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Abstract
Summary A meta-analysis of studies was conducted
involving 24,511 participants with 7,864 fractures in
which polymorphisms in the 5′ flank of COL1A1
(rs1107946, rs2412298, and rs1800012) were related to
osteoporosis phenotypes. Polymorphisms of all three sites
were associated with BMD, and rs1800012 was associated
with fracture but effect sizes were modest.
Introduction and hypothesis Polymorphisms in the 5′ flank
of COL1A1 gene have been implicated as genetic markers
for susceptibility to osteoporosis, but previous studies have
yielded conflicting results.
Methods We conducted a meta-analysis of 32 studies
including 24,511 participants and 7,864 fractures in
which alleles at the -1997G/T (rs1107946), -1663in/delT

(rs2412298), and Sp1 binding site polymorphisms
(rs1800012) of COL1A1 had been related to bone mineral
density (BMD) or fracture.
Results For the Sp1 polymorphism, BMD values in TT
homozygotes were 0.13 units [95% CI, 0.03 to 0.24] lower
at the spine (p=0.01) and 0.16 units [0.10 to 0.23] lower at
the hip (p ¼ 1� 10�6) than GG homozygotes. Clinical
fractures were 1.31-fold [1.04–1.65] increased in TT
homozygotes (p=0.02) and vertebral fractures were 1.34-
fold [1.01–1.77] increased (p=0.04). We also observed
associations between spine BMD and allelic variants at the
-1997G/T (p=0.05) and the -1663indelT (p=0.009) sites.
We found no association between alleles at the -1997G/T or
-1663indelT sites and fracture but power was limited.
Conclusions The COL1A1 Sp1 polymorphism is associated
with a modest reduction in BMD and an increased risk of
fracture, although we cannot fully exclude the possibility
that the results may have been influenced by publication
bias. Further studies are required to fully evaluate the
contribution of the -1997G/T and -1663in/delT sites to
these phenotypes and to determine if they interact with
the Sp1 polymorphism to regulate susceptibility to
osteoporosis.
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Introduction

Osteoporosis is a common disease characterized by low
bone mass, micro-architectural deterioration of bone tissue
and enhanced bone fragility which leads to an increased
incidence of fracture. It is now well established that genetic
factors play a major role in regulating bone mineral density
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(BMD) [1] other determinants of fracture risk [2] and
fracture itself [3]. Recently, genome-wide association
studies (GWAS) have been successful in identifying several
common variants that are significantly associated with
BMD and with fracture risk [4–7]. Candidate gene
association studies have also been used to identify genetic
variants that are associated with BMD and fractures [8–12].
An important limitation of many candidate gene studies has
been the fact that the samples sizes were limited. This has
resulted in the publication of many false negative results
due to lack of statistical power and also many false positive
results which could not been replicated in subsequent
studies [13, 14]. Candidate gene studies can sometimes
yield useful information however, since the GWAS
techniques currently available do not capture all variants
within candidate genes, especially rare variants [15]. In
this regard, polymorphisms of the COL1A1 gene which
have previously been associated with osteoporosis in
several studies [8, 10, 16] are poorly captured by the
single-nucleotide polymorphism (SNP) used in the recent
GWAS studies of osteoporosis [13].

Over recent years, meta-analysis has been employed to
validate associations between genetic variants and
phenotype in complex diseases such as osteoporosis,
and has been applied to candidate gene studies [16–18],
linkage studies [19], and GWAS studies [4]. Five
meta-analyses of the COL1A1 gene have been conducted
so far in relation to BMD or fracture but all were limited
to studies of the Sp1 binding site polymorphism within
intron 1 of COL1A1 (rs1800012) [8, 16, 20–22]. Since
these studies were published, two further polymorphisms
have been identified in the 5′ flank of the COL1A1 gene at
positions -1997G/T (rs1107946) and -1663ins/delT
(rs2412298) which have been associated with BMD [23].
Moreover, several further studies of the Sp1 polymor-
phism have been published that were not included in
previous meta-analyses [24–32]. In view of this, the aim
of the present meta-analysis was to re-evaluate the effect
of the Sp1 binding site polymorphism in relation to BMD
and osteoporotic fractures and for the first time to conduct
a meta-analysis of the -1997G/T and -1663in/delT
polymorphism in relation to BMD and fracture.

