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Abstract The suboptimal performance of bone mineral
density as the sole predictor of fracture risk and
treatment decision making has led to the development
of risk prediction algorithms that estimate fracture
probability using multiple risk factors for fracture, such
as demographic and physical characteristics, personal
and family history, other health conditions, and medica-
tion use. We review theoretical aspects for developing
and validating risk assessment tools, and illustrate how
these principles apply to the best studied fracture
probability tools: the World Health Organization
FRAX®, the Garvan Fracture Risk Calculator, and the
QResearch Database’s QFractureScores. Model develop-
ment should follow a systematic and rigorous method-
ology around variable selection, model fit evaluation,
performance evaluation, and internal and external
validation. Consideration must always be given to how
risk prediction tools are integrated into clinical practice
guidelines to support better clinical decision making and
improved patient outcomes. Accurate fracture risk
assessment can guide clinicians and individuals in
understanding the risk of having an osteoporosis-
related fracture and inform their decision making to
mitigate these risks.
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Introduction

The presence of osteoporosis is a major risk factor for the
development of fractures of the hip, proximal humerus,
vertebra, and forearm (often termed the “major osteoporotic
fracture” sites) though many other skeletal sites are also at
increased risk of fracture [1]. The consequences of fracture
include increased mortality, morbidity, institutionalization,
and economic costs [2–6]. Moreover, all osteoporosis
related fractures can lead to significant long-term disability
and decreased quality of life [7, 8]. Worldwide, the number
of people who have suffered a prior osteoporotic fracture
was estimated to be 56 million in 2000 with approximately
9 million new osteoporotic fractures each year [9]. As the
prevalence of osteoporosis increases with age, the global
burden of osteoporosis is projected to rise markedly over
the coming decades due to an increasing number of elderly
individuals in the population [10].

In the absence of a defining fracture, the diagnosis of
osteoporosis is based on the measurement of bone mineral
density (BMD) by dual X-ray absorptiometry (DXA). The
World Health Organization provided an operational definition
of osteoporosis given as a BMD that lies 2.5 standard
deviations or more below the average mean value for young
healthy women [T-score ≤ −2.5 standard deviation (SD)] based
upon a standardized reference site (the femoral neck) and a
standard reference range for both men and women (the
NHANES III data for women aged 20–29 years) [11–13].
BMD measurement from DXA provides a relative estimate of
fracture risk along a continuum, increasing 1.4- to 2.6-fold for
every SD decrease in BMD [14, 15]. The accuracy of BMD
measurements using central DXA to predict osteoporotic
fractures is comparable to the use of blood pressure
measurement for prediction of stroke and is superior to serum
cholesterol as a predictor of myocardial infarction [15].
Although reduced bone mass is an important and easily
quantifiable measurement, studies have shown that most
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fractures occur in individuals with a BMD T-score above the
defining cutoff for osteoporosis [16]. The T-score categoriza-
tion of BMD can be credited for contributing to increased
awareness of osteoporosis as a significant health problem, but
with the benefit of hindsight and almost two decades of
additional research, the limitations of the T-score are also
apparent and include: site dependence in age-related bone loss,
uncertainty about the appropriate reference population for use
in men and non-Caucasians, inability to separate cortical from
trabecular compartments, and the difficulty in characterizing a
complex three-dimensional volume with a two-dimensional
areal projection as measured by central DXA.

The suboptimal sensitivity and specificity of using BMD
alone for prediction of fracture risk has led to the development
of new risk prediction algorithms that estimate fracture
probability using additional risk factors for fracture, such as
demographic and physical characteristics, personal and family
history, other health conditions, and medication use. Risk
assessment tools are primarily intended for use by non-experts
and are, by necessity, (over)simplifications of highly complex
relationships. No risk assessment tool can include all known
risk factors for osteoporosis and fracture, or nuances
associated with the severity and temporal relationships. In
primary care, a tool that works “most of the time” is preferable
to no tool at all. Since no tool can capture the scientific
knowledge and clinical experience of the content expert,
clinical judgment must always be exercised in applying results
to the individual patient. That said, even the expert can benefit
from prediction tools which provide a benchmark and
contribute to greater consistency in the clinical approach.

This review examines theoretical aspects of risk
assessment tools and illustrates how these principles apply
to the best studied fracture probability tools: the World
Health Organization FRAX®, the Garvan Fracture Risk
Calculator, and the QResearch Database’s QFractureScores.

Theoretical considerations

Model construction

Multivariable parametric, semi-parametric, non-parametric,
and machine-learning statistical models have all been used to
produce risk estimates for a variety of health outcomes,
including fracture. Key considerations in developing these
estimates include the rationale for selection of a statistical or
machine-learning model, selection of predictor variables or
variable reduction techniques to develop a parsimoniousmodel
(i.e., simplest model with the smallest number of variables to
achieve maximum predictive performance), adjustment of
parameter estimates to ensure accurate prediction, evaluation of
model performance, with internal and external validation to
ensure replicability, and generalizability of risk estimates

[17–19]. Figure 1 identifies the major steps in the development
of risk estimates. The process is iterative, so that researchers
may move either backward or forward through these
steps as they refine their modeling approach and its
application to a dataset.

At the outset, it should be noted that risk prediction
algorithms are often criticized because they provide marginal
(i.e., average) risk estimates, which are relevant for popula-
tions and not for individuals. However, the vast majority of
recommendations about treatment and practice in the medical
literature are also based on marginal algorithms. While the
utility of adopting a “personalized medicine” approach, which
uses genetic characteristics of the individual in addition to
traditional risk factors to produce risk estimates, is beginning
to be explored for some health outcomes, there have been few,
if any, studies that have investigated this topic for fracture risk
estimation. Moreover, recent evidence suggests that improve-
ments in predictive performance that arise from the addition of
genetic information to traditional risk prediction models are
small [20, 21].

Parametric or semi-parametric models for producing risk
estimates include multiple linear regression for continuous
outcomes (e.g., for prediction of BMD scores) and logistic or
Cox proportional hazards regression models for dichotomous
outcomes (e.g., fracture presence versus absence) [22]. The
logistic model is adopted when observation time for risk
estimation of the event of interest (e.g., fracture) is fixed for
each individual while the Cox model is frequently adopted
when the duration of the observation period for the event of
interest varies and there is the potential for censoring (i.e., loss
of follow-up) for individuals. Non-parametric or machine
learning models such as classification trees, recursive
partitioning techniques, artificial neural networks, and support
vector machines may result in improved prediction accuracy
when there is a non-linear relationship between the predictor
variables and the outcome or some mathematical function of
the outcome. Trees and recursive partitioning techniques may
be appealing to clinicians because they use a hierarchical
classification process involving a series of yes-no decisions;
this is similar to the way clinicians make diagnostic decisions.
The goal is to place each individual into a class in which the
incidence of the outcome is either high or low. Machine-
learning models are advantageous for very large datasets in
which there may be hundreds or even thousands of potential
variables to include in the prediction model [23]. Accordingly,
exploratory studies to develop new prediction models may
benefit from the use of machine-learning models. Hybrid
models have been proposed to improve prediction accuracy;
for example, Abu-Hanna and de Keizer [24] developed a
prediction model that combines the classification and
regression tree with the logistic regression model; the latter
is applied within the specific patient sub-populations created
by the sequence of classifications that produce the tree nodes.
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The authors found that this approach resulted in improved
precision for predicting the risk of intensive care unit outcomes
such as death.

