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Abstract

Summary Chronic environmental fluoride exposure under
calcium stress causes fragility fractures due to osteoporosis
and bone quality deterioration, at least in sheep. Proof of
skeletal fluorosis, presenting without increased bone density,
calls for a review of fracture incidence in areas with fluoridat-
ed groundwater, including an analysis of patients with low
bone mass.

Introduction Understanding the skeletal effects of environ-
mental fluoride exposure especially under calcium stress re-
mains an unmet need of critical importance. Therefore, we
studied the skeletal phenotype of sheep chronically exposed to
highly fluoridated water in the Kalahari Desert, where live-
stock is known to present with fragility fractures.

Methods Dorper ewes from two flocks in Namibia were stud-
ied. Chemical analyses of water, blood and urine were exe-
cuted for both cohorts. Skeletal phenotyping comprised
micro-computer tomography (pnCT), histological,
histomorphometric, biomechanical, quantitative backscattered
electron imaging (qBEI) and energy-dispersive X-ray (EDX)
analysis. Analysis was performed in direct comparison with
undecalcified human iliac crest bone biopsies of patients with
fluoride-induced osteopathy.
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Results The fluoride content of water, blood and urine
was significantly elevated in the Kalahari group com-
pared to the control. Surprisingly, a significant decrease
in both cortical and trabecular bones was found in sheep
chronically exposed to fluoride. Furthermore, osteoid
parameters and the degree and heterogeneity of mineral-
ization were increased. The latter findings are reminis-
cent of those found in osteoporotic patients with
treatment-induced fluorosis. Mechanical testing revealed
a significant decrease in the bending strength, concurrent
with the clinical observation of fragility fractures in
sheep within an area of environmental fluoride
exposure.

Conclusions Our data suggest that fluoride exposure
with concomitant calcium deficit (i) may aggravate bone
loss via reductions in mineralized trabecular and cortical
bone mass and (ii) can cause fragility fractures and (iii)
that the prevalence of skeletal fluorosis especially due
to groundwater exposure should be reviewed in many
areas of the world as low bone mass alone does not
exclude fluorosis.

Keywords Fluoride - Fluorosis - Fragility fracture -
Osteoporosis

Introduction

Fluoride is part of the environment, being naturally present in
water, rocks and soil throughout the world but with tremen-
dous regional differences explained by tectonic plate move-
ments [1-5]. Fluoride is known to interact with mineralized
tissues such as bone and teeth and has the potential to increase
bone mass and prevent dental caries. In the latter regard,
fluoridation of drinking water to prevent dental caries is
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considered as one of the ten most important public
health achievements of the twentieth century [6]. How-
ever, the pharmacological use of fluorides did not trans-
late into fracture reduction in patients with osteoporosis
despite increases in bone mineral density, which ex-
plains the loss of interest in the pharmacological use
of fluorides in bone loss syndromes. The discrepancy
between a successful increase in bone mass and the lack
of fracture reduction is at least in part explained by the
action of fluorides in the mineralization process as well
as in the remodelling process, where bone quality is
compromised and the interaction between osteoblasts
and osteoclasts is altered [7-10]. Nevertheless, as envi-
ronmental exposure to fluorides from various sources
(including workplace exposure, environmental pollution
and fallout), but especially as daily intake of naturally
fluoridated water, is inevitable in many areas and coun-
tries throughout the world, it remains a major health
issue as it has been suggested that fluorides may para-
doxically aggravate osteoporosis and increase osteopo-
rotic fractures [11]. For example, Jacobsen and co-
workers reported a significant positive relation between
hip fractures and water fluoride concentration within the
USA [12], which was corroborated by similar results for
the UK reported by Cooper and coworkers [13]. To
date, there is no consensus about whether these obser-
vations of increased fracture risk really relate to
fluoride-induced bone loss, as increased radiographic
density, a generally accepted hallmark diagnostic sign
of skeletal fluorosis, was not found in the USA or the
UK. Here, it is of critical importance to note that in
fact, the diagnosis and/or especially exclusion of skele-
tal fluorosis is in general made on the basis of the
presence or absence of osteosclerosis on X-rays, in
other words, decreased radiolucency, without further
histological confirmation to exclude mineralization de-
fects and bone quality deterioration. However, as the
rates of dental fluorosis in the USA have dramatically
increased during the last 60 years, with a prevalence of
10 % in 1950, 23 % in 1987 and 41 % in 2004 [14],
the US Department of Health and Human Services
(DHHS) has announced its recommendation that water
fluoridation programmes should lower the levels added
(to 0.7 mg/1 [=parts per million (ppm)]) in January 2011
[15]. Thus, there is an awareness of potential clinical
problems beyond classical fluorosis that might be of
importance not only for people in certain areas of the
world with a naturally high fluoride water content due
to pyroclastic/geologic activity in the past but also for
communities whose water has been and is still been
being fluoridated. On the latter basis, we decided to
study the skeletal phenotype of sheep from a flock
presenting with fragility fractures—which is completely
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unusual for livestock—known to be chronically exposed
to highly naturally fluoridated groundwater in the
Kalahari Desert.

