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Osteocyte: the unrecognized side of bone tissue
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Abstract
Introduction Osteocytes represent 95% of all bone cells.
These cells are old osteoblasts that occupy the lacunar space
and are surrounded by the bone matrix. They possess
cytoplasmic dendrites that form a canalicular network for
communication between osteocytes and the bone surface.
They express some biomarkers (osteopontin, β3 integrin,
CD44, dentin matrix protein 1, sclerostin, phosphate-
regulating gene with homologies to endopeptidases on the
X chromosome, matrix extracellular phosphoglycoprotein,
or E11/gp38) and have a mechano-sensing role that is depen-
dent upon the frequency, intensity, and duration of strain.
Discussion The mechanical information transmitted into the
cytoplasm also triggers a biological cascade, starting with
NO and PGE2 and followed by Wnt/β catenin signaling.
This information is transmitted to the bone surface through
the canalicular network, particularly to the lining cells, and is
able to trigger bone remodeling by directing the osteoblast
activity and the osteoclastic resorption. Furthermore, the
osteocyte death seems to play also an important role. The
outcome of micro-cracks in the vicinity of osteocytes may
interrupt the canalicular network and trigger cell apoptosis in
the immediate surrounding environment. This apoptosis
appears to transmit a message to the bone surface and
activate remodeling. The osteocyte network also plays a
recognized endocrine role, particularly concerning phosphate
regulation and vitamin D metabolism. Both the suppression
of estrogen following menopause and chronic use of

systemic glucocorticoids induce osteocyte apoptosis. On the
other hand, physical activity has a positive impact in the
reduction of apoptosis. In addition, some osteocyte molec-
ular elements like sclerostin, connexin 43, E11/gp38, and
DKK1 are emerging as promising targets for the treatment of
various osteo-articular pathologies.
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Introduction

Osteocytes constitute the main cellular component of
mammalian bones. Osteocytes represent more than 95%
of all the bone cells (20,000 to 80,000 cells/mm3 of bone
tissue); there is approximately 20-fold more osteocytes than
osteoblasts in a bone [1–3]. Osteocyte density has been
evaluated at 31,900 and 93,200 cells/mm3 in bovine and
murine bone, respectively [4].

In human bone, Frost estimated that the mean half life of
osteocytes is 25 years [5]. Meanwhile, bone remodeling
induces a bone tissue turnover of 4% to 10% per year [6],
so the expected duration of the life of an osteocyte is not
easy to determine and is not likely to be this long. The life
duration of osteocytes is higher than that of osteoblasts,
which is an estimated 3 months in human bone [6], and 10–
20 days in mice-woven bone [7].

The role of osteocytes remained unknown for a long time
and was probably underestimated. Over the last 15 years,
many publications have aimed to highlight the role of this cell.
Osteocytes are distinctive and isolated cells that are embedded
within the bone matrix, whereas osteoclasts, osteoblasts, and
lining cells are present at the bone surface. The specific
location of these cells within the bone matrix may explain
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some astonishing metaphors in the literature, such as
“choreography from the tomb” [8] and “buried alive” [3].
In another title, they are named “martyrs for the integrity of
bone strength” due to the physiological role played by their
apoptosis on bone remodeling regulation [9].

Morphology

Osteocytes have a dendritic morphology, while their cell body
has fusiform shape in long bones or sometimes rounded in flat
bones (Figs. 1 and 2) [10]. These cells are localized in an
osteocytic lacuna and have been buried in the matrix [8].
They present some cytoplasmic “extensions”: the dendrites
that extend into channels in the matrix called “the canalic-
uli”. Osteocytes communicate with each other and with the
cells at the surface of the bone tissue via these dendrites [11].
The lacuno-canalicular system which represents only 1% of
interstitial fluid volume constitutes a molecular exchange
surface area which has been estimated at 400-fold higher
than the Havers and Volkmann system and 133-fold higher
than the trabecular bone system (1,200 m2 versus 3 and
9 m2, respectively for rat male [12]).