Selection of a parsimonious set of predictor variables is
crucial when either total sample size or the number of
events per predictor is small. Rules of thumb suggest that at
least 10 events per predictor variable (and preferably many
more) must be available in the data to produce stable
parameter estimates in the logistic regression model;
simulation studies have shown that with less than 10 events
per variable, accuracy and precision of the model parameter
estimates will be less than optimal [25]. As well, variable
selection techniques such as forward, backward, and
stepwise selection have limited power when sample size
is small [26] and may therefore result in misleading
conclusions about variable retention in the final model.

Different statistical or machine-learning models may
result in discordant conclusions about the variables to be
retained in the final model because they rest on different
assumptions about the nature of the relationships between
the outcome and the predictors and/or are based on different
estimation methods that may not result in equivalent
conclusions about relative importance. The selection of
predictor variables should therefore be based, at least in
part, on theoretical and clinical considerations to provide
face validity for the model. In theory, all predictor variables

suspected of being associated with the outcomes of interest
should be considered as model candidates. However, it need
not be the case that all predictor variables are assumed to
have a causal relationship with the outcome; some measures
are selected because of their known association with other
variables that may not be measured in the available data.

As well, the selection of model predictors should be
based on consideration of the potential for accurate
measurements to be collected for the variables. For
example, self-reported height will be less accurate than
measured height. Measurement error may result in biased
estimates of association between the outcome and predictor
variables, thereby reducing prediction accuracy.

While a priori variable reduction can often be achieved
with clinical input, empirical variable reduction techniques,
such as principal components analysis, can aid in the
development of a parsimonious model; such techniques are
particularly important when collinearity (i.e., high correla-
tions) exists among the predictor variables under investiga-
tion, which can result in poor model performance. At the
same time, principal components analysis, or other variable-
reduction techniques, must be used cautiously and this
analysis may not an appropriate choice if the predictor
variables are not continuous and normally distributed. As
well, a single variable that represents a linear combination
of multiple collinear variables may be difficult for clinicians
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Fig. 1 Major steps in risk
assessment model development
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and patients to interpret. Li et al. used principal components
analysis to combine different measures of bone fragility,
based on imaging data, to construct a hip fracture risk model
[27]. Exploration of collinearity among a set of variables by
using the variance inflation factor, a measure of the amount
of inflation in the variance of the estimated model
parameters when there is correlation among the predictor
variables, may facilitate decision making about the use of
principal components analysis as a variable reduction
technique. Collinearity may be particularly problematic
between main effect and interaction effect terms; centering
of the variables by subtracting the mean score will help to
reduce collinearity.

Accuracy of the prediction model is often better in the
original (i.e., developmental) population than in new patient
populations. Overfitting of the model to the data may result in
over-optimistic estimates of the model parameters. Overfitting
commonly occurs when a model has too many parameters
relative to the number of observations. As well, use of the
model parameters developed from the original population in a
new patient population does not take account of random
variation in the estimates, which again can result in overly
optimistic estimates of model parameters in the original data.
Correction (i.e., shrinkage) of parameter estimates is recom-
mendedprior to their application in newpopulations.A number
of methods to shrink the parameter estimates have been
proposed. Moons et al. [28] compared different shrinkage
techniques in a logistic regression model and recommended a
penalized version of maximum likelihood estimation, although
the researchers noted that this method is not available in
existing statistical software packages such as SAS. Steyerberg
et al. [29] noted that a simple linear shrinkage factor worked
well in a small dataset for predicting 30-day mortality.

Likelihood ratio tests and penalized measures of the
likelihood function, such as the Akaike Information
Criterion (AIC) and Bayesian–Schwarz Information Crite-
rion (BIC), are commonly used to evaluate model fit for
parametric and semi-parametric models based on maximum
likelihood estimation. The AIC and BIC measures add a
penalty for including more variables in the model. These
statistics can be used to assess the impact on model fit of
inclusion of additional risk factors into the model or their
interactions. Measures of variation, such as R2 and pseudo-
R2 statistics [30], provide an indication of explanatory
power of the model.

Assessing model performance

Discrimination (the model’s ability to distinguish between
individuals who do or do not experience the event of
interest) and calibration (agreement between observed and
predicted event rates for groups of individuals) are key
aspects of predictive performance of risk algorithms. These

two concepts are quite different and it is possible for a
model to be well-calibrated but provide poor discrimination,
and vice versa. For example, a model that reports the same
average fracture risk for everyone in the population could
be perfectly calibrated (i.e., observed and predicted
fractures across the whole population are the same) but
would clearly provide no useful discrimination (i.e.,
individuals developing fractures or remaining fracture-free
are scored the same). Alternatively, multiplying or dividing
all risk scores by 100 would obviously strongly alter the
number of predicted events (i.e., calibration), but high-risk
and low-risk individuals would still show the same relative
ordering and discrimination would be the same.

The Brier score, which provides an indication of
agreement between an observed binary outcome and the
predicted probability of that outcome, is a measure of both
calibration and discrimination. Lower Brier scores indicate
improved model accuracy [31, 32]. Scores can range from
0 to 0.25 for a non-informative model, assuming 50 %
incidence of the outcome. If the outcome incidence is lower,
the maximum value of the Brier score for a non-informative
model will be lower. Spiegelhalter’s z-test is used to
evaluate the statistical significance of the calibration
component of the Brier score [33]; a significant test result
indicates poor calibration.

The ability of the model to discriminate between in-
dividuals with and without the outcome is commonly assessed
using the c-statistic [34, 35], which corresponds to the area
under the receiver operation characteristic (ROC) curve for
binary outcomes. The c-statistic ranges from zero to one, with
a value of one representing perfect prediction and a value of
0.5 representing chance prediction. A value between 0.7 and
0.8 is typically considered to demonstrate acceptable predic-
tive performance, while a value greater than 0.8 is indicative of
excellent predictive performance. The difference in c-statistics
for two nested models (i.e., two models in which the predictor
variables in onemodel are a subset of the predictor variables in
a second model) serves as an indication of the improvement in
discriminative performancewhen new risk factors are added to
a baseline model. DeLong et al. [36] proposed a test of
the statistical significance of the change in the c-statistic
for nested models.