Methods

Retrieval of studies and data extraction

Association studies in which any of the three COL1A1
polymorphisms have been studied in relation to BMD and/or
fractures were identified by electronic searches of MEDLINE
between 1996 and 2009, using several search terms including
“collagen”, “COL1A1”, “polymorphism”, “genetics”,

“BMD”, “fracture”, “Sp1” (rs1800012), “-1997G/T”
(rs1107946), and “-1663 ins/delT” (rs2412298). The
studies were included in the meta-analysis provided that
the study outcomes included BMD or fracture and
complete genotype data were provided either in the
paper or by communication with the corresponding
author, when data or important details thereof were not
available in the published paper (N=4). We recorded the
unadjusted mean BMD and standard deviation for each
genotype at lumbar spine and femoral neck, and the
number of individuals in each genotype group with or
without fracture in each study.

Statistical analysis

Data were analyzed using Review Manager (version 5)
and Stata 10. Both random and fixed effects were
considered for the analysis. In fixed effect models it is
assumed that the true effect of the genetic risk is the
same in each study. The random effects model incorpo-
rates the between-study heterogeneity and allows the risk
allele effects for each study to vary around some overall
average effect [33]. In the absence of heterogeneity, the
fixed and the random effects coincide. Between-study
heterogeneity was assessed by the Q statistic (Cochrane's
Q) which is considered significant for p<0.1. The
heterogeneity was quantified by the I2 metric and its
95% confidence intervals were calculated [34]. Values for
I2 can range from 0% to 100% and it is usually considered
small, moderate large, and very large for values of 1–24%,
25–49%, 50–74%, and >75%, respectively [30]. For the
BMD analysis, we calculated the standardized mean
difference in BMD values in different genotype groups
(equivalent to BMD Z-score values) based on the actual
BMD values reported in the different studies. For the
analysis of fractures, we computed the natural logarithms
of the odds ratios from individual studies in order to
compute the summary effect sizes. In order to identify any
potential small-study effect (whether small studies yield
more spectacular results), we performed the Egger test for
BMD [35] and Harbord test for fractures [36]. Moreover,
we applied the Ioannidis–Trikalinos test [37] to examine
whether there was an excess of single studies with
nominally significant results. All of these tests probe the
possibility of biases in the accumulated evidence.

Thresholds for statistical significance

Throughout the manuscript, we present unadjusted
p values and odds ratios, but since we performed multiple
analyses of related phenotypes and SNP we estimated the
adjusted significance threshold based on the following
calculations. Since the three SNP studied are in strong
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linkage disequilibrium with each other (D' value 0.90
[24]), we estimated that this constituted 1.1 independent
tests. Similarly, we analyzed BMD at two sites (hip and
spine), which are known to be correlated (r=0.6 [24])
which equates to 1.6 independent tests. Combining these
data with the analysis of fracture amounts to 3.76
independent tests giving an adjusted threshold for
significance of p=0.013.

Results

Studies included in the meta-analysis

Sixty studies were identified in the initial search. We
excluded studies which simply recorded the prevalence of
COL1A1 alleles in different populations (n=1); studies of
children (age<15-years old, n=5); studies on diseases other

Table 1 Studies included in the meta-analysis

Study Location Mean age
(range)

Study design (n) Gender/number Fracture type SNP studied

Aerssens [42] Belgium 76.0 (69–87) Case-control, (135/239) F/374 hip Sp1

Alvarez-Hernandez
[47]

