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Abstract
Summary High-resolution peripheral quantitative computed
tomography (HR-pQCT) measurements of distal radius and
tibia bone microarchitecture and finite element (FE) esti-
mates of bone strength performed well at classifying post-
menopausal women with and without previous fracture. The
HR-pQCT measurements outperformed dual energy x-ray
absorptiometry (DXA) at classifying forearm fractures and
fractures at other skeletal sites.
Introduction Areal bone mineral density (aBMD) is the pri-
mary measurement used to assess osteoporosis and fracture
risk; however, it does not take into account bone microarch-
itecture, which also contributes to bone strength. Thus, our
objective was to determine if bone microarchitecture mea-
sured with HR-pQCTand FE estimates of bone strength could
classify women with and without low-trauma fractures.

Methods We used HR-pQCT to assess bone microarchitec-
ture at the distal radius and tibia in 44 postmenopausal
women with a history of low-trauma fracture and 88 age-
matched controls from the Calgary cohort of the Canadian
Multicentre Osteoporosis Study (CaMos) study. We estimat-
ed bone strength using FE analysis and simulated distal
radius aBMD from the HR-pQCT scans. Femoral neck
(FN) and lumbar spine (LS) aBMD were measured with
DXA. We used support vector machines (SVM) and a
tenfold cross-validation to classify the fracture cases and
controls and to determine accuracy.
Results The combination of HR-pQCT measures of micro-
architecture and FE estimates of bone strength had the high-
est area under the receiver operating characteristic (ROC)
curve of 0.82 when classifying forearm fractures compared
to an area under the curve (AUC) of 0.71 from DXA-
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derived aBMD of the forearm and 0.63 from FN and spine
DXA. For all fracture types, FE estimates of bone strength at
the forearm alone resulted in an AUC of 0.69.
Conclusion Models based on HR-pQCT measurements of
bone microarchitecture and estimates of bone strength per-
formed better than DXA-derived aBMD at classifying wom-
en with and without prior fracture. In future, these models
may improve prediction of individuals at risk of low-trauma
fracture.

KEYWORDS Bone microarchitecture . Finite element
analysis . Fracture . HR-pQCT . Support vector machines

Introduction

Areal bone mineral density (aBMD) measured by dual en-
ergy x-ray absorptiometry (DXA) is a significant predictor
of fracture risk [1]; however, half of the fractures occur in
women who would not be classified as osteoporotic by
aBMD [2]. Mechanical strength of bone is dependent on
bone matrix, apparent density, and microarchitecture [3] and
measurements of cortical and trabecular microarchitecture
are independent of aBMD [4]. Thus, incorporating bone
structural information with density measurements could po-
tentially improve assessment of fracture risk.

High-resolution peripheral quantitative computed tomog-
raphy (HR-pQCT) is an emerging technology capable of
measuring cortical and trabecular microarchitecture at distal
radius and distal tibia [5, 6]. The resolution of HR-pQCT
also permits application of finite element (FE) analysis to
the 3D scans to estimate bone strength. These FE models are
highly correlated with bone strength measured directly with
mechanical testing [7] as they incorporate both material and
architectural components of bone strength. Previous HR-
pQCT studies examined the ability of individual bone micro-
architectural [8–11] and FE analysis parameters [8–10] or a
combination of parameters [9, 10] to discriminate between
postmenopausal women with and without a history of low-
trauma fracture. These studies showed that bone structure and
strength contribute to forearm fracture risk independently of
aBMD [8]. It has been an important first step to establish the
association of microarchitectural parameters and FE outcomes
with low-trauma fractures [10]. This naturally leads us to
determine whether it is possible to classify people with low-
trauma fracture based on similar outcomes.