In order to study the skeletal phenotype, we decided to use
the following devices and methods: After laboratory analyses
of drinking water, sheep blood and urine, radiographic images
and analyses were undertaken to assess structural changes in
femora and iliac crest biopsies. Mineralization changes in the
bone following exposure to fluoride needed to be analysed.
Histology and histomorphometry are essential to identify cel-
lular differences, and for biomechanical property effects,
three-point bending tests were executed, yielding explanations
for the fragility fractures occasionally observed in sheep.

Methods
Animals

We studied aged non-fractured sheep from a flock observa-
tionally reported to present with fragility fractures and com-
pared them with sheep of the same breed from a flock without
fragility fractures. Therefore, ten Dorper ewes aged 67 years
were obtained from two farms, five for each group, from two
different regions in Namibia. One farm was in a region within
the Kalahari Desert and is known for the high fluoride content
in the groundwater, whereas the other farm was outside the
Kalahari Desert and has normal fluoride levels in the
groundwater.

Specimens

All sheep material used in this study originated from
animals that were free range and were grown and fed
for meat sale or as a personal meat source for the
farmers. Water samples from the livestock drinking
wells on both farms were taken and used for further
analysis, in particular, with regard to the fluoride con-
tent. Blood, urine and bone samples were obtained
during the slaughter process prior to sale of the meat
on the meat market. Five sheep were derived from a
flock of the southwestern Kalahari Desert area where
sheep have been reported to present with fragility frac-
tures of long bones without a known significant trauma.
The control sheep material from ewes of the same breed
as well as water samples were collected at a farm in a
different region outside the Kalahari where broken
bones have never occurred during the past 10 years.
For direct comparison with changes that occur in
humans with fluorosis, we made use of archived iliac
crest biopsies from eight patients who had been treated
with sodium fluoride regimens for osteoporosis and
were supervised at our institution (six females, two
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males; mean age 67.4+9.4 years, sodium fluoride aver-
age 40 mg/day for 3.7+1.1 years). Transiliac crest bi-
opsies from age- and sex-matched individuals without
skeletal pathologies obtained from our bone biopsy reg-
ister were used as human controls.

Water and fluoride analyses

Groundwater analyses for fluoride were performed by
determination of dissolved anions by liquid chromatog-
raphy of ions using the following standard: DIN EN
ISO 10304-1 at the IWW Water Research Institute
(Rheinisch-Westfalisches Institut fiir Wasser, Miihlheim
an der Ruhr, Germany). Groundwater was analysed for
nitrate (mg/l), fluoride (mg/l), chloride (mg/l), sulphate
(mg/l), sodium (mg/l), potassium (mg/l), calcium (mg/l)
and magnesium (mg/1).

Fluoride in blood and urine was determined potentiomet-
rically using an ion-selective electrode in the laboratories of
Medical Laboratory Bremen (Medizinisches Labor Bremen,
Bremen, Germany).

Quantitative backscattered electron imaging
and energy-dispersive X-ray spectroscopy

The distribution of bone minerals was investigated in
the iliac crest specimens from the Dorper ewes and
patients described above. The surface of the plastic-
embedded block specimens was polished and carbon-
coated for scanning electron microscopy (LEO 435 VP,
Leo Electron Microscopy Ltd., Cambridge, England)
and nondestructive microanalysis with energy-dispersive
X-ray analysis (EDX; DX-4, Mahwah, NJ), allowing
spatial investigation of the elemental concentrations
[16, 17]. To determine the elemental composition of
the bone specimens, EDX was performed in the centre
of trabecular nodes with a transverse section >100 pm.
These regions of interest (ROI) were each 0.025 mm? in
size. Elemental peaks reflecting pronounced calcium
(Ca), phosphorus (P), oxygen (O), sodium (Na), magne-
sium (Mg) and fluorine (F) content in the bone were
evaluated in weight percent (Wt%) via EDX-ZAF soft-
ware provided by the manufacturer. EDX quantifies the
relative contribution of each of the detected elements
(within the ROI) to 100 %.

Quantitative backscattered electron microscopy was
used to assess the degree of mineralization of the spec-
imens (sheep—iliac crest and femoral cortex, human—
iliac crest). The application is based on the work of
other groups that use quantitative backscattered electron
imaging (qBEI) [18-20] and has been reported previ-
ously [21, 22]. The pixel size of 3 um was determined
based on the recommendations of Roschger and

colleagues [20]. The generated grey values represent
the mean calcium content (mean Ca-Wt%) and the het-
erogeneity of mineralization (width Ca-Wt%) of the
cross-sectioned cancellous bone.

