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Abstract
Summary We used new approaches to the analysis of diag-
nostic scans to detect changes in bone density in different
regions of the hip after 3 years of treatment with the zole-
dronic acid. We showed that the drug significantly increases
hip bone density compared to placebo at regions where hip
fractures usually occur.
Introduction This study aims to identify whether treatment
with zoledronic acid exerts site-specific differential effects
on volumetric bone mineral density (vBMD) at the hip.
Methods We analysed quantitative computed tomography
scans of the hip obtained at baseline and 36 months in 179
women participating in the HORIZON Pivotal Fracture
Trial. Cortical, trabecular and integral BMDs were deter-
mined at three main regions of interest—the femoral neck
(FN), trochanter (TR) and total hip (TH)—and several sub-
regions of interest, namely the proximal, middle, distal,
anterior, posterior, inferomedial and superolateral FN, and
the middle and distal TR.

Results Volumetric BMD increased significantly (p<0.05)
from baseline with zoledronic acid compared to placebo.
Trabecular vBMD increased as follows: FN, 5.4 %; FN sub-
regions, 6.0 % (proximal), 4.4 % (middle), 5.6 % (distal),
7.5 % (anterior), 7.0 % (superolateral) and 5.4 % (posterior);
TR, 6.5 % and TH, 5.7 %. Cortical vBMD increased as
follows: FN sub-regions, 5.0 % (proximal FN) and 2.3 %
(anterior); TR, 4.6 %; middle TR, 2.7 % and TH, 3.8 %.
Conclusions The effects on vBMD of annual infusion of
5 mg of zoledronic acid are site-specific and dominated by
trabecular changes.

Keywords Bisphosphonates . Bone QCT . Osteoporosis .

Volumetric BMD . Zoledronic acid

Introduction

Age-associated reduction in bone density of the femur is
site-specific, with relative preservation of the inferior region
of the femoral neck (FN) and greatly reduced cortical thick-
ness and trabecular volumetric BMD (vBMD) at the supero-
lateral aspect of the FN in elderly compared to young
women [1–3]. These changes have important implications
as hip fracture is often initiated by a local failure at the
superolateral aspect of the FN during a sideways fall [4].
Both cortical and trabecular bone contribute to femoral
strength [5–8] and resistance to cortical buckling [3, 9],
but we might expect to see a greater response to anti-
resorptive therapy in trabecular bone due to its higher bone
turnover. This could result in different site (region)-specific
treatment effects since the trabecular bone is heterogeneous-
ly distributed in the proximal femur [1, 2, 10, 11]. Several
clinical studies have reported an increased hip vBMD fol-
lowing anti-resorptive therapy [12–17], whereas only one
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examined site-specific response to parathyroid hormone (1–
34) [18].

In this study, we investigated the effects of zoledronic
acid on the cortical and trabecular compartments of different
regions of the proximal femur using quantitative computed
tomography (QCT)-based three-dimensional hip structural
analysis. The Horizon QCT study has already been pub-
lished [14], but the analysis reported here was designed to
address different questions. We hypothesised that treatment
with zoledronic acid would result in changes in cortical and
trabecular bone that vary in different regions of the hip.
These effects may help to explain the reduction in risk of
hip fracture in patients treated with zoledronic acid.

Materials and methods

Study participants

In the HORIZON Pivotal Fracture Trial (HORIZON PFT),
3,889 postmenopausal women were randomly assigned to
receive a single 15-min infusion of zoledronic acid (Novar-
tis Pharma, Basel, Switzerland) at baseline, 12 and
24 months, and 3,876 were assigned to receive a matching
placebo. Patients were followed for 36 months from base-
line. A pre-planned QCT study was performed in a subset of
the full study population (n0233). Two hundred thirty-two
patients had hip QCTscans at baseline and 181 patients had hip
QCTscans at year 3 (two of the patient scans performed at year
3 were lost). We analysed 179 scans that were available at both
baseline and year 3 (94 in the zoledronic acid group and 85 in
the placebo group). Table 1 shows the baseline patient
characteristics.

The HORIZON PFT was conducted in compliance with
the ethical principles of the Declaration of Helsinki (1989)
and local applicable laws and regulations. Approval was
obtained from an Institutional Review Board, Independent
Ethics Committee or Research Ethics Board by each partic-
ipating centre. Patients provided written informed consent to
participate in the study.