Spain 64.0 (50–86) Population-based M/156 vert, osteoporotic Sp1

Ashford [48] UK 79.9 (>75) Population-based F/314 vert Sp1

Bernad [49] Spain 59.5 (51–67) Clinic referrals F/319 vert, wrist Sp1

Braga [38] Italy 63.5 (63–64) Clinic referrals F/715 any Sp1

Braga [50] Italy 58.4 (50–60) Population-based M/253 – Sp1

Bustamante [27] Spain 54.7 (46–63) Population-based F/719 – Sp1, -1997, -1663

Efstathiadou [51] Greece 54.2 (47–61) Clinic referrals F/154 – Sp1

Garnero [52] France 38.9 (34–46) Population-based F/220 – Sp1

Gerhem [28] Sweden 75.2 (75) Population-based F/964 Any fracture Sp1

Grant [53] UK 61.3 (50–70) Case-control F/299 vert Sp1

Harris [54] USA 70.2 (>65) Intervention M/108, F/135 – Sp1

Heegaard [55] Demark 50.9 (45–54) Population-based F/133 vert Sp1

Husted [29] Demark 60.1 (45–73) Case-control, (291/283) M/120, F/454 vert Sp1, -1997, -1663

Hustmyer [56] USA 33.9 (21–49) Case-control, (56/78) M/4, F/130 vert Sp1

Keen [57] UK 54.3 (45–64) Case-control, (55/130) F/185 osteoporotic Sp1

Liden [58] Sweden 67.7 (58–77) Case-control, (64/72) F/136 vert Sp1

McGuigan [59] UK 70.8 (69–75) Case-control, (93/88) F/181 vert Sp1

McGuigan [60] UK 64.2 (56–77) Clinic referrals M/156, F/185 – Sp1

Mezquita-Raya [61] Spain 60.9 (53–70) Case-control, (43/101) F/144 vert Sp1

Nguyen [30] Australia 70.0 (63–77) Population-based F/677 hip Sp1

Peris [62] Spain 48.3 (31–71) Case-control, (35/60) M/95 – Sp1

Roux [63] France 63.1 (45–90) Case-control, (110/107) F/217 – Sp1

Ralston [16] GENOMOS 63.7 (20–80) multi-center M/4,776, F/7,759 any, vert, non-vert Sp1

Selezneva [31] Russia N/A (50–70) Clinic referrals F/124 osteoporotic Sp1, -1997, -1663

Sowers [64] USA 37.3 (28–48) Population-based F/259 – Sp1

Stewart [24] UK 54.8 (45–54) Population-based F/3,270 – Sp1, -1997, -1663

Valimaki [43] Finland 89.0 (85–98) Population-based F/601 hip Sp1

van Pottelbergh
[65]

Belgium 75.0 (71–86) Population-based M/352 – Sp1

Weichetova [32] Czech
Republic

60.5 (45–70) Case-control, (183/178) F/361 wrist Sp1

Yamada [25] Japan 59.2 (45–65) Population-based M/1,126, F/1,100 – Sp1, -1997

Yazdanpanah [26] Netherlands 68.0 (60–74) Population-based M/2,452, F/3,374 vert, non-vert Sp1, -1997

Details of the studies included are shown

Values for age are mean (range) in years

Number of cases and controls are indicated in the study design column

Vert vertebral fracture, non-vert non vertebral fracture, M male, F female
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Table 2 Meta-analysis of Sp1 polymorphism in relation to spine and hip BMD in the whole study population

Studies/N Comparison Fixed effect model Random effects model

Lumbar spine BMD P Lumbar spine BMD P I2 (95% CI)

26/22,764 GG vs. GT 0.03 (0, 0.06) 0.04 0.03 (0, 0.07) 0.05 19 (0–44)

26/16,446 GG vs. TT 0.10 (0.04, 0.17) 0.002 0.13 (0.03, 0.24) 0.01 50 (30–65)

26/23,757 GG vs. GT+TT 0.04 (0.01, 0.06) 0.006 0.04 (0.01, 0.08) 0.01 22 (0–47)