Contact radiographs, micro-computer tomography
and high-resolution peripheral quantitative computer
tomography

Iliac crest biopsies and the femora of all sheep were analysed
by contact radiography using a Faxitron X-ray cabinet
(Faxitron X-ray Corp., Wheeling, IL, USA). For the assess-
ment and 3D visualization of the cortical thickness, porosity,
bone volume per tissue volume (BV/TV), trabecular thickness
(Tb.Th), trabecular number (Tb.N) and trabecular spacing
(Tb.Sp), iliac crest biopsies were scanned (40 kV/114 mA)
using a micro-computer tomography (LCT) 40 (Scanco Med-
ical AG, Bruettisellen, Switzerland). The scanning process
and analysis were executed as previously described [23].
Measurements of femora cortex were performed at midshaft.
Further structural assessment and 3D visualization of bone
volume (BV/TV), trabecular number (Tb.N), trabecular spac-
ing (Tb.Sp), trabecular thickness (Tb.Th), cortical thickness
(Ct.Th) and porosity were performed with a high-resolution
peripheral quantitative computed tomography scanner (HR-
pQCT, Xtreme-CT®, Scanco Medical, Bruettisellen, Switzer-
land). Therefore, the total femora were scanned (60 kV/
900 pA) at a resolution of 80 um. Additionally, a cross section
of each contralateral femur was scanned (40 kV/114 mA)
using a HCT 40 (Scanco Medical, Bruettisellen, Switzerland)
at a resolution of 18 pm. Subsequently, the generated raw data
were manually segmented for analyses with the pCT Evalu-
ation Program V6.0 (Scanco Medical). Finally, the segmented
data were imported and displayed in uCT Ray V3.8 for
visualization (Scanco Medical).

Histology, histomorphometry, quantitative analysis
of canalicular connections and biomechanical testing

Iliac crest bones were fixed in 3.7 % PBS-buffered formalde-
hyde for 3 days at 4 °C and transferred into 70 % ethanol. The
biopsies were dehydrated in ascending alcohol concentrations
and embedded in methylmethacrylate as described previously
[24]. Sections of 5 um were cut on a Microtec rotation
microtome (Techno-Med, Munich, Germany). Sections were
stained with toluidine blue, trichrome Goldner and the van
Gieson/von Kossa procedure as described previously [25].
Quantitative histomorphometry was performed on
undecalcified iliac crest sections of 5-um thickness stained
as mentioned above. Analysis of osteoid volume (OV/BV),
osteoid surface (OS/BS), osteoid thickness (O.Th) as well as
the determination of osteoblast number (N.Ob/B.Pm), osteo-
clast number (N.Oc/B.Pm) and surface indices (Ob.S/BS and
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Oc.S/BS) were carried out according to standardized protocols
using OsteoMeasure histomorphometry system
(OsteoMetrics, Atlanta, GA, USA) and BIOQUANT
(BIOQUANT Image Analysis, Inc., Nashville, TN, USA)
according to the American Society for Bone and Mineral
Research (ASBMR) standards [26]. Furthermore, buried os-
teoid was characterized beyond standard ASBMR nomencla-
ture (number of cases/total cases). Polarized images and anal-
yses of histological sections were executed for qualitative
assessment of the osseous maturation and mineral deposition
(e.g. distinction between woven and lamellar bone) as previ-
ously described [27].

To examine the canalicular network, polished sheep femur
bone samples were exposed to acid etching following earlier
recommendations by Kubek [17] and Milovanovic [17, 28].
After acid etching, the surface was coated with gold (Au)
using a sputter coater (Cressington 108, Cressington Sc. Instr.
Ltd., Watford, UK). Thereafter, the specimens were analysed
in a scanning electron microscope (LEO 435 VP; LEO Elec-
tron Microscopy Ltd., Cambridge, England). Measurement of
the number of canaliculi per osteocyte lacuna (N.Ot.Ca/Ot.Lc)
was done through digital image analysis as previously de-
scribed [17]. The data for all lacunae were averaged for each
specimen.

The biomechanical properties of the cortical bone of the
sheep femora were evaluated using three-point bending tests.
We used a standard materials testing machine (1454, Zwick
GmbH, Ulm, Germany) equipped with a 10-KN load cell
(Hottinger Baldwin Messtechnik GmbH, Leonberg, Germa-
ny) to perform the three-point bending tests. The deflection of
the femoral midshaft was measured using an external measur-
ing device (MT25; Heidenhein, Traunreut, Germany). The
surrounding soft tissues were removed from the femora, and
proximal and distal ends were embedded using Technovit
3040 (Heraeus Kulzer GmbH, Wehrheim, Germany) into
aluminium cylinders, which were placed on two supports
spaced /=140-mm apart. Each femur was then loaded with
an indenter on the medial bone surface at a speed of 1 mm/
min, and the deflection of the lateral bone surface was mea-
sured using an external measuring device. The subsidence of
the specimen was assessed using two loading cycles with a
maximum load of 200 N; in the third cycle, the femora were
loaded until failure. The bending stiffness S, and the ultimate
bending load F,.x of each specimen were assessed using
force—deflection curves. Hence, the bending stiffness was
calculated based on the slope 4, of the force—deflection curve
using the following equation: S, = k- % . Consequently, the
apparent Young’s modulus £, and the bending strength o4«
of each specimen were calculated using the equations

s Fu'l
Eopp = I—b and oy = 5

Ii . The outer radius in the lateral

direction o of the diaphyseal cortex and the second moment of
area with reference to the anterior—posterior axis /, were
defined from HR-pQCT slices as described previously [29].
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Statistical analysis