Quantitative computed tomography

The QCT scans were acquired as described previously [14].
Patients were positioned supine with a density calibration
phantom (Image Analysis, Columbia KY, USA) placed be-
neath the hips. The superior limit of the scan was 5 mm
above the acetabulum and the inferior limit was 5 mm below
the lesser trochanter. Scan parameters were 3-mm section
thickness (pitch01), 80 kVp and 280 mAs, standard recon-
struction kernel, with an in-plane pixel size of 0.94–
0.97 mm and slice thickness of 3.0 mm. The CT images
were archived to DICOM CD-ROM for further analysis. For

quality control, a calibration phantom (Image Analysis) was
scanned every 2 weeks during the study period. A cross-
centre calibration scan was also performed using the same
Image Analysis calibration phantom at all clinical centres.

Three-dimensional hip structural analysis

Analysis was performed blinded to treatment status. Pro-
grams were developed using Matlab (The Mathworks Inc.,
Natick, MA, USA) for the analysis of QCT scans; this has
been described previously [10]. Only the left hip was ana-
lysed. The Hounsfield unit of each voxel was converted to
mineral density using the density calibration phantom. The
outer contours of the proximal femur were determined slice
by slice by using an interactive program that combines
density-thresholding at 100 mg/cm3, morphological opera-
tion and manual tracing. From this point onwards, image
processing and calculations were performed automatically.
The scans were re-sampled using linear interpolation so that
the voxel size was 1×1×1 mm3. The femora was digitally
rotated to a standard orientation to compensate for variation
in patient positioning during scanning (Fig. 1). We mea-
sured cortical, trabecular and integral vBMD in a series of
cross-sectional regions and sub-regions of interest along the
axes of the neck and shaft of the femur (Fig. 1). We identi-
fied three main regions of interest, namely the FN, trochan-
ter (TR) and total hip (TH) (FN plus TR). The sub-regions
of the FN were three cross-sectional sections, namely the
proximal, middle and distal FN, and four quadrants (with
the origin at the geometrical centre of the FN cross sections),
namely the anterior, posterior, inferomedial and superolateral
FN. Two cross-sectional sub-regions were also identified in
the TR, namely the middle and the distal TR. Volumetric
BMDs in the main and sub-regions of interest were calculated
by averaging voxel vBMD over the relevant volumes.

To define cortical bone, we developed and validated a
method for analysis of QCT hip scans with an in-plane pixel
resolution of about 1 mm. This method has been described
and validated [19]. The images were enlarged by four times
using bilinear interpolation so that the pixel size was about
0.25 by 0.25 mm. For each cross section, density profiles
perpendicular to the periosteal surface (segmented by
thresholding already) were generated at every other perios-
teal surface pixels and the periosteal border kp in the profile
was identified. The maximum density Dmax and the middle
location kmax of 0.85Dmax in the profiles were identified. If
Dmax<0.2DFN (DFN, maximum density of the whole FN),
which indicates a thin cortex, kmax is checked: if kp−kmax>
2.5 mm, kmax is adjusted so that kp−kmax01.25 mm. The
endosteal border ke is defined as the mirror point of kp with
respect to kmax, i.e., doubling the width of kp−kmax. A five-
point moving average filter was used to smooth the endos-
teal border points ke in a cross section and the resulting
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points were connected to form a continuous endosteal bor-
der. We further validated the method in an ex vivo analysis
of the human FN (n03) scanned by a micro CT (μCT 100,
SCANCO Medical AG, Brüttisellen, Switzerland) at a res-
olution of 0.062 mm. We analysed 11 evenly distributed
slices between the subcapital and distal FN from each of the
three specimens and segmented the cortical region by
threshold and manual tracing. We simulated QCT scans of
1.0-mm pixel size by averaging the original micro CT
images in 16×16 pixel blocks and applied our method for
cortical segmentation (Fig. 2). We did not perform QCT on
these samples because this might have introduced variation
due to differences in positioning or in defining the regions of
interest. We compared cortical, trabecular and integral area,
vBMD and cortical thickness in the anterior, posterior,
inferomedial and superolateral FN quadrants calculated by
both micro CT and simulated QCT (Table 2). With micro CT
as the standard, our method (1) underestimated the cortical
area by 6 % in the inferomedial quadrant (where the cortex
is relatively thick) and overestimated the cortical area by 7–
16 % in the superolateral and posterior quadrants (where the
cortex is relatively thin). On average, cortical area of the
posterior and superolateral quadrants of the FN in this
validation study was 27 mm2 and a 16 % error in the area
accounts for only 4.3 pixels in the simulated clinical CT. (2)
Our method underestimated cortical vBMD by 12 % in the
inferomedial quadrant and by 31–34 % in the other quad-
rants, which was expected since measurement of vBMD
decreases with reduced QCT resolution and cortical thick-
ness by as much as 60 % [20, 21]. (3) Our method over-
estimated trabecular vBMD and underestimated integral
vBMD by 3–5 %.