Some newer methods to assess discrimination and
classification include variants of the c-statistic for survival
analyses [37, 38] that allow for censoring of observations,
and methods that involve analysis of risk reclassification,
that is, comparisons of the classification of individuals
under different risk algorithms [39]. Reclassification tables
and net reclassification improvement statistics provide
clinicians with tools to understand the potential uncertainty
in risk estimates, or to explore the effect of a novel risk factor
on discriminative performance. The latter describes howmuch
more frequently appropriate reclassification occurs than
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inappropriate reclassification when a new risk algorithm is
adopted. Statistically significant changes in the c-statistic may
not always correspond with changes in risk categorization.
Alternatively, ROC analyses show a lack of sensitivity to
additional risk factors even when the presence (or absence) of
such risk factors canmake a difference in determining whether
an individual patient lies below or above an intervention
threshold. For example, the addition of a strong but
uncommon new risk factor (hazard ratio 3.0 with prevalence
1 %) would only increase the c-statistic from 0.7 to 0.703, but
could easily alter the decision to treat an individual with that
risk factor [40]. This underscores the importance of examining
multiple measures of discrimination and classification in the
development of a risk prediction algorithm [41, 42].

Model validation

Validation is one of the most important steps in the
development of a risk algorithm, but is also one of the most
overlooked steps [17]. Both internal and external validation
analyses are recommended. The former refers to the process of
assessing the reproducibility of the risk algorithm in the same
population, while the latter refers to the generalizability of the
algorithm to other patient populations. Internal validation can
be achieved by developing the risk algorithm in a random
subset of the sample and then evaluating its performance in a
separate random subset of the sample. For an external
validation, predictions are calculated from the developed risk
algorithm and then tested in new data that are sampled from a
different population than the one in which the model was
developed. This could include a population from a different
country, facility, or health care provider.

Primary methods for internal validation are split-sample,
cross-validation, and bootstrap validation [43, 44]. In split-
sample validation, a portion of the sample (e.g., 70 %) is
used to construct the risk algorithm and the remaining
portion (e.g., 30 %) is used to validation the risk algorithm.
Cross-validation uses the same methodology as split-sample
validation, but repeats the process of constructing the
development and validation samples. For example, a 10-
fold cross-validation methodology proceeds as follows: the
sample of data is divided into 10 subsets of (approximately)
equal size. Then, 90 % (i.e., nine tenths) of the cohort is
used to estimate the risk algorithm and estimate risk for the
nine tenths of the sample, as well as for the entire sample.
Optimism bias is the difference between the prediction error
for the entire sample and the prediction error for the nine-
tenths sample. This process is repeated 10 times, each time
leaving out one tenth of the sample, to ensure that each
sample participant has a predicted risk from a regression
model for which he/she is excluded. The average of the 10
optimism bias estimates is computed to provide a measure
of internal validity (e.g., prediction accuracy). The most

extreme form of cross-validation is the jackknife method, in
which N−1 sample participants (N is the total sample size)
are used for model development, with validation on the
individual who was excluded.

Bootstrap validation is a popular approach to assess the
reproducibility of a risk algorithm. A bootstrap sample is
created by randomly sampling with replacement from the
sample. The bootstrap sample contains the same number of
individuals (i.e., N) as in the original sample. However,
because sampling is done with replacement, the data for an
individual could appear more than once in a single bootstrap
sample. The model is developed in the bootstrap sample and
validated in the original sample. The difference in the
prediction error for the two models indicates the optimism
in model performance. The sampling process is usually
repeated a large number of times (e.g., B = 500 or 1,000
bootstrap samples) in order to obtain stable results. Some
researchers adjust measures of calibration and discrimina-
tion based on the average values produced from the
bootstrap methodology because the adjusted measures will
better reflect the expected performance in a new population.

External validation techniques can be distinguished by
their focus on new populations defined by time, space, or
investigators [44]. For example, a risk algorithm might be
externally validated by applying it to a population from the
same geographic region (e.g., same country or region) but at
a different point in time. Or the algorithm might be
validated on a population from a different country or region.
The most convincing external validation occurs when the
risk algorithm is used by an independent investigator in a
different dataset on a sample that is both temporally and
geographically distinct from the developmental population.
While external validation of multiple linear and logistic
regression models has been explored in a number of studies,
validation of the Cox regression model has only recently
been explored [45].

Competing risk and other considerations

While the preceding discussion has focused on the primary
considerations in the development of a risk algorithm, there
are other elements of model development that should be
considered. For fracture, competing risks are particularly
important to consider in order to produce unbiased estimates
of fracture risk (Fig. 2) [46]. Treating the competing event
as “censored” at the time of occurrence is inappropriate
because after a competing event has occurred, fracture is no
longer possible. For example, in order to estimate the risk of
hip fracture among osteoporotic patients, subjects are
followed from a baseline date (such as date of diagnosis)
until the date of hip fracture, death, or study closing date. A
patient who dies without hip fracture during the study
period is considered to have a “competing event” at their
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date of death. A patient who is alive and fracture-free at the
end of the study is considered to be censored. The
conventional Cox proportional hazard model considers
only two endpoints: the outcome of interest (event) and loss
to follow-up (censoring). Since many of the risk factors for
fracture are also risk factors for death (e.g., older age, prior
fracture, and medical comorbidities), failure to consider
competing mortality may result in an overestimate of
fracture probability. One analysis found that in subgroups
with higher mortality (men, age >80 years, high fracture
probability, or presence of diabetes) failure to account for
competing mortality overestimated major osteoporotic
fracture probability by 16–56 % with the standard
nonparametric (Kaplan–Meier) method and 15–29 % with
the standard parametric (Cox) model [47]. However, to date
only a few statistical software packages have specific
functions that consider competing outcomes [48].

A further consideration should be given to missing data,
which can threaten both the internal and external validity of
a risk prediction algorithm [49–51]. The influence of
missing data increases as the proportion of observations
increases. Ignoring missing observations can reduce
statistical power to detect associations between the outcome
and predictor variable. As well, if the mechanism if missing
data is non-ignorable, that is, if the pattern of missingness is
associated with one or more variables that are not contained
in the study dataset, then the missingness can lead to
erroneous inferences about the strength of association and
also affect the predictive ability of the final model because
the individuals for whom data are available are not a
random subset of the study population.

Since Little and Rubin [52] first proposed the multiple
imputation method to address missing data, it has become
the primary approach in the statistical analysis of incom-
plete data. The multiple imputation method can be applied
in combination with risk prediction models. However, this
method does assume that the pattern of missingness is
ignorable, that is, that it is associated with one or more
measured variables in the dataset that can be used to
develop a predictive model for the missingness. The
primary steps in the imputation process are as follows:
First, m >1 complete datasets are obtained by replacing the
missing values with m imputed plausible values. Then the m

complete datasets are analyzed using standard statistical
analyses. The estimates of the parameters of interest from
the m complete datasets are combined, typically by
averaging [53]. In the averaging process, both between-
and within-imputation variance is computed, both of which
are needed in order to produce correct inferences about the
statistical significance of risk factors in the algorithm.