Some studies have shown that according to the type of
bone formed and the activity of the osteoblasts involved,
the newly formed osteocytes can adopt a variable size and
morphology in comparison with older osteocytes already
embedded in the matrix [13]. Moreover, the morphology of
embedded osteocytes is dependent on the bone type.
Indeed, osteocytes found in trabecular bone are more
rounded than osteocytes from cortical bone [14], with the
latter adopting an elongated morphology [14]. In humans,

osteocytes measure approximately 10 µm across the short
axis and 20 µm along the long axis in long bones [4, 15].

The dimensions of the murine osteocyte lacunae are
around 5 by 20 µm [16] with a gap present between the cell
and the lacunar wall. Likewise, the cytoplasmic processes
are approximately half the diameter of the canaliculi, with
murine canaliculi ranging between 50 and 100 nm in
diameter [16]. Osteocytes display polarity in terms of the
distribution of their cell processes with the majority coming
from the cell membrane facing the bone surface [11].

Origin and biomarkers

Osteoblasts are involved in bone matrix mineralization. At
the end of the bone-forming phase, osteoblasts have one of
three different fates: (1) they are embedded in the bone as
osteocytes, (2) they are transformed into inactive surface
osteoblasts called bone-lining cells, or (3) they undergo
programmed cell death (apoptosis). An osteocyte is an old
osteoblast buried in the matrix that it has itself produced;
some of the pre-osteoblastic and osteoblastic characteristics
remain detectable in these cells (osteopontin, integrin β3).
During the process of bone formation, some osteoblasts are
left behind in the upwardly advancing newly formed
osteoid material and become entombed in the matrix as an
“osteoid osteocyte”. During the process of “burial”, the
future osteocyte maintains contact with the advancing
osteoblasts at the surface by extending cellular processes
[17], while the surrounding osteoid matrix becomes
mineralized [17]. Aubin has suggested that only 10–20%
of osteoblasts differentiate into osteocytes [17]. Molecular
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Fig. 1 Bone tissue and osteo-
cyte morphology. a Histological
section of Wistar rat tibia after
toluidine blue staining showing
the fusiform shape of osteo-
cytes. b Transmission electron
microscopy of osteocyte in cor-
tical bone tissue. O osteocyte, L
lining cell, M mitochondria, N
nucleus, C cytoplasm, D den-
drites, arrow dendrite process
dichotomy

1458 Osteoporos Int (2010) 21:1457–1469



mechanisms regulating these processes are not fully
understood and may depend on the location of bone
formation, on the species, on the age and/or gender, and
on the mode of ossification [3].

Cells at this early stage of osteoblast to osteocyte
differentiation have been variously named as “large osteo-
cytes”, “young osteocytes”, “osteoid osteocytes”, or “pre-
osteocytes” [18]. These cells are larger than mature
osteocytes and have numerous ribosomes, a well-developed
endoplasmic reticulum and a wide Golgi complex, both
involved in the synthesis of proteins and mucopolysacchar-
ides [3]. The study of the different markers (membrane,
nuclear, and cytoplasmic markers) allows for the profiling of
osteocytes to determine the stage of cell maturation (young
osteocyte versus mature osteocyte) [3]. Osteocyte differenti-
ation is accompanied by the progressive reduction of several
bone markers (alkaline phosphatase, bone sialoprotein,
osteocalcin, collagen type I, Runx2), the preservation of
some markers (osteopontin, β3 integrin, E11/gp38 antigen),
and the appearance of new markers (CD44, dentin matrix

protein 1 (DMP1), matrix extracellular phosphoglycoprotein
(MEPE)) [3] (Table 1). Once the osteoid mineralizes,
osteocyte ultrastructure undergoes further changes including
a reduction in the endoplasmic reticulum and Golgi
apparatus corresponding to a decrease in protein synthesis
and secretion [19]. At this stage, many of the previously
expressed bone markers are down regulated in the osteocyte
(including alkaline phosphatase, bone sialoprotein, osteocal-
cin, collagen type I, Runx2) (Table 1) [19].