26/23,757 GG+GT vs. TT 0.08 (0.02, 0.14) 0.01 0.08 (0.01, 0.16) 0.03 16 (0–42)

Femoral neck BMD Femoral neck BMD

26/23,522 GG vs. GT 0.01 (−0.01, 0.04) 0.30 0.01 (−0.02, 0.05) 0.42 23 (0–47)

26/17,048 GG vs. TT 0.16 (0.10, 0.23) 1×10−6 0.16 (0.10, 0.23) 1×10−6 0 (0–35)

26/24,511 GG vs. GT+TT 0.03 (0, 0.06) 0.02 0.03 (0, 0.07) 0.09 30 (0–51)

26/24,511 GG+GT vs. TT 0.15 (0.09, 0.22) 3×10−6 0.15 (0.09, 0.22) 3×10−6 0 (0–35)

The number of eligible studies and total number of participants is indicated for each comparison

Values are standardized mean difference (95% CI)

Positive values denote higher BMD values in the first listed genotype group of the comparison

The p values shown have not been corrected for multiple testing

I2 Heterogeneity

LS BMD Sp1 GG vs TT
Study
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Berg 2000
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Suuriniemi 2006
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a b

Fig. 1 Meta-analysis of Sp1 polymorphism and association with
BMD in females. Panel a Sp1 GG homozygotes versus TT
homozygotes for lumbar spine BMD. Panel b Sp1 GG homozygotes
versus TT homozygotes for femoral neck BMD. Each study is shown
as the point estimate of the standardized mean difference with 95%

confidence intervals as analyzed using a random effects model. The
diamond shows the overall effect. Where the diamond lies to the right
of the vertical line this indicates a higher BMD value in the GG
genotype compared with the TT genotype group. The p values shown
have not been corrected for multiple testing
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than osteoporosis (n=1); and studies where there was no
information on either BMD or fractures (n=16). We also
identified studies in which subsets of populations had been
published upon more than one time (n=5) and selected only
one study for analysis so that duplicate samples were not
included. Following these exclusions, 32 eligible studies
with a total of 25,411 subjects were selected for the analysis
as summarized in Table 1. The minor allele frequencies
were similar in the control subjects from the different
populations. For the Sp1 polymorphism the frequency of
the T allele (mean±SD) was 0.19±0.05 with a range of
0.07 in the study of Selezneva et al. [31] to 0.32 in the
study of Braga et al. [38]. For the -1663 indelT polymor-
phism, corresponding values were 0.20±0.01 with a range
of 0.20 in the study of Husted et al. [29] to 0.22 in the study
of Bustamante et al. [27]. For the -1997G/T polymorphism,
values were 0.20±0.01 with a range of 0.13 in the study of
Bustamante et al. [27] to 0.38 in the study of Yamada et al.
[25]. Of all the studies listed, prospective genotyping was
performed so far as we are aware, only for the GENOMOS
study [16].

Association between Sp1 polymorphism and BMD

For the Sp1 polymorphism (rs1800012), 26 studies were
identified with a total of 24,511 participants (6,584 men and
17,927 women) for which hip BMD had been measured
and 23,757 participants (5,843 men and 17,914 women) for
which spine BMD has been measured. Random and fixed
effect model estimates from analyses including all subjects
are presented in Table 2. At the lumbar spine, individuals
with the TT genotype had BMD values 0.13 units [95% CI,
0.03 to 0.24] lower than GG homozygotes under a random
effects model (p=0.01). At the femoral neck TT

homozygotes had BMD values 0.16 units [95% CI, 0.10
to 0.23] lower than GG homozygotes under a random
effects model (p ¼ 1� 10�6). Nominally, significant results
were also obtained under a recessive model (TT vs. GG+GT)
at lumbar spine (p=0.03) and femoral neck (p ¼ 3� 10�6).