Clinical fracture prediction tools

We now review fracture probability algorithms that have
been validated in at least one cohort independent from the
original derivation population: the World Health Organiza-
tion FRAX®, the Garvan Fracture Risk Calculator, and the
QResearch Database’s QFractureScores. Each of these
fracture probability tools was developed in accordance with
the general principles outlined above and followed the
major developmental steps illustrated in Fig. 1. The
fundamental design elements of these tools are summarized
in Table 1, with a summary of the independent validation
studies in Table 2. Tools developed to identify individuals
with low BMD (e.g., SCORE, OST, and ORAI) do not
provide a direct estimate of fracture probability and were
not included in this review, although it is worth noting that
some of these have also been shown to stratify fracture risk
[54–56].

FRAX (www.shef.ac.uk/FRAX)

FRAX® was developed by the WHO Collaborating Centre
for Metabolic Bone Diseases for estimation of individual
10-year osteoporotic (clinical spine, hip, forearm, and
proximal humerus) and hip fracture probability [57]. In
addition to a prior fragility fracture, age, sex, body mass
index, and additional risk factors for fractures were
identified including the prolonged use of glucocorticoids,
secondary osteoporosis, rheumatoid arthritis, a parental
history of hip fracture, current cigarette smoking, and
alcohol intake of three or more units per day. The clinical
risk factors (CRFs) were determined in a series of meta-
analyses using data from nine prospective population-based
cohorts from around the world [58].
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Interactions between clinical risk factors are incorporated
into the FRAX algorithm. As a result, there is no single
weighting for a clinical risk factor in FRAX. However,
Fig. 3 illustrates the relative importance of various risk
factors and how they are affected by age and sex. In
estimating hip fracture probability the contribution of prior
fracture attenuates with advancing age whereas for parental
hip fracture it increases with advancing age. Body mass
index (BMI) is strongly associated with fracture risk when
BMD is unknown but is no longer important when the
effect of BMD has been considered. FRAX also adjusts for
competing mortality, and the competing mortality approach
used by FRAX is unique among the risk prediction models.
Individuals may have equivalent hazards for fracture, but if
they differ in terms of hazard for death then this will affect
the 10-year fracture probability. For example, smoking is a
risk factor for fracture but also increases the risk for death.
Thus, the increased mortality associated with smoking
reduces the importance of smoking as a risk factor for
fracture. Figure 4 shows how older age and lower BMD,
which are independent risk factors for death, affect 10-year
fracture hip fracture probability in men and women. Ten-
year major fracture probability tends to increase with age to
peak around 80–85 years and then declines as the rising
death hazard exceeds the rising fracture hazard. Men with
extremely low BMD (femoral T-score −4.0) are predicted to
have such high mortality that this actually blunts the
expected age-related increase.

Population-specific FRAX tools are customized to the
fracture and mortality epidemiology in that specific region
[57]. The initial release of FRAX in 2008 covered nine
countries (including four ethnic calculators for the USA),
while the most recent version includes 47 countries. In
recognition of the large international variability in fracture
and mortality rates [59], the FRAX tool is customized
(calibrated) based upon the fracture and death epidemiology
within that country. Some country tools have been updated,
but the fundamental FRAX algorithm has not changed [60].
Minimal data requirements for constructing a FRAX tool
are sex- and age-specific mortality and hip fracture rates (5-
year subgroups). In many countries, such data are relatively
easy to obtain. In contrast, non-hip fracture data considered by
FRAX (clinical spine, distal forearm, and proximal humerus)
are quite difficult to accurately collect at the population level.
Where high-quality data are not available, the assumption is
commonly made that the ratio of these non-hip to hip fracture
rates is similar to that observed from population-based data
obtained inMalmö, Sweden [61, 62]. As seen in Fig. 5, FRAX
is sensitive to the large differences in osteoporotic fracture
rates between different populations which show more than a
10-fold variation [59]. The US ethnic calculators provide sex-
and age-specific predictions that are roughly parallel but differ
quantitatively (White >Asian =Hispanic >Black). In contrast,T
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the Chinese calculator has a very different configuration and
also diverges from the US Asian calculator with 10-year
fracture probabilities that decline with age because of a larger
competing mortality effect in China.

Fracture discrimination was assessed in nine primary
derivation cohorts (46,340 subjects with 189,852 person
years of follow-up) and in 11 additional validation cohorts
(230,486 persons with 1,208,528 person years of follow-up)

[63]. Risk stratification with FRAX including BMD was
superior to FRAX without BMD or BMD alone. In the
primary derivation cohorts, the gradient of risk for hip
fracture increased from 1.84 to 2.91 [area under the curve
(AUC) from 0.67 to 0.78] with the inclusion of BMD, and
for other osteoporotic fractures it increased from 1.55 to
1.61 (AUC increased from 0.62 to 0.63) with the inclusion
of BMD. For hip fracture prediction in the validation
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individual clinical risk factors
in FRAX for selected
combinations of age and sex
(comparator—no additional
risk factors, US White FRAX
tool, BMI 25 kg/m2, and
T-score −2.5)

FRAX in US White men

0

10

20

40 45 50 55 60 65 70 75 80 85 90

Age

10
-Y

ea
r 

H
ip

 F
ra

ct
u

re
 R

is
k

 T=0.0  T=-1.0  T=-2.0  T=-3.0  T=-4.0

FRAX in US White women

0

10

20

40 45 50 55 60 65 70 75 80 85 90

Age

10
-Y

ea
r 

H
ip

 F
ra

ct
u

re
 R

is
k

 T=0.0  T=-1.0  T=-2.0  T=-3.0  T=-4.0

Fig. 4 Effect of age and femoral neck T-score on FRAX major osteoporotic fracture probability (assumes BMI 25 kg/m2 and no other risk factors)

Osteoporos Int (2014) 25:1–21 11



cohorts, averaged gradient of risk (1.83 without BMD and
2.52 with BMD) and AUC (0.66 without BMD and 0.74
with BMD) were similar to the derivation cohorts. For other
osteoporotic fractures, the validation cohorts again gave
only marginally lower gradients of risk (1.53 without BMD
and 1.57 with BMD) and AUC (0.60 without BMD and
0.62 with BMD). A strong but opposite age interaction was
seen for hip fracture (lower gradient of risk for older age)
compared with other osteoporotic fractures (increasing
gradient of risk with advancing age) whether this was
based upon BMD only, clinical risk factors alone, or clinical
risk factors with BMD.

A limited number of studies have performed independent
assessments of FRAX to predict subsequent fracture, but
differ widely in sample size, methodology (particularly
incorporation of competing mortality risk), and assessments
(discrimination versus calibration). These and other
methodologic factors may affect interpretation of validation
studies [40].

In 2010, Sornay-Rendu et al. [64] examined 867 French
women age 40 years and over from the OFELY (Os des
Femmes de Lyon) cohort which included 95 incident major
osteoporotic and 17 incident hip fractures. Predicted
probabilities of fracture were considerably greater in women
with than women without incident fractures. The observed
incidence of major osteoporotic fractures was found to be
higher than the predicted probability, but analysis did not
account for the effect of competing mortality. AUC for
fracture discrimination for major osteoporotic fractures was
0.75 (95 % confidence interval, CI, 0.71–0.79) without
BMD and 0.78 (95 % CI 0.72–0.82) with BMD]. FRAX
was not significantly better than femoral neck BMD alone
[AUC 0.74 (95 % CI 0.71–0.77)] or femoral neck BMD and
age [AUC 0.79 (95 % CI 0.75–0.81)]. Trémollieres et al.
[65] examined a separate group of 2,651 French women
from the MENOS (Menopause et Os) cohort who sustained
145 major osteoporotic fractures (13 hip fractures) during
the follow-up period. Once again, fracture discrimination
was good for major osteoporotic fractures (AUC 0.63, 95 %

CI 0.56–0.69) which was not better than BMD alone (AUC
0.66, 95 % CI 0.60–0.73).