Currently, the molecular control of osteocytogenesis is
largely unknown.Most of the in vitro osteocyte characteristics
have been based on the use of the murine osteocyte-like cell
line MLO-Y4 [20]. These cells, isolated from the long bones
of transgenic mice, were characterized by long dendritic
processes, osteopontin and connexin 43 expression, low
levels of collagen type I, and alkaline phosphatase expres-
sion [20]. Osteocytogenesis is accompanied by increased
expression of the genes for MEPE and DMP1, which have
been associated with the osteocyte phenotype. In rodents, the
restriction of mechanical stimulation (exercise) results in
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Fig. 2 Bone tissue anatomy, tissue and cellular architecture. a Multi-
scale bone tissue anatomy: organ, osteon, osteocyte, and cytoplasmic
processes. b Schematic representation of an osteocyte. Osteocytes are
embedded into a mineralized bone matrix. c Confocal microscopy
imaging of an osteocyte from Wistar rat tibia. d Osteocyte
communication. Connexin-composed connexons form hemi-channels
that control the passage of the E2 prostaglandin or ATP between the

osteocyte cytoplasm and the extracellular compartment. These hemi-
channels are also implied in the mechanism of action of bisphosph-
onates. Two separate hemi-channels from two adjacent osteocytes can
contact each other to form a gap junction and can thereby exchange
information. Gap junctions are thus involved in the communication
between two osteocytes
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increased levels of the hypoxia-related hypoxia-induced
transcription factor-1 alpha protein in osteocytes [21].

A recent study has determined a role for matrix
metalloproteinase-2 in the regulation of osteocyte production
and the generation of an appropriate canalicular system [22].
DMP1 is an extracellular matrix protein member of the
SIBLING family [23]. A recent work has emphasized the
relative osteocyte specificity of this molecule and implicated it
in osteocyte function and signaling [24]. Toyosawa et al.
noted an osteocyte specificity of DMP1 in rat bone located on
cell processes and in the peri-cellular matrix [24]. It is possible
that DMP1 is a target molecule for CBFA-1 and is absent in
CBFA-1 knockout animals. DMP1 knockout is associated
with a hypo-mineralized phenotype linked with elevated
fibroblast growth factor 23 (FGF23) and defective osteocyte
lacuno-canalicular network formation [25].

In 2000, two studies described a factor synthesized by
osteoblasts and osteocytes, this factor being named either
osteoblast/osteocyte factor-45 (OF45) or MEPE [26, 27].
The protein OF45/MEPE is another member of the
SIBLING family that is known to influence mineralization
directly in a BMP2 stimulated in vitro model of osteogen-
esis and to inhibit phosphate uptake by renal cell lines [28].
Targeted disruption of OF45/MEPE results in increased
bone mass and a degree of resistance to age-related
trabecular bone loss [29].

Mechano-reception and mechano-transduction

Long time regarded as simply a cell at the end of its lifetime,
embedded in a mineral matrix, the osteocyte is now seen as
the cell at the center of and the initiator of the bone
remodeling process [30]. Indeed, osteocytes form an
interconnected network of cells having the capacity to detect
mechanical pressures and loads. Although it is widely
accepted that the osteocyte is the cell responsible for sensing

mechanical strain, there is debate within the field as to
whether the osteocyte cell body or dendrites are primarily
responsible for mechano-sensation [31, 32]. Nevertheless,
this mechanical variation stimulates osteocytes to emit
specific signals to cells present at the bone surface in
response to this mechanical stimulus [33] (Fig. 3).

Mechanical strains and weight bearing loading forces
play a major role in the triggering of the bone remodeling
process all along the adult life [34]. Indeed, the bone tissue
is able to adapt continuously to these mechanical loads by
adding bone matrix to improve resistance to increased loads
or by resorbing bone in response to a decrease in use. The
parameters locally influencing this balance between forma-
tion and bone resorption are now well characterized in vivo
and include frequency, intensity, and duration of the
mechanical stimulus [35, 36]. Thus, bone mass is influ-
enced by the applied tension peak [35], whereas the bone
formation rate is modulated by the stimulus frequency [36].
The existence of load and discharge cycles leads to a
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Fig. 3 Mechano-transduction. The osteocyte mechano-transduction
involves a stimulus (mechano-stimulator), a receptor apparatus
(mechano-sensor), and a consequent signaling cascade (mechano-pathway)