Gender specific analysis showed that females who were
homozygous for the T/T genotype had lumbar spine BMD
values 0.13 units [95% CI, 0.03 to 0.22] lower than G/G
homozygotes (p=0.007). Similarly, BMD values at the
femoral neck in TT homozygotes were 0.18 units [95% CI,
0.10 to 0.25] lower than GG homozygotes under a random
effects model (p<0.001; Fig. 1). There were no significant
differences in BMD values for males at the lumbar spine or
femoral neck (not shown). All of the effect sizes were very
similar in the fixed effects model, because the between-
study heterogeneity was modest with I2 values ranging
from 16% to 50% for lumbar spine BMD and 0% to 30%
for femoral neck BMD (Table 2).

Association between Sp1 polymorphism and fractures

Fracture data was analyzed in 20 studies including 13,870
females and 5,056 males. Within these studies, there were
7,864 clinical fractures and 2,531 vertebral fractures. The
results are summarized in Table 3. The GG genotype was
associated with reduced risk for all fractures under a random
effects model with an odds ratio of 0.89 [95% CI, 0.82 to
0.97], (p=0.01), whereas TT homozygotes had an increased
risk for all fractures: 1.31 [95% CI, 1.04 to 1.65] (p=0.02)
and vertebral fracture: 1.34 [95% CI, 1.01 to 1.77] (p=0.04).
The I2 estimates ranged from 43% to 53% for all fractures
and 19% to 62% for vertebral fractures (Table 3).

Gender specific analysis revealed that female TT
homozygotes had a 1.35-fold [95% CI, 1.02 to 1.79]

Table 3 Meta-analysis of the Sp1 polymorphism in relation to fracture in the whole study population

Studies/N Comparison Fixed effect model Random effects model

All fractures P All fractures P I2(95% CI)

20/28,352 Sp1 GG vs. GT+TT 0.94 (0.89, 0.99) 0.03 0.89 (0.82, 0.97) 0.01 43 (13–62)

17/24,218 Sp1 GT vs. GG+TT 1.05 (0.99, 1.12) 0.13 1.10 (0.99, 1.22) 0.08 53 (30–69)

17/27,444 Sp1 TT vs. GG+GT 1.20 (1.04, 1.39) 0.01 1.31 (1.04, 1.65) 0.02 51 (27–67)

Vertebral fracture Vertebral fracture

10/17,029 Sp1 GG vs. GT+TT 0.94 (0.86, 1.04) 0.23 0.93 (0.79, 1.09) 0.38 58 (34–74)

8/16,646 Sp1 GT vs. GG+TT 1.04 (0.94, 1.15) 0.46 1.08 (0.90, 1.29) 0.42 62 (39–76)

8/16,646 Sp1 TT vs. GG+GT 1.38 (1.10, 1.74) 0.006 1.34 (1.01, 1.77) 0.04 19 (0–52)

The number of eligible studies and total number of participants is indicated for each comparison

Values are odds ratio (95% CI)

Values greater than 1.0 denote an increased risk of fracture for the first listed genotype group of the comparison compared with the other groups

The p values shown have not been corrected for multiple testing

I2 Heterogeneity
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increased risk for clinical fractures at any site compared
with the GG and GT genotypes (p=0.04) (Fig. 2a). For
vertebral fracture, female TT homozygotes had a 1.50-fold
[95% CI, 1.04 to 2.17] (p=0.03) increased risk compared
with GT and GG genotypes (Fig. 2b). No association with
fracture was observed for males (not shown).

Allele based analysis showed that Sp1 T allele was
associated with a 1.13-fold increased risk for all fractures

[95% CI, 1.04 to 1.23] (p=0.003). Gender specific analysis
showed no significant association with fracture in males. In
females, the Sp1 T allele was associated with a 1.18-fold
increased risk for all fractures [95% CI, 1.06 to 1.30] (p=
0.002) and a 1.19-fold increased risk for vertebral fracture
[95% CI, 1.01 to 1.40] (p=0.03).