Machine learning methods are statistical tools used to
recognize patterns in datasets. These methods are often used
for the purpose of classification since they can be trained
based on known cases and then tested on new cases. Machine
learningmethods can be used to incorporate all HR-pQCTand
FE parameters in order to classify those with and without
fracture.This is in contrast to statistical approaches, such as

principal component analysis (PCA), which reduce data into
combinations of parameters that account for majority of var-
iance. Atkinson et al. recently used a machine learning meth-
od, gradient boosting machines (GBM), and found that
fracture prediction improved when all possible bone density,
geometry, and microstructural parameters obtained with cen-
tral quantitative computed tomography (QCT) and HR-pQCT
were included in the GBM model when compared with DXA
parameters alone [12]. Support vector machines (SVM) are an
alternative machine learning method that can be used to
classify individuals with and without previous fracture by
maximizing the separation between groups. SVM models
offer several advantages over other machine learning meth-
ods, including greater stability and minimal requirements for
parameter tuning. Thus, our objective was to use SVMmodels
to incorporate bone microarchitectural parameters and FE
estimates of bone strength to determine if we can classify
women with and without previous low trauma fractures.

Materials and methods

Participants

Participants in this study were postmenopausal women who
were members of the Calgary, AB cohort of the Canadian
Multicentre Osteoporosis Study (CaMos) [13, 14]. Briefly,
CaMos is a 10-year prospective population-based study in
which participants were recruited using a stratified random
sampling technique from nine centers across Canada [15].
At the 10-year follow-up, we invited individuals from the
Calgary CaMos cohort to participate in an HR-pQCT sub-
study. From this cohort (N0442; ages 20–99 years), we
identified postmenopausal women who sustained a low-
trauma fracture (excluding finger, face, and toes) during
the 10 years of study follow-up (n044). Fractures were
identified by self-report during scheduled interviews at
years 3, 5, and 10 and by yearly postal questionnaires
through year 9. Additional information regarding circum-
stances surrounding the fracture and fracture site were gath-
ered via a structured telephone interview [16]. Low-trauma
fractures were those that occurred without trauma or as a
result of a fall from standing height or less.We randomly
matched two participants without fracture by age (±1.0 year)
to each fracture case (n088). We determined height, weight,
bisphosphonate and corticosteroid use (>3 months), and
menopause status from the interviewer-administered CaMos
questionnaire. In addition, as part of the standard CaMos
assessment, trained technicians measured femoral neck (FN)
and lumbar spine (LS) aBMD (gram per square centimeter)
using DXA (Hologic QDR4500, Bedford, USA). The
Conjoint Health Research Ethics Board at the University of
Calgary approved all procedures.
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HR-pQCT scan acquisition and measurements

As we described in detail elsewhere [13, 14], we scanned all
participants using HR-pQCT (XtremeCT; SCANCOMedical,
Brüttisellen, Switzerland) at the nondominant radius and left
tibia unless there was a previous fracture at the desired site, in
which case we scanned the opposite limb. One of two highly
trained operators acquired and analyzed all scans according to
the manufacturer's standard in vivo protocol. We scanned all
participants using 60 kVp effective energy, 1,000 μA current,
and 100 ms integration time to acquire 110 slices (approxi-
mately 9.02 mm) of the radius and tibia at an 82 μm nominal
isotropic resolution. Scans were manually scored for motion
on a scale of 0 (no motion) to 4 (significant blurring of the
periosteal surface, discontinuities in the cortical shell, or
streaking in the soft tissue) and scans scored as a 4 were
excluded from this analysis (n02).

We used the manufacturer's standard method to filter and
binarize the HR-pQCT images [17] and assessed all standard
HR-pQCTmorphological microstructure outcomes [5]. These
measurements were previously validated against microcom-
puted tomography [6, 18] and have in vivo short-term repro-
ducibility of <4.5 % in adult populations [19]. Reproducibility
in our lab is <3.8 % for all parameters at the radius and tibia.

To segment the cortical and trabecular regions, we used
an automatic segmentation algorithm implemented in Image
Processing Language (IPL V5.07, SCANCO Medical,
Brüttisellen, Switzerland) [20]. Based on this segmentation,
we calculated macrostructural parameters: cortical (Ct.Ar,
square millimeter), trabecular (Tb.Ar, square millimeter),
and total (Tt.Ar, square millimeter) cross-sectional areas.
In addition, we calculated cortical porosity (Ct.Po, percent)
as the number of void voxels within the cortex [14, 20] and
measured direct cortical thickness (Ct.Th, millimeter), and
cortical bone mineral density (Ct.BMD, milligram hydroxy-
apatite (HA) per cubic centimeter).