Statistical analysis was performed using the unpaired one-way
Student’s ¢ test. Levels of significance were defined as signif-
icant when p<0.05 and/or p<0.01.

Results
Water and fluoride analyses

The water analyses confirmed that the farm in the southwest-
ern part of the Kalahari Desert had a significantly higher
fluoride content than the farm in the central part of Namibia,
at 9.8+0.3 vs. 0.64+0.32 mg/1 of fluoride in the water, respec-
tively (Fig. la—c). Further groundwater analyses revealed
additional salt differences, specifically, higher sodium
(3,410.0 vs. 114.0 mg/1), nitrate (165.0 vs. 87.6 mg/1), chloride
(1,680.0 vs. 27.1 mg/1) and sulphate (1,680.0 vs. 27.9 mg/l); a
similar potassium content (13.7 vs. 12.9 mg/l); and lower
calcium (<5.0 vs. 17.6 mg/l) and magnesium (< 5.0 vs.
31.3 mg/l) in the Kalahari Desert area.

The biological intestinal uptake of fluoridated water was
confirmed by blood and urine analyses. A total of 165.25+
74.4 ug/l fluoride in blood and 1.17+0.7 pg/l fluoride in urine
were registered in the fluoride sheep group. These values were
significantly higher than those in the control sheep, in which
fluoride levels in both blood and urine were below the detec-
tion limit (Fig. 1c¢).

Energy-dispersive X-ray spectroscopy

In sheep exposed to highly fluoridated water, fluoride is
incorporated into bone, as demonstrated by a fluorine peak
in elemental analysis of the iliac crest (Fig. 1f), whereas no
such peak occurred in samples from the control group
(Fig. 1d). Figure 1h indicates a significant quantitative differ-
ence in the weight percent levels for fluorine of the elements
detected in the iliac crest bone of the sheep. Of note, similar
fluorine incorporation was detected in human bone samples
with fluoride treatment-associated osteopathy and intact hu-
man bone samples (Fig. le, g and i).

Radiographs, uCT, HRpQCT, biomechanical testing

The contact radiographs and the Xtreme-CT 3D reconstruc-
tions of the femoral diaphyses (Fig. 2) showed reduced corti-
cal thickness in the fluoride group (Fig. 2b) in comparison to
control animals (Fig. 2a). Quantitative analysis of the struc-
tural parameters was validated by pCT scans of femur cross
sections, confirming the surprising visual impression of a
significant decrease in cortical thickness and a significant
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Fig.1 Local situation in Namibia
showing groundwater wells with
wind- and solar-powered pumps
(a) and Dorper sheep from the
southwestern Kalahari Desert (b).
Fluoride content of groundwater,
blood and urine samples from the
sheep (c¢). EDX peaks indicating
fluoride elevation in sheep (f) and
in human (g) samples compared
to their controls, respectively (d,
e). Bar graphs demonstrating
fluoride in weight percent in
sheep (h) and human (i)
specimens. (significance at
*p<0.05 or at **p<0.01)

increase in both cortical porosity for the fluoride sheep

(Fig. 2c¢).

Contact radiographs of the iliac crest bone samples from
fluoride-drinking sheep demonstrated an unexpected increase
in radiolucency (Fig. 2¢) compared to controls (Fig. 2d); the

Fluoride
Water 0.64 + 9.60
(mgh) 0.32 0.3**
Blood 165.25
(o) | <3000 1 474 40
Urine 117 +
(mg/l) <040 0.7

d Sheep e Human

EDX Control
f g
o
EDX Fluoride
0.80 1.20
h i
1,25 1,25
1,0 1,0 =
EDX 0,75 0,75
Fluoride (Wt %) 05 0,5
0,25 0,25
0 0
Control Fluoride Control Fluoride

latter was confirmed by independent pCT evaluation (Fig. 2f).
CT-based morphometry showed a significant decrease in bone
volume fraction in the fluoride group (BV/TV 25.6+5.0 %)
compared to the controls (BV/TV 35.0+5.5 %). Changes of a
similar magnitude were observed for trabecular thickness,
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Fig.2 Analyses of trabecular and
cortical bone of sheep femur (a—c)
and iliac crest (d—f) biopsies
according to the nomenclature
proposed by Parfitt and
colleagues [26]. Diaphysis

