the
rather pronounced heterogeneity by sex and menopausal sta-
tus in the present work need to be evaluated in future studies
and additional populations. Metabolic studies on calcium
homeostasis seem to be in line with a lower calcium intake
of about 0.75 g/day being sufficient in both sexes [21], and
age-dependent threshold behaviour of calcium balances has
been suggested [26]. In a large study on Scandinavian women,
the risk of hip fracture diminished up to a dietary calcium
intake of about 0.8 g/day (guesstimate based on eyeballing the
published spline curve), with no additional protective effect
beyond this value [46].

Limitations

The present study focussed on bone mineral density at the
femoral neck region. Some association patterns may differ for
other femoral sites, but the determinants generally strongly
overlap [5]. In addition, BMD at different femoral sites show
similar associations with fracture risk, further justifying the
restriction to one site in the present work [40]. Only areal
measurements of bone mineral density were available for the
present study, and future studies should preferably employ
volumetric assessments less prone to distortions by bone
volume and body size [1]. Other limitations are the cross-
sectional design and the assessment of calcium intake by 24-h
recall, though the reliability of the data source used has been
demonstrated time and again [2].

The present analysis with its focus on dose-response as-
pects tried to maximize generalizability by excluding as few
subjects as possible a priori. This increases the possibility of
residual confounding, but the resulting large sample size in
combination with multivariate regression modelling address-
ing major confounding variables remains a strength of the
study. Generalizability of the results could have been further
improved by applying methods fully taking into account the
complex survey design of NHANES III, which included
oversampling of persons over 60 years old, African and Mex-
ican Americans [18, 30]. Such design-based methods current-
ly have been implemented only for some of the dose-response
models described in the present work, and given its method-
ological and comparative focus, standard procedures without
survey design adjustment were used throughout. Confounding
patterns that would introduce the non-linearity consistently
shown in the various models are difficult to envision, and the
general dose-response shape was rather robust in sensitivity
analyses that addressed additional potential confounders or
effect modifiers, such as mineral supplements [38], physical
activity [11], body mass index [44], or protein and energy
intake [9].

Even though the dose-response analyses presented above
currently might be the most detailed ones published on calci-
um intake and bone mineral density, only a small selection of
pertinent methods could be demonstrated. For more technical
overviews, the reader is referred to Greenland [16] and
Steenland [39]. Many variations and additional non-linear
methods exist, including other procedures to identify break-
points in segmented relationships (see Muggeo [27] for a
pointer to the literature; Wright [48] for a recent example of
the application of grid-search segmented regression and
Helmert contrast methods; Salanti [35] for a non-parametric
approach based on isotonic regression). Non-linear regression
models in the narrow sense received only a cursory treatment
in the present study in the form of theEmax model. An in-depth
introduction can be found in the drug development literature
[42]. Finally, only a continuous example outcome was exam-
ined here, but most of these methods have been adapted to all
relevant types of outcomes, in particular binary and survival
data.

Conclusion

Non-linearity of dose-response relationships is often
neglected in research pertaining to bone metabolism and
homeostasis. The example of dietary calcium intake and bone
mineral density shows how interesting additional aspects of an
association can be revealed using nowadays well-established
and accessible non-linear dose-response methods. The results
point to further research and replication needs, e.g., regarding
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sex differences in the dose-response curves and exact thresh-
old locations. More importantly, the applied demonstration of
the currently most important dose-response methods should
enable and stipulate researchers to consider non-linearity in
studies of bone health and disease more frequently. This could
contribute to refining and advancing our understanding of
many phenomena related to this field.
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