We acquired FN and LS aBMD by DXA but did not acquire
ultradistal radius (UDR) DXA scans for the participants.
Therefore, we implemented the method developed by
Burghardt et al. [21] to simulate DXA-derived aBMD: we
aligned the HR-pQCT scans in the same configuration as a
DXA scan and obtained a calibrated projection image from
which we determined aBMD. The aBMD values determined
by HR-pQCT were then calibrated based on the relationship
reported by Burghardt et al. [21]. This method is strongly corre-
lated with DXA aBMD (R200.82) and is highly reproducible
with a root mean-squared coefficient of variation of 1.1 %.

Finite element analysis

From the HR-pQCT images, we generated FE meshes using
the voxel conversion approach [22, 23]. Each voxel was con-
verted to an eight-node, 82 μm3, hexahedral element. The

meshes generated resulted in approximately 1 million elements
for the radius scans and 2.5 million elements for the tibia
scans.We simulated uniaxial compression on each radius and
tibia model up to 1 % strain using a Young's modulus of
6,829MPa and Poisson's ratio of 0.3 [7] as previously reported
[13, 14]. We used a custom FE solver (FAIM, Version 4.0;
Numerics88 Solutions, Calgary, Canada) on a desktop work-
station (Mac Pro, OSX, Version 10.5.6; 2×2.8 GHz Quad-
Core Intel Xenon) to estimate bone strength (ultimate stress,
megapascal) based on the relationship determined by MacNeil
and Boyd [7]. We also determined the percentage of load
carried by the cortex based on the elements labeled as cortical
bone from the automatic segmentation at the most distal and
most proximal slices. In order to estimate the risk of forearm
fracture, we calculated the load-to-strength ratio (Φ) [24–26].
This ratio represents the estimated fall force on the outstretched
arm divided by the estimated failure load from the FE analysis.
The theoretical fracture threshold occurs whenΦ>1.0 [24–26].

Statistical analysis

We used SVM [27] with a weighted radial basis kernel function
to classify women with and without low-trauma fracture. In the
first analysis, we examined only low-trauma forearm fractures
and in the second analysis, we included all low-trauma fractures.
We used Student's t test to compare outcome variables between
the fracture and control groups. For each analysis, we generated
SVM models based on standardized measurements of (1) all
HR-pQCT, FE, and DXA parameters; (2) all HR-pQCT and FE
parameters; (3) FE parameters alone; (4) UDR, LS, and FN
aBMD; and (5) LS and FN aBMD. For the forearm fractures,
we used only the distal radius measurements and for all types of
fracture we used the distal radius and distal tibia measurements.
To gauge the accuracy of the SVM results and to avoid over-
fitting to our specific dataset, we used a tenfold cross-validation
scheme. This method randomly divides the participants into ten
groups, trains the model on nine of these groups, and tests the
model on the remaining group. This is repeated ten times so that
each group is used as the test group and the accuracy reported is
the average of all iterations. The results of this validation are
presented as the areas under the curve (AUC) for receiver
operating characteristic (ROC) curves. Weka (version 3.7;
University of Waikato, Hamilton, New Zealand) was used for
the SVM analyses [28], and SPSS Statistics (Version 19.0; IBM;
Somers, NY, USA) for all other analyses.

Results

Participant characteristics and bone outcome variables

Descriptive characteristics of the participants are provided in
Table 1. The fracture and nonfracture groups were similar
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with respect to age, height, weight, body mass index (BMI),
and use of corticosteroids. Use of bisphosphonates was
higher among women with a history of forearm fracture
compared with nonfracture controls (p00.028). The median
time between fracture and scan date was 4.5 years (inter-
quartile range (IQR): 3.2–6.7 years). The majority of frac-
tures were forearm fractures (n014) and lower leg (n014),
followed by upper arm (n09), spine (n05), hip (n04), upper
leg (n04), and ribs (n02). Eight women reported two low-
trauma fractures; we classified these women based on their
first fracture.