A FRAX tool for Canada was developed, based upon 2005
national hip fracture and 2004 mortality data [66]. The
accuracy of the fracture predictions was assessed in two large,
independent cohorts: the Canadian Multicentre Osteoporosis
Study (one of the population-based FRAX® derivation
cohorts) and the Manitoba Bone Density Program (a long-
term observational clinical cohort that is independent of the
FRAX® derivation cohorts) [67, 68]. Analyses for the
Manitoba BMD cohort (36,730 women and 2,873 men) and
CaMos cohort (4,778women and 1,919men)were similar and
showed that the Canadian FRAX tool generated fracture risk
predictions that were consistent with observed fracture rates
across a wide range of risk categories in both clinical and
average populations. In the Manitoba cohort [67], hip fracture
discrimination from receiver operating curve analysis was
0.830 (95 % CI 0.815–0.846) and for major osteoporosis-
related fractures was 0.694 (95 % CI 0.684–0.705), results
comparable to values reported in the derivation and validation
of the cohorts studied by the WHO Collaborating Centre [63].
Fracture discrimination using FRAX with BMD was better
than FRAX without BMD (hip fracture AUC 0.793, major
osteoporosis fracture AUC 0.663) or femoral neckBMD alone
(hip fracture AUC 0.801, major osteoporosis fracture AUC
0.679). The 10-year estimate for hip fractures in all women
was 2.7% (95%CI 2.1–3.4%)with a predicted value of 2.8%
for FRAXwith BMD, and in men the observed risk was 3.5 %
(95 % CI 0.8–6.2 %) with a predicted value of 2.9 %. The 10-
year estimate of osteoporotic fracture risk for all women was
12.0 % (95 % CI 10.8–13.4 %) with a predicted value of
11.1 % for FRAX with BMD, and in men, the observed risk
was 10.7 % (95 % CI 6.6–14.9 %) with a predicted value of
8.4 %. Discrepancies were observed within some subgroups
but generally were small. For CaMos [68], results were similar
with the FRAX estimates using BMD and CRFs superior to
BMD alone or CRFs alone for both major osteoporotic
fractures and hip fractures. For major osteoporotic fractures,
FRAX with BMD gave AUC 0.69 (95 % CI 0.67–0.71) vs.
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FRAX without BMD 0.66 (95 % CI 0.63–0.68) and femoral
neck T-score alone 0.66 (95 % CI 0.64–69). For hip fractures,
FRAX with BMD gave AUC 0.80 (95 % CI 0.77–0.83) vs.
FRAXwithout BMD 0.77 (95 % CI 0.73–0.80). Mean overall
10-year FRAX probability with BMD for major osteoporotic
fractures was not significantly different from the observed
value in men [predicted 5.4 % vs. observed 6.4 % (95 % CI
5.2–7.5 %)] and only slightly lower in women [predicted
10.8 % vs. observed 12.0 % (95 % CI 11.0–12.9 %)]. FRAX
was well calibrated for hip fracture assessment in women
[predicted 2.7 % vs. observed 2.7 % (95 % CI 2.2–3.2 %)] but
underestimated risk in men [predicted 1.3 % vs. observed
2.4 % (95 % CI 1.7–3.1 %)].

The importance of correct calibration was noted when the
UK FRAX tool was used to assess fracture risk in 501 Polish
women referred for BMD testing (convenience sample) [69].
Self-reported incident fractures 9–12 years later were assessed
by telephone interview. The observed/expected ratio for
fracture was 1.79 (95 % CI 1.44–2.21) without BMD and
1.94 (95 % CI 1.45–2.54) with BMD indicating that the UK
model significantly overestimated fracture risk in Polish
women. Results could be biased as fractures could only be
assessed in long-term survivors and death competes with
fractures. Average life expectancy in Poland is 3.7 years less
than in the UK, and use of the UK FRAX model would be
expected to overestimate fracture probability in a Polish setting.

A small Japanese study (43 self-reported major osteo-
porotic fractures and four hip fractures) was reported by
Tamaki et al. [70] using the Japanese Population-Based
Osteoporosis Study (JPOS) cohort. The number of observed
major osteoporotic or hip fracture events were found to be
consistent with FRAX predictions, and again there was
significant stratification in fracture risk (AUC major
osteoporotic fracture 0.67, 95 % CI 0.59–0.75 without
BMD; 0.69, 95 % CI 0.61–0.76 with BMD).

Rubin et al. [71] performed a registry linkage study using
baseline questionnaire data from 3,636 Danish women with
FRAX hip fracture probabilities calculated from the
Swedish tool. Predicted and observed risks estimates
incorporated adjustment for 10-year survival rates. The
predicted 10-year hip fracture risk was 7.6 % overall with
observed risk also 7.6 %, ranging from 0.3 % at the age of
41–50 years (observed risk 0.4 %) to 25.0 % at the age of
81–90 years (observed risk 24.0 %) (p value was non-
significant, overall and by age decade). For the closely
related Scandinavian countries of Sweden and Denmark, a
single FRAX tool may be sufficient.

Premaor et al. [72] recently examined the question of
whether FRAX was applicable to obese older women using
6,049 white women from the US Study of Osteoporotic
Fractures (SOF) cohort. Fracture discrimination from AUC
was similar in obese and non-obese women. Calibration was
good in both groups for prediction of major osteoporotic

fractures using FRAX with BMD, but hip fracture risk was
found to be underestimated (most marked among obese
women in the lowest category for FRAX probability with
BMD, four predicted vs. nine observed).

Ettinger et al. [73] examined 5,891 men age 65 years and
older (374 with incident to major osteoporotic fractures, 161
incident hip fractures). Hip fracture discrimination (AUC 0.77
with BMD vs. 0.69 without BMD) was better than for major
osteoporotic fractures (AUC 0.67 with BMD vs. 0.63 without
BMD). Inclusion of BMD significantly improved the overall
net reclassification index for major osteoporotic fractures and
hip fractures. Observed to predicted fracture ratios according
to probability quintiles showed good calibration for hip
fracture prediction without BMD (ratios 0.9–1.1), but hip
fracture risk was significantly underestimated in the highest
risk quintile when BMD was used in the calculation.
Conversely, major osteoporotic fracture risk was
underestimated without BMD (predicted ratio 0.7–0.9) and
also when BMD was used (predicted ratio 0.7–1.1).