We assessed the intra-observer reproducibility of 3-D hip
structure analysis by analysing 16 randomly selected 36-
month scans on three separate occasions, 1 week apart. The
coefficient of variation (CV) ranged from 0.5 to 2.6 % for
measurement of vBMD (Table 3).

Statistical analysis

Statistical analysis of the data was carried out at the Uni-
versity of California, San Francisco (Department of Epide-
miology and Biostatistics). We used the two-sample t test to
compare mean age, height, weight, body mass index (BMI),
areal BMD (aBMD) and vBMD at baseline and 36 months
between the zoledronic acid and placebo groups. For each
patient, we calculated percentage changes from baseline of
the variables and the group mean and 95 % confidence
intervals (CI) of the percentage change in aBMD and
vBMD. These values were then used to assess the signifi-
cance of the between-treatment differences using the two-
sample t test. We used a threshold of p<0.05 to denote
statistical significance.In
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Results

Baseline characteristics

Mean age, weight, height and BMI were similar in the zole-
dronic acid and placebo groups (Table 1), so were the FN, TR
and TH aBMDs; the means were also similar to those in the
full subset of 233 patients who underwent QCT [14] and to the
whole HORIZON PFT population [22]. There were some
differences in baseline QCT measures: higher mean vBMD
at the FN and TR (but not TH) in the zoledronic acid com-
pared to the placebo group, larger volumes in proximal and
distal FN and TH in placebo group (Table 1).

Changes from baseline in aBMD at 36 months

Table 4 lists the FN, TR and TH aBMDs at baseline and
at 36 months. Compared with baseline value, aBMD

increased in the zoledronic acid group (only significant-
ly at TR, p<0.05) and remained almost constant in the
placebo group. Compared with placebo, there were 5.3,
7.6 and 5.3 % increases (p<0.0001) in the FN, TR and
TH aBMDs, respectively. These values were similar to
those obtained from the whole QCT (5.1, 7.4 and
5.1 %) and HORIZON PFT cohorts (5.0, 8.2 and
6.0 %).

Changes from baseline in volume at 36 months

Table 5 shows the percentage change from baseline in
volumes of various regions of interests. The percent-
age changes ranged from −1.8 % for trabecular vol-
ume at middle TR to 6.2 % for cortical volume at the
anterior quadrant of the FN. These small values are
an indication that segmentation of various regions was
consistent.

Fig. 1 a Standard orientation
of the femur and definitions of
various regions of interest in the
study. Cross sections were
defined in the whole femoral
neck and middle and distal TR.
b Typical cross sections in the
subcapital, middle and basal
capsule of the FN and middle
and distal TR with
inferomedial, anterior,
superolateral and posterior
quadrants

Fig. 2 Typical micro CT images of the a distal femoral neck and c
subcapital and the corresponding simulated clinical QCT images (b)
and (d). Note the similarity in cortical region between the micro CT
and simulated clinical QCT. I-M, inferior-medial; S-P, superior-lateral;

A, anterior; P, posterior. Images e to g shows the frontal, sagittal and
sagittal plane QCT slices of a typical study patient showing cortical
segmentation
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Changes from baseline in vBMD at 36 months

Figure 3 shows the percent changes from baseline in vBMD
in the zoledronic acid and placebo groups and the differences
between groups in the change measured at 36 months. In the
zoledronic acid group, trabecular and integral vBMD in-
creased significantly across the main regions of interest (at
FN p<0.05 trabecular only, at TR p<0.001 and at TH p<
0.01). The trabecular increases were significant (p<0.05)
across all of the sub-regions except the middle and supero-
lateral FN, whereas the increase in integral vBMD was sig-
nificant (p<0.05) at the superolateral FN only. Cortical vBMD
increased significantly at the TR only (p<0.05), but on sub-
regional analysis, there was a significant (p<0.001) increase at
the superolateral FN. There were also significant decreases in
sub-regional cortical vBMD at the distal (p<0.05) and poste-
rior (p<0.001) FN in the zoledronic acid group.