Association between promoter polymorphisms, BMD,
and fractures

There were fewer eligible studies for analysis of associa-
tions between the promoter polymorphisms and
osteoporosis-related phenotypes. For the -1997G/T poly-
morphism (rs1107946) we identified five eligible studies
which together included 8,257 women and 5,706 men.
There was no significant association between this polymor-
phism and BMD overall with the exception of the
comparison between GG homozygotes and carriers of the
T allele where the association was borderline significant
under a fixed effects model (Table 4). Gender specific
analysis showed a significant association between the -
1997G/T polymorphism in females as depicted in Fig. 3.
Accordingly, BMD values were 0.06 units [95% CI, 0.01 to
0.11] lower in female -1997 G/G homozygotes as compared
with G/T heterozygotes at the lumbar spine (p=0.02;
Fig. 3a). A similar difference was observed at the femoral
neck (Fig. 4b), although it did not reach statistical
significance (p=0.09). Similar results were obtained under
a recessive model at lumbar spine (p=0.02). There was no
association with BMD in males although power was limited
in view of the small number of males studied for this
polymorphism.

For the -1663ins/delT polymorphism (rs2412298) there
were only three eligible studies which together included
3,999 women and 184 men. As shown in Table 4, under a
fixed effects model there was a significant association at the
lumbar spine where BMD values in -1663 delT/delT
homozygotes were 0.16 units [95% CI, 0.02 to 0.31] lower
than insT/insT homozygotes (p=0.03). Corresponding
values under a recessive model were 0.19 [0.05 to 0.33]
(p=0.006). The significance was also present in females,
but not in males at either site. However, the significance
disappeared under a random effects model due to modest
heterogeneity (I2 =43%). There was no significant
association between either -1997G/T or -1663ins/delT and
fracture (data not shown) but fracture data were only
available in three published studies.

Evaluation of bias

For all analyses, both Egger and Harbord tests revealed no
evidence of publication bias and examples of funnel plots
for lumbar spine BMD and femoral neck BMD in the

Any site fracture analysis Sp1 TT vs GG+GT
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Fig. 2 Meta-analysis for Sp1 polymorphism and association with
fracture in females. Odds ratio (OR) for fracture is reported with 95%
confidence intervals as analyzed using a random effects model for a
all fractures or b vertebral fracture. The diamond shows the overall
risk and where it lies towards the right of the vertical line, this
indicates an increased risk of fracture associated with the genotype.
The p values shown have not been corrected for multiple testing
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whole study population are shown in Fig. 4. Furthermore,
each of the meta-analyses shown in Figs. 1, 2, and 3 had
between zero and five single studies with nominally
significant results, and thus there was no suggestion that
there were too many single studies with significant results.

Discussion

This study extends the observations made in previous
meta-analyses of the COL1A1 Sp1 polymorphism [8, 16,
20–22] and provides the only meta-analysis of the -1997G/T
and -1663ins/delT polymorphisms. We confirmed the
association previously reported between the Sp1 poly-
morphism, BMD, and osteoporotic fractures and found
that this was strongest with vertebral fracture. Under a
recessive model of inheritance, the effect size was
0.08 units at lumbar spine and 0.15 units at femoral
neck, which is very similar to the results previously
reported by Mann et al. [20] who reported that spine
BMD values in TT homozygotes were 0.09 units lower
than in GG homozygotes and reported that femoral neck
BMD values in TT homozygotes were 0.19 units lower

than in GG homozygotes. The reasons which underlie the
smaller effect size at the lumbar spine as compared with the
femoral neck are unclear but could possibly reflect the fact that
spine BMD values in older subjects are confounded by co-
existing problems such as osteoarthritis, degenerative disk
disease, and aortic calcification. All of these factors would be
expected to reduce power to detect genotype-related difference
in BMD at this site. Although recent GWAS studies have
detected a greater number of significant hits at the spine than the
hip [4] it should be noted that most of the populations
included in these studies were younger than those included in
this meta-analysis. Our study included some cohorts of young
people, but most of the study populations had an average age
above 60 years and many subjects were aged greater than
70 years where DEXA examination of the spine can give
misleading results due to the factors mentioned above.