We present the HR-pQCT and FE variables in Table 2
and DXA parameters in Table 3. Significant differences
(p<0.05) between the forearm fracture group and nonfrac-
ture controls were found at the radius for all parameters with
the exception of Tb.Th, Ct.Po, and Ct.Ar. When all types of
fractures were pooled, all parameters were significantly
different with the exception of Tb.Th, Ct.Po, Ct.BMD,
Ct.Th, and area measurements. At the distal tibia, Tb.N,
Tb.Sp, Ct.BMD, Ct.Po, Tt.Ar, Tb.Ar, and the percentage
of the load carried by the cortical region at the distal and
proximal slices were not significantly different between fore-
arm fracture cases and controls. For all fracture types pooled at
the distal tibia, Ct.BMD, Ct.Po, Tt.Ar, Tb.Ar, and the percent-
age of the load carried by the cortical region were not signif-
icantly different between fracture cases and controls.

The percentage of women who had load-to-strength
ratios greater than 1.0 and, therefore, theoretically at
greater risk of fracture was 28.6 % for those with
forearm fractures and 10.7 % for their corresponding
nonfracture controls; however, the mean of the entire
groups were still both below 1.0 (Table 2). For women
with all fracture types, 25.0 % exceeded a ratio of 1.0
while 13.6 % of their corresponding controls exceeded
the threshold. Women with forearm fracture had signif-
icantly lower LS aBMD and UDR aBMD compared
with the controls. The women with fractures at all sites
had significantly lower FN and LS aBMD from their
corresponding controls.

SVM classification

The accuracy, sensitivity, specificity, and ROC-AUC's from
the cross-validation of the SVM models are summarized in
Table 4. For the forearm fractures and controls, the highest
accuracy (83.3 %) and AUC (0.82) was achieved using the
HR-pQCT measurements and FE estimates of bone strength
together. This was followed by the combination of HR-pQCT,
FE, and DXA parameters (accuracy: 81.0 %, AUC: 0.80) and
by FE parameters alone (accuracy: 78.6%, AUC: 0.80). Using
LS, FN, and UDR aBMDproduced an accuracy of 71.4% and
an AUC of 0.71, while using only LS and FN aBMD had the
worst performance (accuracy: 59.5 %, AUC: 0.63) classifying
the women. When considering low-trauma fractures at all
sites, the SVM models were not as effective at classifying
the fracture and control participants compared with the fo-
cused forearm fracture analysis. The FE parameters alone had
the highest accuracy (69.7 %) and had the highest AUC
(0.69). The combination of HR-pQCT and FE measurements
had an accuracy of 68.9 % and an AUC of 0.67 while the HR-
pQCT, FEA, and DXA aBMD also had an accuracy of 68.9 %
and an AUC of 0.68.

Discussion

In this study, we successfully demonstrated that a machine
learning technique based on SVM model could classify post-
menopausal women with and without a history of low-trauma
fracture based on HR-pQCT input. The SVM model incorpo-
rating HR-pQCT bone microarchitecture and density, as well
as FE estimates of bone strength at the distal radius, out-
performed DXA-derived aBMD, which is the clinical gold
standard for osteoporosis screening. The SVM method is a
promising tool for classification of women with and without
previous low-trauma fracture and could potentially be an
important clinical basis for fracture risk assessment (Fig. 1).

SVMs are a type of machine learning tool that recognize
patterns in data and map data to a higher dimension to create

Table 1 Descriptive characteristics of postmenopausal women with forearm fractures and fractures at all sites, and their corresponding age-
matched controls

Control
(n028)

Forearm low-trauma
fx (n014)

p value Control
(n088)

Any low-trauma
fx (n044)

p value

Age (SD) (years) 72.8 (8.5) 73.1 (8.5) 0.91 73.3 (7.8) 73.4 (7.5) 0.99

Height (SD) (cm) 161.2 (6.1) 161.6 (4.8) 0.82 158.5 (6.9) 158.7 (6.9) 0.88

Weight (SD) (kg) 72.2 (13.2) 71.7 (12.5) 0.90 70.5 (15.7) 70.1 (12.4) 0.88

BMI (SD) (kg/m2) 27.8 (5.2) 27.4 (4.0) 0.77 28.1 (6.8) 27.8 (4.6) 0.77

Corticosteroid use
(>3 months) (yes/no, %)

5/23 (17.9) 2/12 (14.3) 0.78 13/75 (14.7) 4/40 (9.1) 0.36

Bisphosphonate use (yes/no, %) 12/16 (42.9) 11/3 (78.6) 0.03 42/46 (47.7) 15/29 (34.1) 0.14