Fluoride

Control

contact X-rays of the midshaft %)
region and Xtreme-CT midshaft )
reconstruction images (a and b) E‘
show in the table section the %
calculated effects of cross sections a
of femora at midshaft scanned ;
with uCT (c). Analyses of the -
iliac crest (f) performed after g
taking contact X-rays (upper part )
of d and e). Reconstructed iliac L
crest samples for control (d) and
fluoride-exposed sheep (e) are
pictured in the lower part.
(significance at *p<0.05 or
**p<0.01)
c Ct.Th (mm) 1.9+01 15+£0.1*
Porosity (%) 34113 3.7 £0.2%
BMD (mgHA/ccm) 11329+ 111 11371 +£16.7
I
o
(6]
O
8
f BV/TV (%) 35.0+5.5 25.6 + 5.0*
Tb.Th (um) 197.3 £+ 36.7 158.0 + 19.6*
Tbh.Sp (um) 382.0+29.9 533.3 £ 102.4**
Tb.N (mm™) 31+03 2.1+0.5*
BMD (mgHA/ccm) 781.8+224 823.1 £ 13.9*
Porosity (%) 21.6+438 33.5+11.4%
Ct.Th. (mm) 0.66 £0.2 0.36 + 0.1**

trabecular spacing, trabecular number, BMD, porosity and
cortical thickness (Fig. 2f).

To address whether these structural differences are of bio-
mechanical relevance and thus might explain the observation
of fragility fractures in the affected sheep, mechanical testing
was performed. Indeed, the biomechanical properties of the
sheep femora were negatively affected by the lifelong intake
of highly fluoridated water. The ultimate bending load (F,ax)
of 1,462+341 N in the fluoride group was significantly de-
creased than that of the control group, at 1,790+203 N. Fur-
thermore, the bending strength (0.,.x) Was significantly de-
creased in the fluoride group with earlier fracture, at 97+
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15 MPa (fluoride group) and 116+11 MPa (control samples)
(Table 1).

Histology and histomorphometry

At the bone tissue level, histomorphometric analysis revealed
a significant increase in osteoid volume (OV/BV) and osteoid
surface (OS/BS) in the iliac crest biopsies from the Kalahari
group, at 6.03+1.48 % and 51.28+6.01 %, respectively
(Fig. 3). The osteoid thickness (O.Th) increased from 8.14+
2.51 pm in the control group to 12.574+3.01 pum in the fluoride
group of sheep. Buried osteoid was detected in all fluoride
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Table 1 Biomechanical testing of sheep femora

[y (mm4) x (mm) Sy (Nmz) Finax (N) Eapp (MPa) Omax (Mpa)
Control 5,352+1,253 9.8+0.8 96+16 1,790+£203 18,201+1,932 11611
Fluoride 5,226+638 10.0+0.4 99+14 1,462+341% 19,000+1,390 97+15*

The bending stiffness S}, and ultimate bending load F,,x of the sheep femora were determined using a three-point bending test. The apparent Young’s
modulus E,,;, and the bending strength ,,,x Were computed using the second moment of inertia Z, and the outer diameter of the cortex in the lateral

direction o at the femora diaphysis
*p<0.05; **p<0.01

group samples (Fig. 3b, d), while it was absent from controls
(Fig. 3a, ¢).

Next, we put these findings in sheep into clinical perspec-
tive and used an approach to translate the bone tissue changes
observed in sheep to human patients (Fig. 4). In fact, the
histopathological findings were absolutely similar in sheep

Fig. 3 lliac crest biopsies of
sheep samples were obtained, and
histomorphometric analysis was

_ Control _

and man. Patients diagnosed with fluorosis (Fig. 4b, d) while
receiving fluoride treatment for osteoporosis demonstrated the
same significant differences in osteoid volume (7.94+3.56 vs.
<2.00 %), osteoid surface (25.92+7.64 vs. <21.00 %) and
osteoid thickness (13.5+£3.25 vs. <12.00 um) as the sheep
from the Kalahari Desert (Fig. 3 and 4). Most importantly,

Sheep
Fluoride

performed starting with bone
volume per tissue volume (BV/
TV). In addition to osteoid volume
per bone volume (OV/BV),
osteoid surface per bone surface
(OS/BS), osteoid thickness
(O.Th.) and the number of buried
osteoid cases per total cases, the
number of osteocytes (NV.Oc/
B.Pm) and osteoblasts (N.Ob/
B.Pm) per bone perimeter,
osteoclast surface (Oc.S/BS) and
osteoblast surface (Ob.S/BS) per
bone surface were evaluated. The
histological slides were stained
with a Masson-Goldner dye (a
and b) and toluidine blue dye for
polarized light analysis (¢ and d)
(significance at *p<0.05 or at
**p<0.01)