Byberg et al. [74] examined 5,921 men age 50 years and
older from Sweden in the Uppsala Longitudinal Study of
Adult Men (ULSAM) in which 585 individuals sustained
fracture (189 with hip fractures). FRAX explained 7–17 % of
all fractures and 41–60% of hip fractures. Including additional
comorbidity, medication and behavioral factors improved
overall fracture prediction. Femoral neck BMD was only
available in a small subset of those age 82 years and older.

Gonzalez-Macias et al. [75] examined 5,201 women age
65 years and older in a 3-year prospective follow-up study in
Spain (201 with major osteoporotic fractures, 50 with incident
hip fractures) using data from the ECOSAP (Ecografía Osea en
Atención Primaria) Study. AUC for FRAX without BMD was
0.62 for major osteoporotic fractures and 0.64 for hip fractures.
Estimated to observed fracture ratios of 0.66 and 1.10,
respectively, were likely influenced by the limited duration of
the follow-up (i.e., 3 years), lack of data on clinical vertebral
fractures, and lack of competing mortality risk adjustment.
Another Spanish study fromTebeCordomi et al. [76] conducted
a retrospective cohort study of 1,231 women aged 40–90 years
(222 with at least one self-reported fracture after baseline
assessment). AUC for major osteoporotic fracture was 0.61
(95 % CI 0.57–0.65) estimated with BMD. The number of
observed fractures was 3.9 times higher than the expected
number (95 % CI 3.4–4.5). Fractures were self-reported at a
follow-up survey at least 10 years after baseline assessment, but
there was a large rate of non-response/non-participation (855 of
2,086). Fractures could only be assessed in long-term survivors,
and excluding individuals who died prior to 10 years could bias
results leading to overestimation in calibration.

The FRAX tool been endorsed and integrated into
clinical practice guidelines by several national bodies
[77–85]. Given the paradigm shift introduced with FRAX,
many questions have arisen regarding its use in specific and
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challenging circumstances. A set of joint positions were
developed by the International Society of Clinical Densi-
tometry (ISCD) and International Osteoporosis Foundation
(IOF) in 2010, and 28 recommendations were eventually
jointly endorsed [86, 87].

FRAX variants

Simplified models may have a role in settings where it is not
feasible to use the full FRAX tool or where the clinical risk
factor data cannot be collected.

The Foundation for Research and Education (FORE)
fracture risk calculator (FRC) provides a simplified
construct of FRAX for the US using the same clinical risk
factors with fixed relative risk, no interactions, and no
competing mortality adjustment (riskcalculator.fore.org)
[88]. Performance was assessed in 94,489 women age
50 years and older with BMD measured at baseline from the
Kaiser Permanente Northern California database (1,579
with incident hip fractures during mean 6.6 years of follow-
up). The AUC was 0.83 (95 % CI 0.82–0.84) without BMD
and 0.85 (95 % CI 0.84–0.86) with BMD. The FRC
underestimated observed fracture risk by 30–40 %, possibly
due to the high rate of hormone therapy (40 % of the
cohort). The FRC was updated in 2012 (version 2.0) to
include vertebral fracture as a separate risk factor, spine
BMD (together with the usual femoral neck BMD), and
consideration of oral glucocorticoid dose.

The original version of the FRC has also been evaluated in
5,893 men from the MrOS cohort [73]. Ratios of observed
predicted probabilities were close to unity indicating good
calibration. Hip fracture discrimination was higher for hip
fracture (AUC 0.71 without BMD and 0.79 with BMD) than
for major osteoporotic fracture (AUC 0.6 without BMD and
0.70 with BMD). Estimated 10-year fracture probabilities
were performed with the Kaplan–Meier method which does
not adjust for competing mortality. BMD improved overall
performance as assessed with net reclassification indices
(8.5 % for hip and 4.0 % for major osteoporotic fracture). A
large divergence in predicted hip fracture risk can be seen for
FRC and FRAXwith advancing age in women and men, with
a 3-fold differential by age 85 years.

An alternative approach of FRAX simplification was
developed by the Canadian Association of Radiologists and
Osteoporosis Canada (called the CAROC tool) based upon a
semi-quantitative approach that estimates 10-year major
osteoporotic fracture risk as low (less than 10 %), moderate
(10–20 %), and high (greater than 20 %) [89, 90]. Using the
Canadian FRAX tool [66], sex-specific cutoffs based upon age
and femoral neck T-score were derived that would assign
individuals to the low, moderate, and high risk categories
assuming no additional clinical risk factors [91]. A further
refinement was made to ensure that an osteoporotic T-score

would not be classified as low risk (www.osteoporosis.ca/
multimedia/pdf/CAROC.pdf). Under this paradigm, fragility
fracture after age 40 (excluding craniofacial, hands, feet, and
ankles) and recent prolonged systemic glucocorticoid use
(prednisone equivalent 7.5 mg daily or greater for at least
3 months in the prior year) affect the basal fracture risk from
sex, age, and femoral neck T-score. Each of these two clinical
risk factors increases the risk category (i.e., from low to
moderate, or moderate to high). Using the same large
Canadian cohorts from the FRAX validation work [67, 68],
the 10-year fracture outcomes were shown to agree with the
assigned risk category indicating good calibration [91]. There
was also a high level of agreement between the simplified and
standard FRAX categories (88–89 % agreement) with low
rates of reclassification under FRAX.

Garvan fracture risk calculator
(www.garvan.org.au/bone-fracture-risk)

The Dubbo Osteoporosis Epidemiology Study (DOES) was
initiated in 1989 and involves follow-up of over 3,500
participants. Based upon 426 clinical fractures in women (96
hip) and 149 clinical fractures inmen (31 hip) excluding digits,
5- and 10-year fracture probability nomograms were
constructed [92, 93]. Inputs include age, sex, femoral neck
BMD (optional), body weight, history of prior fractures after
age 50 years (none, 0, 1, 2, and 3 ormore) and history of falls in
the previous 12 months (none, 0, 1, 2, and 3 or more). Risk
factors that are relatively uncommon in the general population
(e.g., glucocorticoid use and specific medical conditions) are
not included. There is an assumption of additivity regarding
number of fractures and number of falls. If femoral neck BMD
is not available, then weight is used as a surrogate. The model
has only been calibrated for the Australian population. It does
not include an explicit competing mortality risk adjustment.
Some sense of the relative importance of various risk factors
and how they are affected by age and sex is illustrated in Fig. 6.
The apparent declining risk ratios in older individuals, most
dramatically seen for multiple prior fractures, reflects risk
“saturation” whereby probability can approach but never
exceed 100 %: the same increase in fractures odds
(=probability/[1 − probability]) gives an attenuated increase
in fracture probability (=odds/[1 + odds]) in those with higher
basal risk scores. This effect is particularly important for strong
risk factors (risk ratios >2) and when basal risk exceeds 10–
20%. For example, a 90-year-old man with T-score −2.5 has a
64 % risk for any fracture over the next 10 years, but when
combined with two or more prior fractures his risk is >99 %.