Years since menopause (SD) 25.3 (12.0) 26.4 (11.2) 0.61 24.0 (13.0) 27.2 (13.3) 0.46
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nonlinear boundaries between the cases [29], and notably,
they are stable and require minimal tuning of parameters
[30]. This allows SVMs to work well in many applications
and reduces overfitting to the specific dataset. Other ma-
chine learning methods such as GBM may provide higher
accuracy of classification but are computationally expensive

and, most importantly, require extensive tuning of parame-
ters. SVMs have an important advantage in that they find a
global, unique solution unlike other methods such as artifi-
cial neural networks that may find local minima [31]. This
advantage of SVMs potentially makes this approach more
robust for application to diverse clinical datasets.

Table 2 Bone microarchitecture and finite element parameters [mean (SD)] for the fracture and control groups at the distal radius and distal tibia

Control
(n028)

Forearm low-trauma
fx (n014)

p value Control
(n088)

Any low-trauma
fx (n044)

p value

Distal radius

Tt.BMD (mg HA/cm3) 298 (67) 210 (49) <0.001 283 (71) 243 (63) 0.002

Tb.BMD (mg HA/cm3) 152 (39) 94 (30) <0.001 146 (41) 119 (44) <0.001

BV/TV 0.127 (0.032) 0.078 (0.025) <0.001 0.122 (0.034) 0.099 (0.036) <0.001

Tb.N (mm−1) 1.83 (0.30) 1.24 (0.43) <0.001 1.81 (0.36) 1.53 (0.47) <0.001

Tb.Th (mm) 0.069 (0.012) 0.066 (0.018) 0.53 0.067 (0.012) 0.065 (0.015) 0.57

Tb.Sp (mm) 0.492 (0.100) 0.840 (0.317) <0.001 0.520 (0.197) 0.677 (0.317) <0.001

Ct.BMD (mg HA/cm3) 782 (87) 711 (96) 0.02 762 (92) 731 (78) 0.06

Ct.Th (mm) 0.99 (0.17) 0.84 (0.21) 0.02 0.94 (0.19) 0.87 (0.19) 0.06

Ct.Po (%) 10.2 (4.7) 11.5 (5.6) 0.42 11.2 (5.0) 11.7 (4.6) 0.57

Tt.Ar (mm2) 264.7 (47.5) 295.9 (42.8) 0.05 266.5 (48.0) 274.2 (49.2) 0.39

Ct.Ar (mm2) 58.9 (8.3) 55.0 (9.9) 0.18 56.7 (9.7) 54.9 (9.9) 0.30

Tb.Ar (mm2) 205.8 (44.9) 240.9 (43.8) 0.02 209.8 (47.4) 219.3 (48.8) 0.28

Ultimate stress (MPa) 24.1 (9.0) 13.0 (5.3) <0.001 22.3 (8.6) 17.4 (8.3) 0.002

Load cortex distal (%) 40.8 (8.1) 46.5 (8.9) 0.05 41.6 (9.0) 46.0 (9.7) 0.01

Load cortex prox (%) 86.4 (8.3) 94.5 (5.8) 0.002 86.4 (8.6) 90.7 (7.6) 0.01

Load-to-strength ratio 0.73 (0.23) 0.99 (0.31) 0.01 0.77 (0.21) 0.90 (0.27) 0.004