Fluoride

Control
BV/TV (%) 30.8+23 224 1.1
OV/BV (%) 1.14+0.50 6.03 + 1.48**
OS/BS (%) 20.95 +5.04 51.28 £6.01**
O.Th (um) 8.14 £+ 2.51 12.57 +3.01*
Buried Osteoid (x/cases) 0/5 5/5™*
N.Oc/B.Pm (mm-') 1.1+£0.2 1.9+05*
N.Ob/B.Pm (mm) 8112 143 +2.1*
0c.S/BS (%) 1.6+0.2 24 +0.6"
Ob.S/BS (%) 121+35 226+3.9"
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Fig. 4 Histomorphometric
analyses of iliac crest biopsies of
human specimens. Osteoid

Human

Control Fluoride

volume per bone volume (OV/
BYV), osteoid surface per bone
surface (OS/BS), osteoid
thickness (O.Th) and the number
of buried osteoid cases per total
cases were measured. Section sign
indicates reference values for
healthy human controls derived
from a previous study by Priemel
and colleagues [50]. The
histological slides were stained
with a Masson-Goldner dye
promoting non-mineralized tissue
and buried osteoid (a and b).
Polarized histological images
were obtained from toluidine blue
stained slides (¢ and d)
(significance at *p<0.05 or at
**p<0.01)

Fluoride

Control

OV/BV (%)
OS/BS (%)
O.Th (um)

Buried Osteoid (x/cases)

buried osteoid was absent from the control group (Fig. 4a, ¢),
whereas buried osteoid was found in all cases receiving fluo-
ride treatment (Fig. 4), exactly mirroring the findings in sheep
(Fig. 3).

To further characterize the bone remodelling state of the
sheep, we performed histomorphometry of the relevant major
cell populations on iliac crest biopsies. This analysis revealed
a significant increase in all parameters—osteoblast number
and surface as well as osteoclast number and surface—in the
fluoride group in comparison to the control (Fig. 3).

Quantitative backscattered imaging

The results from qBEI in Dorper sheep and human specimens
(trabecular bone of iliac crests) demonstrate that the mean
calcium weight percentages were significantly increased in
the fluoride-exposed samples for both sheep and man when
compared with their control groups (Fig. 5a, b, e, f). The
heterogeneity of the bone tissue—the calcium width—dif-
fered in both sheep and human iliac crest biopsies
(Fig. 5¢, g). In addition, the calcium peak was significantly
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7.55 % 3.06 (< 21.00%)

3.27 + 1.12 (< 12.00%)

0.9+ 0.5 (< 2.00%) 7.94 + 3.56*

25.92 +7.64*
13.556+3.25

0/8 (None?$) 8/8**

increased in the fluoride samples of both species (Fig. 5d, h).
These results were confirmed by qBEI analysis of the cortical
bone of sheep femora (Fig. 5j-1).

Further analyses of qBEI images of the sheep femora
showed a significant increase in secondary osteons
(N.H.Ca./B.Ar.=number of haversian canals per bone area)
in the fluoride group (0.525+0.374 vs. 0.121+0.142 in the
control samples) (Fig. 6a, b). The number of osteocyte cana-
liculi per osteocyte lacunae (N.Ot.Ca./Ot.Lc) in the fluoride
group differed significantly to that of control samples (14.1+
2.7vs.21.543.1). In contrast, the lacunar area (Lc.Ar.) and the
number of osteocytes (N.Ot/mm?) did not differ significantly
between both groups (Fig. 6c, d).

Discussion

In many areas throughout the world, natural exposure to
fluoride—not only through groundwater but also through
occupational exposure [30] or fallout [31]—is excessive and
thus might cause health problems in the community
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Sheep lliac Crest

Human lliac Crest

Sheep Femur

f
25 25
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Fig. 5 Quantitative backscattered electron imaging (qBEI) analysis re-
sults and images. The images include a coloured qBEI image of bone
mineralization for fluoride-exposed sheep (a iliac crest, i femur) and for
human patients who had been treated with fluoride for osteoporosis (e).
Mineralization mean (b), width (¢) and peak (d) for sheep are also shown.

inhabitants exposed [3]. Nutritional fluoride intake should
also be taken into account, as even excessive tea drinking
can lead in single cases to fluoride intoxication [32, 33]. Just
focusing on drinking water, it has been reported that even in
developed countries, far more than 7 million people are reg-
ularly exposed to water with a fluoride content of 2 to 10 mg/1,
thus exceeding the upper tolerable limit for drinking water,
which was defined as 1.5 mg/1 fluoride by the WHO in 2004,
and as adopted by the EU within the guideline 98/83/EG and
the German guidelines (Trinkwasserverordnung 2001). The
most commonly described health problems are dental fluoro-
sis or skeletal fluorosis, and these have been found on several
continents [2, 3, 34-36]. Symptoms of skeletal fluorosis and
radiological signs vary and are reported to occur with chronic

Control

29
28
27
26

Fluoride Control Fluoride

O =~ N W A O
|

Fluoride Control Fluoride

Fluoride

Control

Fluoride

Human sample results are shown in the form of bar graphs (f, g, h) and
demonstrate significant differences between fluoride and control samples.
The results for sheep femora are also shown (j, k, 1). (significance at
*p<0.05 or at **p<0.01)

fluoride incorporation starting at 4 mg/l [3]; the latter pre-
sumed threshold is based on the fact that in epidemiological
studies conducted in the USA, no radiographic increases in
bone density were detected in persons drinking water contain-
ing less than 4 mg/l fluoride [37-40].