The Garvan algorithm has been independently evaluated in
the Canadian population (4,152 women and 1,606 men age
55–95 years at baseline) with 8.6 years of follow-up (699 low-
trauma fractures including 97 hip fractures) [94]. Fracture
discrimination and calibrationwere found to be generally good
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in both women and men. For low-trauma fractures, the
concordance between predicted risk and fracture events
(Harrell’s C which is similar to AUC) was 0.69 among
women and 0.70 among men. For hip fractures, the
concordance was 0.80 among women and 0.85 among men.
Observed 10-year low-trauma fracture risk agreed with the
predicted risk for all risk subgroups except in the highest risk
quintile in men and women (observed risk lower than
predicted). Observed 10-year hip fracture risk agreed with
the predicted risk for all risk subgroups except in the highest
quintile for women (observed risk lower than predicted).

QFractureScores (www.qfracture.org)

The largest prospective database for osteoporotic fracture
prediction has been from England and Wales using 357
general practices for derivation and 178 practices for
validation in the initial analysis (QResearch Database) [95].
This provided more than 1 million women and more than 1
million men age 30–85 years in the derivation cohort with

24,350 incident osteoporotic fractures in women (9,302 hip
fractures) and 7,934 osteoporotic fractures in men (5,424 hip
fractures). The risk calculator includes numerous clinical risk
factors but does not include BMD. It provides outputs of any
osteoporotic fracture (hip, wrist, or spine) and hip fracture over
a user selected follow-up period from 1 year to 10 years. The
QFractureScores algorithm was updated in 2012, with
inclusion of a number of new risk factors, removal of several
others, and inclusion of humerus fractures as one of the
osteoporotic fractures [96]. It provides calibration for 10
different ethnic origins. In addition to age, sex, and ethnicity,
the algorithm includes smoking status (four levels), alcohol
consumption (five levels), diabetes (type 1 and type 2),
previous fracture, parental osteoporosis or hip fracture, living
in a nursing or care home, history of falls, dementia, cancer,
asthma/COPD, cardiovascular disease, chronic liver disease,
chronic kidney disease, Parkinson’s disease, rheumatoid
arthritis/SLE, malabsorption, endocrine problems, epilepsy
or anticonvulsant use, antidepressant use, steroid use, HRT
use, height, and weight. The 2012 version provided a further
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improvement in AUC for osteoporotic fracture prediction
(AUC 0.79 in women and 0.71 in men) and hip fracture
prediction (AUC 0.89 in women and 0.88 in men).

An independent validation study was performed using
364 general practices from the THIN database (2.2 million
adults aged 30–85 years with 25,208 osteoporotic and
12,188 hip fractures) [97]. The validation cohort gave AUC
discrimination for osteoporotic fracture of 0.82 in women
and 0.74 in men, and for hip fracture of 0.89 in women and
0.86 in men. Calibration plots adhered closely to the line of
identity. QFractureScores explained 63 % of the variation in
hip fracture risk in women and 60 % of the variation in men
(49 % and 38 % for osteoporotic fracture risk).

A small retrospective comparison of FRAX and
QFractureScores was conducted in 246 postmenopausal
women aged 50–85 years from six centers in Ireland and the
UK with recent low-trauma fracture and 338 non-fracture
control women [98]. AUCs for fracture discrimination were
similar in QFractureScores and FRAX (0.668 vs. 0.665) and
also for hip fractures (0.637 vs. 0.710). The difference in
AUC measures between these two studies is striking. The
broad age range used in the initial derivation/validation
work may have resulted in inflated performance measures
since osteoporotic fractures are unlikely before age 50.
Additional assessments of QFractureScores in older women
and men are needed.

Other models

There are a number of other fracture risk calculators and risk
assessment tools that have been developed, but are awaiting
independent validation. These include but are not limited to the
Fracture INDEX (Study of Osteoporotic Fractures), an 11-
factor model for 5-year hip fracture risk assessment (Women’s
Health Initiative), and FRISK (Australia GeelongOsteoporosis
Study), a simple four-item risk score (Rotterdam Study and
Longitudinal Aging Study Amsterdam) [99–103].

Comparisons

A direct comparison of 10-year hip fracture predictions for the
various risk assessment tools discussed above is presented in
Fig. 7 (Garvan FRC, FRAX US White, and FORE FRC with
BMD set to a T-score −2.5) and Fig. 8 (Garvan FRC, FRAX
US White, and QFractureScores without BMD). FRAX
(without BMD) and QFractureScores track each other closely
across the age spectrum, whereas FRAXgives lower estimates
than Garvan FRC or FORE FRAC in older individuals,
especially older men. The age- and sex-dependent divergence
reflect the effect of computing mortality which is only
explicitly represented in the FRAX formulation. For example,
the FORE FRC (which is a FRAX variant without interactions

or adjustment for competingmortality risk) is similar to FRAX
at age 65 years, but by age 85 years gives values that are 3-fold
greater. Divergence becomes particularly extreme at age
90 years with T-score−2.5 for Garvan FRC versus FRAXwith
a 3-fold difference in women and over a 10-fold difference in
men. One corollary of these differences is that these tools are
not interchangeable in their clinical application: different tools
and guidelines could identify very different numbers of
individuals for treatment based upon the same intervention
cutoff (e.g., 3 % 10-year hip fracture risk).

A limited number of studies have performed “head to head”
comparisons of these fracture prediction tools. Using 2-year
self-report fracture data, Sambrook et al. [104] reported on
19,586 women from the GLOW cohort age 60 years or older
who are not receiving osteoporosis treatment (880 women
reported incident fractures including 69 hip fractures and 468
“major fractures” and 583 “osteoporotic fractures”). For hip
fracture prediction, the AUC was 0.78 for FRAX with BMD,
0.76 for Garvan FRC, and 0.78 for age and prior fracture alone.
For major fractures, the AUC was 0.61 for FRAX and for
osteoporotic fractures was 0.64 for Garvan FRC, neither of
which was better than age and prior fracture alone.

Bolland et al. [105] compared FRAX (NewZealand) and the
Garvan FRC in 1,422 healthy New Zealand women, mean age
74 years, participating in a 5-year randomized, placebo-
controlled trial of calcium supplements.Womenwere contacted
average 8.8 years post-enrollment about fracture events (self-
reported). No follow-up information was available for 248
women who died or for a further 53 women who could not be
contacted. Hip fracture discrimination was similar for FRAX
with BMD (0.70, 95 % CI 0.64–0.77), FRAX without BMD
(0.69, 95 % CI 0.63–0.76), and Garvan FRC (0.67, 95 % CI
0.60–0.75). For FRAX-defined osteoporotic fractures, Garvan-
defined osteoporotic fractures, and all fractures, the AUCs were
slightly lower (range 0.60–0.64). The Garvan FRC was well
calibrated for Garvan-defined osteoporotic fractures
(predicted/observed ratio 1.0) but overestimated hip fractures
(ratio 1.5). FRAX with BMD underestimated FRAX-defined
major osteoporotic fracture risk and hip fracture risk (ratios 0.5
and 0.8, respectively) and gave divergent results when used
without BMD (ratios 0.7 for major osteoporotic fractures and
1.4 for hip fractures).Goodness-of-fit testing showed significant
deviation froma perfectly calibratedmodel (p<0.01) in all cases
except for hip fracture prediction from FRAX without BMD.
Neither FRAX nor Garvan FRC provided better discrimination
than age and BMD alone. Results could be biased as fractures
could only be assessed in long-term survivors.