In the placebo group, vBMD decreased significantly
across the FN, TR and TH (p<0.01) and several sub-
regions (p<0.05); the exceptions were the middle (trabecu-
lar and integral), distal (trabecular and integral), inferome-
dial (trabecular) and posterior (trabecular) regions of the FN,

superolateral FN (cortical vBMD) and the distal TR (trabec-
ular and integral vBMD).

The between-treatment differences in vBMD were all
significant in all main regions (FN, TR and TH) in favour
of the zoledronic acid (p<0.01) with the exception of corti-
cal vBMD at FN. The differences in trabecular and integral
vBMD were also significant (p<0.05) across most of the
sub-regions, with the exception of integral vBMD at the
middle, distal and inferomedial FN and the distal TR, and
trabecular vBMD at inferomedial FN. The difference be-
tween groups in cortical vBMD was significant at the prox-
imal and anterior FN and the middle TR. Although not
statistically significant (p>0.05), the differences in trabecu-
lar vBMD were higher than the differences in cortical
vBMD for all but one region. It was interesting to note that
the differences in integral vBMD of the FN, TR and TH
(3.9, 6.0 and 5.6 %, respectively) were similar to the
corresponding aBMD (5.3, 7.6 and 5.3 %, respectively).

Discussion

There is recent evidence that ongoing loss in cortical and
trabecular bone is concentrated at the superolateral aspect of
the FN [1–3] and that cortical bone reduction resulting from
cortical thinning and increased porosity at the anterior and
inferoanterior regions is associated with FN fractures
[23–25]. Volumetric BMD does increase with anti-
resorptive therapy, but there is little evidence about site-
specific responses. In this clinical study, we determined
the effects of zoledronic acid on the cortical and trabecular
compartments of different partitions of the proximal femur.
The decreases in vBMD observed over 3 years in the pla-
cebo group reflect age-related bone loss. In contrast, there
were significant increases from baseline in vBMD with
zoledronic acid. The increases in trabecular vBMD across
the different sub-regions were more consistent than for
cortical or integral vBMD. Our between-treatment results
suggest that in comparison with the placebo, zoledronic acid
significantly increases bone density, particularly in trabecu-
lar compartment and in the sub-regions of the hip that have
been associated with the initiation of hip fracture.

Table 2 Mean (95 % CI) per-
centage error of QCT measure-
ments from the simulated QCT
in comparison with micro CT

Area vBMD

Cortical Trabecular Integral Cortical Trabecular Integral

Inferomedial −6 (−13, 0) 2 (1, 4) −1 (−1, 0) −12 (−15, −9) 6 (4, 8) −3 (−3, −3)

Anterior 7 (−1, 15) −1 (−2, 0) −1 (−1, −1) −31 (−34, −29) 4 (3, 5) −5 (−6, −5)

Superolateral 16 (7, 26) −2 (−3, −2) −1 (−1, −1) −33 (−35, −31) 3 (2, 4) −5 (−5, −5)

Posterior 15 (4, 26) −1 (−2, −1) −1 (−1, 0) −34 (−36, −32) 5 (3, 6) −5 (−6, −5)

Total image 4 (−3, 11) 2 (1, 2) 1 (1, 2) −24 (−26, −22) 5 (4, 6) −3 (−3, −3)

Table 3 Intra-observer reproducibility of vBMD (percentage of CV)

Cortical Trabecular Integral

FN

Proximal 2.6 1.4 2.0

Middle 1.5 2.0 1.5

Distal 1.3 2.0 1.4

Inferomedial 2.0 1.5 1.8

Anterior 0.9 1.6 0.9

Superolateral 0.8 2.4 1.0

Posterior 2.0 2.6 2.1

Total 1.2 1.2 1.2

TR

Middle 1.6 1.7 1.0

Distal 1.3 0.9 0.9

Total 0.8 1.2 0.9

TH 0.7 0.5 0.6
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The relative contributions of cortical versus trabecular
bone to the transference of load has generally been related
to their relative proportions in terms of mass [7, 9], so that
the smaller proportion of trabecular bone mass in the oste-
oporotic femur equates to a smaller contribution to overall
strength. However, reduction in vBMD by age is higher in
trabecular than in cortical bone [26], and vBMD differences
between hip fracture and control postmenopausal women
are higher in trabecular than in cortical bone [5]. Cortical
buckling has been suggested as a possible mechanism of hip
fracture during sideways fall [1, 3, 27, 28], and trabecular

bone may play an important role in preventing cortical
buckling since it provide about 40 % of the resistance to
cortical buckling, and a small increase in subcortical trabec-
ular bone results in a disproportionately large increase in
cortical stability [3]. All these highlight the importance of
trabecular bone in hip fracture aetiology. Anti-resorptive
therapy consistently show that reduction in fracture risk is
associated with improvement of trabecular vBMD [12–17],
and this study confirms this, too.