According to Kaminsky and coworkers’ [41] review pub-
lished in 1990, skeletal fluorosis is defined as follows and has
several stages: ‘two preclinical asymptomatic stages charac-
terized by slight radiographically detectable increases in bone
mass; and early symptomatic stage characterized by sporadic
pain and stiffness of joints and osteosclerosis of the pelvis and
the vertebral column; a second clinical phase associated with
chronic joint pain, arthritic symptoms, slight calcification of
ligaments, sometimes accompanied by osteoporosis of long
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Fig. 6 Quantitative
backscattered electron imaging

Sheep

Femur Control Femur Fluoride

(qBEI) (a, b) and scanning
electron microscopy (SEM)
imaging (c, d) of sheep femora
and quantitative analysis of
canalicular connections. The
number of secondary haversian
canals per bone area (mm?)
(N.H.Ca./B.Ar), number of
osteocytes per bone area (N.Ot/
mm?), lacunar area per
micrometre (Lc. Ar (um?)) and
the number of osteocyte
canaliculi per osteocyte lacunae
(N.Ot.Ca./Ot.Lc.) were evaluated.
Data are shown in the table below
the images (significance at
*p<0.05 or at **p<0.01)

Fluoride

Control
N.H.Ca./B.Ar. (mm?2) 0.121 £ 0.142 0.525+0.374 *
N.Ot/mm? 555.2 + 38.6 542.5+40.3
Lc. Ar. (um2) 36.7+0.5 38.3+1.3
N.Ot.Ca./Ot.Lc. 21.5+ 3.1 141 £2.7*

bones; crippling skeletal fluorosis characterized by marked
limitation of joint movements, considerable calcification of
ligaments, crippling deformities of the spine and major joints,
muscle wasting, and neurological defects associated with
compression of the spinal cord’.

Here, however, it is of paramount importance to realize that
the diagnosis of fluorosis is based on radiologic findings only,
the hallmark diagnostic sign being increased bone density—
even if decreased trabecular bone density, at least in long
bones, has been reported to occur in one stage of fluorosis
[41]! The results of the study presented here challenge this
narrow definition and are therefore of broad relevance in terms
not only of individual but also of population-based skeletal
health issues. In fact, the histologic proof that fluorosis may be
associated with and/or even cause low bone mass and de-
creased bone density challenges the presumed threshold of
4 mg/l and calls for a review of regional differences in fracture
risk, as the exclusion of fluorosis as a potential cause based on
previous radiographic analysis of bone density is no longer
valid.

Indeed, a study by Sowers and coworkers reported a sta-
tistically significant higher incidence of bone fractures in older
women (55 to 80 years) but not in younger women (20 to
35 years old) exposed to 4 mg/l of fluoride in their water
versus those exposed to 1 mg/l [40]. This apparent inconsis-
tency points to—and is best explained by—an associated
calcium deficiency as a confounding factor to fluoride action
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on bone, as enteral calcium absorption is often compromised
in older but not in younger women by proton pump inhibitors
(PPI) or ageing-associated hypochlorhydria [42], being prev-
alent in some 20-30 % of people above 60 years of age. In
fact, there is evidence that the adverse effects of fluoride are
aggravated by a lack of calcium in the diet [43, 44]. And
indeed, the sheep from the Kalahari Desert were exposed to
water that was high in fluoride and low in calcium and
magnesium. The combination may explain the observed un-
expected low bone mass phenotype.

It remains to be determined whether the deterioration in
bone quality under these conditions is similar to that found in
human fluorosis. According to EDX, similar fluoride incor-
poration was detected in human and sheep bone samples.
Analysis employing qBEI revealed that the mean calcium
weight percentages were significantly higher in the fluoride-
exposed samples for both sheep and man and that the hetero-
geneity of the bone tissue—measured as calcium width—
differed in both sheep and human iliac crest biopsies, respec-
tively. This trend was also reported by Roschger and col-
leagues, who showed increased heterogeneity of bone miner-
alization in a human case of osteoporosis under sodium fluo-
ride treatment [20]. They demonstrated the mineralization
spectra to be broader and shifted under fluoride exposure.
Similar mineralization changes demonstrating the replace-
ment of old (normal) bone by new (differently mineralized)
bone were observed by Fratzl and colleagues [10]. The latter
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data demonstrate that the sheep from the Kalahari indeed
present with skeletal fluorosis and thus qualify as a large
animal model of fluorosis presenting with low bone mass
and compromised bone quality. As expected, mechanical test-
ing of long bones confirmed the reduced mechanical stability,
making the bones prone to fracture, thereby revealing chronic
environmental fluoride exposure as the cause of fragility
fractures reported in livestock from the Kalahari Desert.