Fracture discrimination with FRAX and Garvan was also
compared in a report from Henry et al. [102] in 600
Australian women age 60 years and older using FRAX tools
for the UK and US. AUCs were similar for major
osteoporotic fracture prediction without BMD (AUC 0.66)
and with BMD (AUC 0.67–0.70).
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The only independent evaluation of QFractureScores (Web
version 1) to date has been a small retrospective comparison
with FRAX in 246 postmenopausal women aged 50–85 years
from six centers in Ireland and the UK with recent low-trauma
fracture compared with 338 non-fracture control women [98].
AUCs for osteoporotic fracture discrimination were similar in
QFractureScores and FRAX (0.668 vs. 0.665) and also for hip
fractures (0.637 vs. 0.710). The difference in AUC measures
compared with the initial reports from the QFractureScores
authors are striking. Thismay reflect the broad age range used in
the initial derivation/validation work. Whether similar results
would be seen with the 2012 version of QFractureScores is
uncertain.

Clinical implications

A risk prediction tool on its own does not necessarily alter patient
management. A recent review of updated guidelines around the
world found a diversity of approaches [106]. Some guidelines
have embraced fracture risk as the preferred decision making
approach, others are still largely dictated by BMD, whereas
others are a hybrid. The National Osteoporosis Foundation
(NOF) Guidelines are an example of the latter. Treatment is

recommended for individuals with an osteoporotic T-score,
clinical osteoporosis based upon low-trauma spine or hip
fracture, with a secondary role for fracture risk prediction in
individuals with low bone mass (osteopenia) where major
osteoporotic fracture risk exceeds 20 % or hip fracture risk
exceeds 3 % under the US FRAX tools [77]. The Osteoporosis
Canada guidelines recommend treatment initiation based upon
clinical osteoporosis (hip fracture, spine fracture, or multiple
fragility fractures) or where major osteoporotic fracture proba-
bility exceeds 20 % under FRAX or the simplified CAROC tool
[85]. The National Osteoporosis Guidelines Group (NOGG),
working in collaboration withmany other societies from the UK,
recommends that treatment be considered in women with a prior
fragility fracture (BMDmeasurement is optional) or when major
osteoporotic fracture probability with FRAX exceeds an age-
adapted treatment threshold. The intervention threshold at each
age is set at a risk equivalent to that associated with a prior
fracture, resulting in a lower threshold in younger individuals and
a higher threshold in older individuals [107]. The NOGG
approach has fully embraced fracture risk in guiding therapy and
restricts BMD to individuals whose fracture risk is close to the
intervention threshold: individuals with fracture risk well below
the intervention or well above the intervention threshold are not
recommended for BMD testing. A similar approach has been
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advocated for the European setting by the European Society for
Clinical and Economic Aspects of Osteoporosis and Osteoar-
thritis (ESCEO) and International Osteoporosis Foundation
(IOF) [108]. Judging from the diversity of approaches, “once
size does not fit all” when it comes to how risk prediction is
currently integrated into clinical practice guidelines.

Future directions

It is self-evident that no risk prediction model can include all
possible risk factors for fracture: even if such a tool could be
created, it would be impossibly detailed and unwieldy. More
than 80 secondary causes of osteoporosis were specified in the
USSurgeonGeneral’s report on osteoporosis [109].Moreover,
not all risk factors can be easily or reliably measured. Finding
the “right” balance between complexity and simplicity is
analogous to the tradeoff between sensitivity and specificity.
There is no perfect cutoff, and needs will vary depending upon
clinical context and data availability. In primary care where
there is a low prevalence of high-riskmedication use, it may be
quite reasonable to omit glucocorticoids and antineoplastic
medications. However, in a rheumatology, organ transplant, or
breast cancer clinic, this would clearly be unacceptable.

Several investigators have noted that very simple prediction
models (e.g., age, BMD, and prior fracture) can discriminate
fractures as well as more complex models such as FRAX [70,
105, 110–112]. This is not altogether surprising given the
insensitivity of general measures of test performance (e.g.,
ROC) to detect incremental improvement in risk classification
from additional risk factors [39, 40]. For example, the
prevalence of high-dose glucocorticoid use in the general
population is very low (∼1 %) and excluding this risk factor
from the assessment is barely noticeable at the population level
despite the importance it has for the individual risk prediction.

Even where a clinical risk factor is omitted from the model,
clinical judgment must be brought to bear with a qualitative
consideration of the importance of the missing information.
BMD is a requirement for some but not all risk prediction
models, and when included is typically based upon the femoral
neck. Attempts to incorporate additional sites of measurement
(e.g., lumbar spine) have been proposed [113]. Inclusion of
additional skeletal measures (e.g., bone turnover markers,
trabecular bone score) adds to the complexity with uncertain
benefit in terms of the improvement in overall patient outcomes
[86, 87]. How to best reconcile these competing and divergent
forces remains unclear. Similarly, fundamental design consid-
eration such as the importance of competing mortality warrant
further discussion. As noted in this review, competing mortality
can dramatically impact on the risk prediction measurement,
particularly among population sub-groups with high mortality
risk such as the elderly, men, those with serious comorbidities,
and those at highest risk for fracture [47].

Finally, the ultimate question is whether patients selected for
treatment based upon a risk prediction model actually benefit in
terms of fracture prevention. To date, some retrospective
analyses have suggested that this may be the case though there
is ongoing controversy regarding the utility of pharmacologic
intervention in individuals without significant reductions in
BMD [114].Whether formal clinical trials will be undertaken to
address this question is uncertain.

Conclusions

Prognostic models for fracture risk assessment can guide
clinicians and individuals in understanding the risk of having an
osteoporosis-related fracture and inform their decision making
tomitigate these risks. However, to be useful for these purposes,
risk estimates must be derived from valid and accurate models.
Validity must be established in different populations, as well as
over time. Competing health events must be considered to
produce unbiased estimates. Model development should follow
a systematic and rigorous methodology around variable
selection, model fit evaluation, performance evaluation, and
internal and external validation. As well, authors who report the
results of fracture risk prediction models must ensure complete
and accurate reporting of all stages of model development to
ensure replicability of results, so that future research can build
on current developments in a consistent manner [115]. Finally,
accurate risk prediction is only an academic exercise unless
practitioners know how to use this information. Careful
consideration must always be given to the integration of risk
prediction tools into clinical practice guidelines to support better
clinical decision making and improved patient outcomes. The
statistician George E.P. Box noted “All models are wrong but
some are useful”. Every risk prediction tool has limitations but it
can still be valuable tools to complement clinical judgment if
these limitations are understood.
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