We observed significant differences in baseline cortical
and trabecular vBMD between this study and the previous

Table 4 Mean (SD) areal BMD (in grams per square centimetre) at baseline and year 3 and percent change from baseline

Zoledronic Acid Placebo

This study Eastell et al. [14] HORIZON PFT This study Eastell et al. [14] HORIZON PFT

Baseline

Number 94 122 3,844–3,851 84 110 3,839–3,845

FN aBMD 0.568 (0.081) 0.562 (0.080) 0.580 (0.086) 0.558 (0.083) 0.547 (0.088) 0.581 (0.089)

TR aBMD 0.525 (0.092) 0.515 (0.090) 0.518 (0.094) 0.512 (0.097) 0.502 (0.102) 0.518 (0.095)

TH aBMD 0.683 (0.101) 0.673 (0.097) 0.668 (0.093) 0.669 (0.098) 0.652 (0.106) 0.669 (0.094)

Year 3

Number 93 97 3,076–3,082 84 86 3,086–3,092

FN aBMD 0.591 (0.086) 0.587 (0.087) 0.604 (0.091) 0.554 (0.085) 0.554 (0.084) 0.578 (0.090)

TR aBMD 0.557 (0.100) 0.552 (0.101) 0.556 (0.097) 0.507 (0.102) 0.508 (0.102) 0.516 (0.098)

TH aBMD 0.708 (0.106) 0.704 (0.107) 0.700 (0.095) 0.660 (0.103) 0.662 (0.102) 0.663 (0.097)

% change

Number 93 97 3,061–3067 84 86 3,077–3,083

FN aBMD 4.2 (6.1) 4.0 (6.1) 4.1 (5.8) −1.1 (5.8) −1.1 (5.7) −1.0 (6.2)

TR aBMD 6.0 (5.7) 5.8 (5.6) 7.0 (7.3) −1.6 (6.2) −1.6 (6.1) −1.2 (8.0)

TH aBMD 3.7 (4.2) 3.5 (4.2) 4.3 (4.8) −1.6 (4.9) −1.5 (4.8) −1.7 (5.5)

Table 5 Percentage change of
volume at year 3 from baseline Zoledronic Acid (n094) Placebo (n085)

Cortical Trabecular Integral Cortical Trabecular Integral

Total FN 3.7 (13.4) −0.4 (11.2) 0.8 (11.1) 1.5 (10.8) −1.7 (9.4) −0.8 (9.1)

Total TR 4.3 (7.0) 0.5 (4.9) 1.5 (4.7) 1.7 (6.0) −0.1 (5.4) 0.4 (4.8)

TH 3.5 (8.3) 0.1 (8.4) 1.1 (8.4) 1.2 (8.2) −0.5 (8.5) 0.0 (8.4)

Proximal FN 4.3 (13.7) 1.6 (12.2) 2.3 (12.9) 3.3 (10.7) 2.6 (9.8) 2.8 (10.2)

Middle FN 1.8 (18.6) 0.2 (17.1) 0.7 (17.9) 0.9 (17.8) 0.4 (17.2) 0.5 (17.5)

Distal FN 2.8 (16.2) 0.9 (15.7) 1.5 (16.0) 2.3 (12.7) 0.5 (12.8) 1.1 (12.8)

Middle TR −0.1 (6.3) −1.8 (8.3) −1.4 (7.4) −0.2 (5.8) −1.6 (8.2) −1.4 (7.1)

Distal TR 1.6 (5.4) 0.1 (9.0) 0.6 (7.4) −0.5 (5.8) −0.5 (7.3) −0.5 (6.6)

Inferomedial FN 3.2 (13.0) 0.3 (10.7) 0.1 (8.4) 1.0 (12.5) 0.8 (9.1) 0.4 (7.7)

Anterior FN 6.2 (11.6) 3.5 (9.6) 3.4 (7.5) 4.9 (9.8) 2.9 (9.9) 3.2 (7.0)

Superolateral FN 3.1 (11.7) 0.5 (10.7) 0.1 (7.9) 2.6 (9.9) 0.3 (10.0) 0.4 (7.0)