Distal tibia

Tt.BMD (mg HA/cm3) 268 (52) 211 (27) <0.001 256 (59) 219 (49) <0.001

Tb.BMD (mg HA/cm3) 163 (35) 130 (27) 0.003 159 (37) 136 (39) 0.001

BV/TV 0.136 (0.029) 0.109 (0.023) 0.003 0.132 (0.031) 0.115 (0.034) 0.004

Tb.N (mm−1) 1.73 (0.35) 1.58 (0.36) 0.22 1.75 (0.37) 1.54 (0.48) 0.01

Tb.Th (mm) 0.080 (0.016) 0.070 (0.011) 0.03 0.077 (0.015) 0.078 (0.020) 0.78

Tb.Sp (mm) 0.528 (0.150) 0.612 (0.244) 0.17 0.538 (0.240) 0.695 (0.460) 0.01

Ct.BMD (mg HA/cm3) 728 (82) 687 (61) 0.11 705 (115) 685 (68) 0.30

Ct.Th (mm) 1.47 (0.32) 1.22 (0.16) 0.01 1.39 (0.34) 1.25 (0.25) 0.01

Ct.Po (%) 16.6 (5.4) 17.2 (4.6) 0.71 17.5 (6.6) 18.0 (4.6) 0.67

Tt.Ar (mm2) 694.1 (110.3) 727.3 (80.4) 0.32 703.1 (133.1) 700.8 (93.5) 0.92

Ct.Ar (mm2) 127.1 (23.8) 111.1 (12.1) 0.02 120.9 (24.1) 110.2 (20.6) 0.01

Tb.Ar (mm2) 567.0 (114.3) 616.2 (81.4) 0.16 582.2 (140.2) 590.6 (90.8) 0.72

Ultimate stress (MPa) 27.8 (8.3) 19.2 (4.9) <0.001 25.9 (8.6) 21.2 (7.0) 0.003

Load cortex distal (%) 37.5 (9.5) 36.0 (7.5) 0.59 36.1 (9.8) 35.5 (7.8) 0.72

Load cortex prox (%) 70.1 (9.5) 72.8 (9.3) 0.40 69.2 (12.1) 70.9 (9.6) 0.40

Table 3 DXA parameters [mean (SD)] for the fracture and control groups

DXA Control (n028) Forearm low-trauma fx (n014) p value Control (n088) Any low-trauma fx (n044) p value

FN aBMD (g/cm2) 0.711 (0.101) 0.667 (0.069) 0.15 0.700 (0.120) 0.654 (0.091) 0.03

LS aBMD (g/cm2) 0.961 (0.133) 0.833 (0.123) 0.01 0.935 (0.152) 0.861 (0.114) 0.01

UDR aBMD (g/cm2) 0.363 (0.049) 0.319 (0.065) 0.02 0.348 (0.068) 0.334 (0.055) 0.24
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To date, only one other study has used machine learning
techniques to classify postmenopausal women with and
without a history of low trauma [12]. Similar to our findings,
Atkinson et al. reported more accurate classification when
bone density, geometry, and microstructural outcomes
obtained with additional imaging modalities (QCT and
HR-pQCT) were included in their GBM model in addition
to standard DXA-derived aBMD, indicating the importance
of microarchitectural parameters. In addition, whereas not
all bone outcomes were significantly different between
groups when compared individually, small contributions of
each variable combined into a single model allowed for
better fracture discrimination. Atkinson et al. reported
higher AUC's for predicting forearm fracture cohorts com-
pared with our current study, which was possibly due to

their larger sample size (n099 forearm fractures) [12].
While our study is smaller, we used a tenfold cross-
validation scheme, which gives an excellent indication of
how our model would perform in practice on a new dataset.

Previous studies used PCA and logistic regression models
to determine if HR-pQCTmeasures of bone microarchitecture
and FE estimates of bone strength could discriminate between
postmenopausal women with and without previous fracture
[9–11]. These analyses differ from our approach in that they
attempt to determine the individual parameters (or principal
components of parameters) that best discriminate fracture
cases from controls, whereas the goal of SVM is to perform
classification. Despite the different analytic approaches and
goals, results of these studies consistently indicate that HR-
pQCT measurements of bone microarchitecture and FE

Table 4 SVM classification results for the forearm fractures and for
fractures at all sites. Five different models were used for each fracture
group. The first was HR-pQCT, FE, and DXA parameters; the second
was HR-pQCT and FE parameters; the third was FE parameters alone;
the fourth was DXA parameters including simulated ultradistal radius

(UDR); and the last was lumbar spine (LS) and femoral neck (FN)
DXA only. Accuracy, sensitivity, specificity, and the receiver operating
characteristic area under the curve (ROC-AUC) are shown for each
model