However, in this study we found no difference in BMD at
femoral neck between GG homozygotes and G/T
heterozygotes which was in agreement with what was
reported in the GENOMOS meta-analysis [16] but not with
the results of a previous meta-analysis [20]. The modest
increase in risk for fractures at any site found in this study
was driven mainly by the vertebral fracture and most of the

Table 4 Meta-analysis of promoter polymorphisms in relation to BMD in the whole study population

Studies/N Comparison Fixed effect model Random effects model

Lumbar spine BMD P Lumbar spine BMD P I2 (95%CI)

-1997G/T 5/11,232 GG vs. GT −0.04 (−0.08,−0.00) 0.06 −0.04 (−0.09, 0.01) 0.16 28 (0–68)

5/8,480 GG vs. TT −0.05 (−0.15,0.04) 0.30 −0.03 (−0.17, 0.10) 0.62 37 (0–72)

5/11,750 GG vs. GT+TT −0.04 (−0.08,−0.00) 0.05 -0.04 (−0.09, 0.01) 0.14 29 (0–68)

5/11,750 TT vs. GG+GT 0.05 (–0.05,0.14) 0.33 0.03 (−0.08, 0.15) 0.55 24 (0–65)

-1663in/delT 3/3,975 insT/insT vs. insT/delT 0.03 (−0.04,0.10) 0.36 0.03 (−0.04, 0.10) 0.36 0 (0–85)

3/2,927 insT/insT vs. delT/delT 0.16 (0.02, 0.31) 0.03 0.23 (−0.04, 0.49) 0.09 43 (0–81)

3/4,183 Dominanta −0.06 (−0.12,0.01) 0.09 −0.06 (−0.12, 0.01) 0.09 0 (0–85)

3/4,183 Recessiveb −0.19 (−0.33,−0.05) 0.006 −0.30 (−0.63, 0.03) 0.07 41(0–80)

Femoral neck BMD Femoral neck BMD

-1997G/T 5/11,143 GG vs. GT −0.04 (−0.08, 0.01) 0.09 −0.03 (−0.09, 0.02) 0.23 28 (0–68)

5/8,409 GG vs. TT −0.01 (−0.11,0.08) 0.77 −0.01 (−0.13, 0.11) 0.91 25 (0–66)

5/11,657 GG vs. GT+TT −0.04 (−0.08, 0.01) 0.09 −0.03 (−0.08, 0.03) 0.32 36 (0–72)

5/11,657 TT vs. GG+GT −0.01 (−0.10, 0.08) 0.88 −0.01 (−0.12, 0.10) 0.87 20 (0–62)

-1663in/delT 3/3,892 insT/insT vs. insT/delT 0.03 (−0.04,0.09) 0.46 0.03 (−0.04,0.09) 0.46 0 (0–85)

3/2,862 insT/insT vs. delT/delT 0.13 (−0.01,0.28) 0.07 0.13 (−0.04, 0.30) 0.12 5 (0–85)

3/4,085 Dominanta −0.04 (−0.10,0.03) 0.26 −0.04 (−0.10,0.03) 0.26 0 (0–85)

3/4,085 Recessiveb −0.12 (−0.27,0.02) 0.09 −0.12 (−0.29, 0.04) 0.14 6 (0–85)

Values are standardized mean difference (95% CI)

Positive values denote higher BMD values in the first listed genotype group of the comparison

The p values shown have not been corrected for multiple testing

I2 : heterogeneity
a Dominant model: insT/delT+delT/delT vs. insT/insT
b Recessive model: delT/delT vs. insT/insT+insT/delT
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significant associations were observed in females. This
could indicate that genetic variation at the COL1A1 locus
influences susceptibility to osteoporosis in a gender specific
manner as has been demonstrated in linkage studies of mice

[39], and in human linkage studies [40]. However, another
perhaps more likely possibility is that the lack of significant
associations in men was due to reduced power given that
only 26% of the study population were male.