“While the stimulatory effects of fluoride on bone forma-
tion have been well described, its effect on bone resorption is
less well understood45” [45]. There is evidence that fluoride
might inhibit bone resorption, while there is also evidence that
it might increase bone resorption, especially at high doses.
However, so far, there was consensus that the increase of bone
formation is an order of magnitude higher than the increase in
bone resorption, explaining the net increase of bone mass
expected to occur in skeletal fluorosis [46].

We report that in the presence of calcium deficiency, the net
effect of fluoride exposure appears to result in low bone mass
(osteopenia). Whether this is the result of reduced bone for-
mation at the tissue level (i.e. a reduction in bone formation
with accumulation of osteoid that fails to mineralise) or is the
result of persisting high remodelling with each remodelling
unit depositing less bone than each removed, remains
uncertain.

This plausible explanation for the unusual and unexpected
low bone mass fluorosis phenotype is corroborated by the
finding of Riggs in osteoporotic patients with sodium fluoride
treatment, that “[S]upplementary calcium...prevents the in-
crease in bone resorption which occurs when sodium fluoride
is given alone [47].”

Therefore, in terms of environmental fluorosis, an increase
of bone mineral density should not be expected in areas with
either (i) low dietary calcium intake or (ii) in areas with
vitamin D deficiency or (iii) in cohorts with high prevalence
of PPI users, the latter two conditions causing diminished
enteral calcium uptake.

Our data is consistent with the presence of fluorosis with
low bone mass in the studied animals by (i) demonstration of
fluoride incorporation in bone by EDX, (ii) demonstration of a
mosaic pattern and mottled bone by polarized light microsco-
py (Fig. 3d), (iii) demonstration of increased calcium width by
gBEI, (iv) demonstration of stimulated osteoblast activity and
increased numbers of secondary haversian channels by quan-
titative backscattered electron microscopy, (v) demonstration
of the absence of filled haversian systems typically seen in
sheep with osteomalacia [48] and documentation of a moder-
ate increase in osteoid thickness mirroring the osteoid thick-
ness found in human fluorosis but being in absolute contrast to
the massive increase in osteoid thickness described in sheep
with osteomalacia [48] and (vi) demonstration of dental fluo-
rosis in all sheep and of the human population living in the
area (unpublished data).

This study does, however, have certain limitations. First,
we studied free range Dorper sheep, and therefore, these
animals were not fluorochrome-labelled prior to sacrifice.
This precludes the opportunity for dynamic
histomorphometric assessment in addition to the static
histomorphometric analysis we did perform. However, we
believe that the combined analysis employing radiographs,
uCT, HRpQCT, quantitative backscattered imaging as well
as histology, static histomorphometry, energy-dispersive X-
ray spectroscopy and biomechanical testing, respectively, pro-
vides a thorough qualitative and quantitative characterization
of the effects of chronic fluoride exposure on bone. Second,
we focused on characterizing the skeletal differences in 6- to
7-year-old sheep with and without environmental fluoride
exposure and did not analyse sheep of different ages. There-
fore, we cannot report on the dynamic development of the
fluoride-induced skeletal phenotype during the life cycle of
the sheep. Given the results presented here, the latter informa-
tion would be of interest; however, we believe that this is
beyond the scope of the present study. 7hird, as the sheep in
the Kalahari Desert were exposed to groundwater rich in
fluoride, but poor in calcium and magnesium, and thus with
altered salt content not restricted to fluoride, the observed
skeletal phenotype is presumably the result of the combination
of chronic fluoride exposure with concomitant calcium defi-
ciency. However, the in vivo proof required to firmly establish
this assumption cannot be addressed with free range sheep but
requires an experimental setting with sheep housed in meta-
bolic cages, allowing control of nutritional input and balance
[49]. Fourth, structural changes in histomorphometric analy-
ses of human fluorosis cases should be interpreted carefully as
the underlying osteoporotic disease will inevitably have had a
negative influence on the skeleton prior to sodium fluoride
therapy.

In summary, we have shown that chronic environmental
fluoride exposure (i) may lead to skeletal fluorosis that pre-
sents with increased radiolucency due to a reduction in tra-
becular and cortical bone, (ii) can cause fragility fractures, at
least in sheep, at similar fluoride concentrations to those to
which many people worldwide are regularly exposed, (iii) is
extremely critical when combined with a concurrent calcium
deficit and (iv) that the prevalence of human skeletal fluorosis
especially due to groundwater exposure should be reviewed in
many areas of the world as low bone mass and absence of
osteosclerosis on X-rays does not exclude the diagnosis of
skeletal fluorosis.
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