Forearm fractures All fractures

HR-pQCT
FE DXA

HR-pQCT
FE

FE LS, FN,
UDR DXA

LS, FN
DXA

HR-pQCT
FE DXA

HR-pQCT
FE

FE LS, FN,
UDR DXA

LS, FN
DXA

Accuracy (%) 81.0 83.3 78.6 71.4 59.5 68.9 68.9 69.7 56.8 50.0

Sensitivity (%) 68.8 73.3 63.2 55.6 43.5 52.8 52.9 53.7 42.0 37.5

Specificity (%) 88.5 88.9 91.3 83.3 78.9 79.7 79.0 80.8 80.4 75.0

ROC-AUC 0.80 0.82 0.80 0.71 0.63 0.68 0.67 0.69 0.62 0.56

Fig. 1 Representative scans of
a participant with a low trauma
forearm fracture and an age-
matched nonfracture control at
the distal radius (a and b, re-
spectively) and at the distal tibia
(c and d, respectively)
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analysis estimates of bone strength outperform DXA-
measured aBMD when discriminating between postmeno-
pausal women with and without a history of low trauma
fracture. Consistent with our findings, Vilayphiou et al.
showed that FE-estimated bone stiffness had high contribu-
tions to the principal components [10]. The relatively similar
performance between our model using HR-pQCT, DXA, and
FE parameters and the FE parameters alone indicate that the
FE measurements provides an excellent “summary” measure-
ment of bone quality.

Clinical DXA scans of the forearm are rare; therefore, we
included models based on DXA measurements of LS and
FN with and without UDR aBMD. The model with only LS
and FN aBMD represents a typical clinical scenario and, as
expected, resulted in the weakest classification as shown in
Table 4. Based on the model that included UDR, FN, and LS
aBMD, it is important to include a scan of the distal radius
to classify forearm fractures. Our data may actually overes-
timate the importance of a UDR scan because our simulated
UDR aBMD measurements were focused on precisely the
area that is most likely to fracture, whereas a real UDR DXA
would cover a broader region and may be less sensitive to
classifying forearm fracture. It is not surprising that models
including UDR aBMD more accurately classify forearm
fractures. However, HR-pQCT measurements still outper-
formed all DXA measurements when classifying forearm
fractures.

We found that the SVMs were better at discriminating
low-trauma forearm fractures compared with low-trauma
fractures at other sites. This is likely attributable to site
specificity since the HR-pQCT scans obtained at the distal
radius were used to classify the forearm fractures. The
difference in discriminative ability may also be due to the
large variation in fracture types in our study. We had few
participants (n06) with fractures at “major” osteoporotic
sites (i.e., hip and spine). It is possible that these fractures
would be better predicted by the SVMs because women who
suffer these types of fractures tend to be at more advanced
disease stages compared with women who sustain forearm
fractures [32]. A larger cohort of fracture cases would
strengthen our understanding of the potential for SVMs to
classify fractures. However, our current study indicates that
there is excellent potential for this method in classification
studies of all low-trauma fractures.

A limitation of our study is that it is a cross-sectional
design and has a relatively small sample size, and the
acquisition of HR-pQCT scans were done retrospectively
after the fractures were sustained. Despite these weaknesses,
our study provides strong support for SVM combined with
HR-pQCT to classify fractures better than by the clinical
gold standard of DXA aBMD, even at the UDR. It would be
ideal to expand this research with a larger fracture cohort
and to perform the study prospectively, and work in this area

is currently underway at our laboratory and at other sites
worldwide. There are also some technical limitations with
our study, the first being that the FE estimates are based on a
single uniaxial compression test. While this is currently the
gold standard for FE applied to HR-pQCT, it may be ad-
vantageous to expand the number of simulated FE tests for a
more comprehensive assessment of bone strength, and
hence better prediction of the strength of the bone during a
fall on an outstretched arm. In addition, FE models were
computed using a homogenous Young's modulus for each
element. Strength estimates using this method are highly
correlated with experimental estimates of bone strength
[7]; however, FE measurements may be affected by miner-
alization differences. In future, it may be important to ac-
count for such differences using scaled modulus values
based on density measurements.

The application of SVMs to HR-pQCT data shows great
promise to classify postmenopausal women with and without
a history of low-trauma fracture. Our results suggest that this
is an accurate classification method for forearm fractures and
has potential to be applicable for classification of fractures at
other sites. This is the first study to apply SVM to HR-pQCT
data and is strengthened by incorporating cross-validation for
testing and including FE estimates of bone strength.
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