We also observed a significant association between the -
1997G/T polymorphism and BMD in females but we found
no significant associations between the -1663ins/delT
polymorphisms and BMD and neither polymorphism was
associated with fracture. However this could be due to the
fact that we had reduced power to evaluate these outcomes
as the promoter polymorphisms have been much less
widely studied than the Sp1 polymorphism.

We and others have previously presented evidence to
suggest that the three polymorphisms studied here interact
with each other to regulate COL1A1 gene transcription by
modifying gene expression and transcription factor binding
[8, 41]. There is also evidence to suggest that allelic
variants at the Sp1 binding site polymorphism adversely
affect bone quality [8, 41] which is consistent with the data
presented here in which the observed increase in vertebral
fracture risk for Sp1 female TT homozygote (50%) was
greater than the risk predicted by the modest genotype-
specific reduction in spine BMD (13%). Some previous
studies have shown positive associations between the
alleles at the Sp1 polymorphism and hip fracture [30, 42,
43], and in one study, a rare haplotype defined by all three
polymorphisms was strongly associated with hip fracture,
although these were very highly selected patients and the
sample size was small [44]. It would be of interest to
perform a meta-analysis of COL1A1 haplotypes in relation
to BMD and osteoporotic fracture, but only three studies
had been performed where haplotype data were available.
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Fig. 3 Association between -1997 G/T polymorphism and BMD in
females. Comparisons are shown in panel a for lumbar spine BMD
and panel b for femoral neck BMD. Each study is shown as the point
estimate of the standardized mean difference with 95% confidence
intervals as analyzed using a random effects model. Diamonds which
lie to the left of the vertical line indicates a reduced BMD in the -1997
GG genotype compared with G/T and TT genotype groups. The p
values shown have not been corrected for multiple testing
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More studies on the relationship between COL1A1
haplotypes and osteoporosis-associated phenotypes
including fracture would therefore be of great interest.

We made a meticulous effort to identify all relevant data;
but publication bias, population stratification within indi-
vidual studies, and other reporting biases are a threat for the
validity of significant associations emerging in the literature
and we cannot completely exclude the possibility that one
or more of these biases may have been operative in this
study. The tests that assess the existence of small-study
effects were also not significant indicating that there is no
evidence that the smaller studies had biased the results or
that there were too many single studies with nominally
significant results. While bias still cannot be fully excluded,
the validity of the Sp1 associations reported here is
corroborated by the concordant results of a prospective
meta-analysis which should be immune to reporting biases
[16]

The associations we report here are relatively weak
and explain a very small fraction of the heritability of
BMD and fracture risk. The association with BMD
reported here falls short of the accepted threshold for
genome-wide significance although the p values for
association with fracture and the effect size reported here
are in keeping with those previously reported by recent
GWAS studies [4]. Using a modest prior for the credibility
of these associations [45, 46], the available data suggest
that the Sp1 G/T associations are very likely to be genuine,
while the other two polymorphisms still lack strong
evidence. Further research will be required to fully define
the role that variants in the COL1A1 gene play as genetic
determinant of osteoporosis. Evaluation of the role that the
polymorphisms described here play in osteoporosis has
been impaired by the fact that they are not efficiently
tagged by the markers used in the GWAS performed so far
in the osteoporosis field [13]. For example the best r2

value between the Sp1 polymorphism and the 6 SNP
analyzed from the COL1A1 region in the GWAS of
Richards and colleagues [5] was 5% with the rs2586471
in the 3′ flank of the gene (Jin and Ralston, unpublished
data)

It is possible however that emerging initiatives such as
the 1000 Genomes Project (www.1000genomes.org) will
allow us evaluate the role of the COL1A1 alleles described
here in populations that have already undergone GWAS.
Even if the results of this were to be positive however, our
findings indicate that at best, the SNP we studied in
COL1A1 account for only a small proportion of the genetic
risk of osteoporosis.
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