Posterior FN 5.6 (11.2) 3.3 (10.0) 3.1 (7.5) 3.7 (8.9) 2.7 (8.8) 2.7 (6.2)
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analysis [14], whereas the integral TR and FN vBMDs were
similar. This is most likely due to the use of different soft-
wares for the analysis, and differences in the way in which
the cortical and trabecular regions were defined since patient
characteristics and aBMD of this analysis are similar to the
previous analysis and the whole HORIZON PFT (Table 1).
We defined cortical bone using a method based on the
evaluation of density profiles perpendicular to the periosteal
bone surface [10, 19] and defined trabecular bone as the
total bone minus the cortical bone. The earlier analysis
defined the trabecular region by uniform erosion of the
periosteal bone surface, so that it was completely within
the medullary volume [29, 30] and applied a threshold of
350 mg/cm3 to define cortical bone in the cortical region
(between periosteal surface and trabecular region). As a
consequence, the trabecular volume as defined by our meth-
od was larger, and it included subcortical trabecular bone
situated immediately adjacent to endocortical bone, which is
much denser than the more central trabecular bone. This was
evidenced by a much higher baseline trabecular vBMD in
this study (96–143 mg/cm3 at the FN, TR and TH) com-
pared with the previous analysis (22–66 mg/cm3). A

significantly (p<0.05) lower cortical vBMD was also seen
in this study compared with the previous study (397–431 v.
453–476 mg/cm3 at the FN, TR and TH), reflecting the effects
of using a cortical threshold of 350 mg/cm3 in the previous
study.

Like the previous analysis [14], we found significant
decrease from baseline of cortical, trabecular and integral
vBMDs at the FN, TR and TH of the placebo group and
significant percentage increase from baseline of TH integral
vBMD in the zoledronic acid group. We observed between-
treatment effect on FN trabecular vBMD, whereas the pre-
vious analysis did not. We also observed lower increases in
trabecular vBMD at the TR and TH in response to zole-
dronic acid than were reported in an earlier analysis (around
6–7 % compared to 11 %). Differences in image analysis
methods again may be the cause. Much lower trabecular
vBMD was found in the previous analysis, and for a given
change in trabecular vBMD, the percentage change would
be larger if the baseline vBMD was lower. Another possible
reason for the discrepancy is that we analysed 179 patients
with both baseline and 36-month scans, whereas the previ-
ous study analysed 232 baseline and 179 follow-up scans.

Fig. 3 Mean percentage changes in cortical (open circle), trabecular
(small solid circle) and integral (larger solid circle) vBMD from
baseline in the different partitions of the proximal femur. FN stands
for the femoral neck, TR for trochanter, TH for total hip, prx for
proximal, mid for middle, dst for distal, IM for inferomedial quadrant, A

for anterior, P for posterior and SL for superolateral. The error bars
represent 95 % CI and the end caps hyphen, horizontal bar and asterisk
indicate the mean significantly different from zero at p<0.05, p<0.01 and
p<0.001, respectively
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This study has some limitations. Although our study
sample was representative for the QCT and HORIZON
PFT cohorts in terms of baseline patient characteristics and
aBMD (Tables 1 and 4), it was limited to patients with both
baseline and 36-month QCT scans and did not include 54
patients with baseline QCT only, this may reduce the study
power. Our sample size was appropriate for the investigation
of between-treatment differences in bone macrostructure,
which was the aim of this study, but a larger study popula-
tion would be required to directly test the effects of these
differences on the incidence of hip fracture. There is an
inherent limitation to the accuracy of cortical vBMD mea-
surement using QCT, particularly at the superolateral aspect
of the FN where the cortex is thin. The QCT scan with
0.97×0.97-mm in-plane pixel size and 3-mm slice thickness
provides limited details of the thin cortex and curvatures at
the FN and TR and does not provide information about
trabecular microstructure, submillimetre changes in geome-
try, the rate of bone remodelling (stress raisers) or bone
micro-damage. Recent advances in QCT technology with
high-resolution CT may have produced the capacity to de-
tect microstructural treatment effects within 12 months for
vertebra [31]. We ignored the femoral head in the QCT
analysis, whereas a recent study demonstrated that trabecu-
lar vBMD deficit between postmenopausal women with and
without hip fracture was 38 % higher at the femoral head
than at the FN [5].

In conclusion, an annual infusion of 5 mg of zoledronic
acid for a period of 3 years resulted in site-specific differ-
ential increases in vBMD, particularly in trabecular com-
partment and in regions known to be associated with the
initiation of hip fracture.
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