Biomarkers Osteoblast Young osteocyte Mature osteocyte

Alkaline phosphatase ++ - -

Bone sialoprotein ++ +/- +/-

Osteocalcin ++ +/- +/-

Collagen type I ++ +/- +/-

Runx2 ++ - -

Osteopontin ++ ++ ++

β3 integrin ++ ++ ++

E11/gp38 antigen +/- ++ -

CD44 +/- ++ ++

Sclerostin - +/- ++

DMP1 - ++ +/-

MEPE - ++ ++

Table 1 Molecular markers in-
volved in osteocyte differentiation

DMP1 Dentin matrix acidic
phosphoprotein 1, MEPE matrix
extracellular phosphoglycopro-
tein; ++ present, +/- variable
expression, - absent or present at
levels below detection
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greater increase in the bone formation than when this same
stimulus is applied only once [35, 36]. Lastly, bone quality
and strength are improved if the mechanical stimulus is
applied by short increments rather than over long periods
[37]. The effects of these mechanical variations are well
known and characterized macroscopically, and the most
recent studies now seek to determine how mechanical
modifications are detected at the cellular level and how this
mechanical transduction is carried out.

Theoretical models and experimentations suggest that the
lacuno-canalicular interstitial fluid flow varies with the extra-
vascular pressure and with variations of mechanical loads
applied to bone tissue and osteocytes [38]. Thus, mechanical
forces applied to the bone induce interstitial fluid movements
along canaliculi and osteocyte lacunae, and consequently,
cause shear stress at the cellular level and deformations of
the osteocyte plasma membrane [39, 40]. Theoretical models
showed that shear stress applied to the osteocyte membrane
during a physiological load was about 8–30 dyn/cm2 [38]. It
would be a major breakthrough in this mechano-reception
field if one were able to measure interstitial fluid flows and
pressures along the lacuno-canalicular system. It has also
been suggested that this mechanical information could be
directly detected by ciliar or flagellar structures of the
cellular membrane [41, 42]. These cilia systems are already
known to be critical to mechano-reception in other organs,
for example, in the inner ear. Moreover, as osteocytes seem
sensitive to many other factors like hypoxia [43], it is highly
possible that the osteocyte mechano-reception is carried out
via several modalities [33].

Whatever the mechanism of this mechano-reception,
osteocytes are able to respond to mechanical stimulation by
modulating the expression and the secretion of many
molecules [44], including insulin-like growth factors
(IGF-I and IGF-II) [45–47], osteocalcin [45, 48], sclerostin
[49, 50], c-fos [45, 46], the synthesis prostaglandin
enzymes G/H [45, 51], prostanoids [52, 53], and nitric
oxide (NO) [54–56]. Osteocyte mechano-reception may
stimulate the Wnt/Lrp pathway as a negative regulator of
sclerostin secretion [49], whereas the sclerostin itself is a
negative regulator of the bone formation. Following the
perception of the mechanical message and conversion into a
chemical message, the osteocyte can propagate its message
by two nonexclusive methods: firstly, by diffusion of
produced molecules (for example, the paracrine effects of
NO secretion), and secondly, by a method of local
transmission through gap junctions. These junctions form
a connection between the cytoplasms of two adjacent cells.
Gap junctions are formed by molecules of the connexin
family and Cx43 is the main connexin found in bone [20,
57]. These communicating junctions allow for the passage
of molecules with a molecular weight of less than 1 kDa,
such as prostaglandin PGE2 [53, 58]. Furthermore, Cx43-

constituted hemi-channels were reported to be essential
transducers of the anti-apoptotic effects of bisphosphonates
on osteocytes [59]. For this reason, these communicating
junctions are currently perceived as being critical to the
osteocyte mechano-transmission.

Apoptosis, micro-cracks and bone remodeling

Osteocytes are cells that not only play a physiological role
during their lifetime, but also achieve functions through
their apoptosis (Fig. 4). Micro-cracks have a deleterious
effect on the bone tissue if they are in excess, with
possibilities of micro-fissures, micro-fractures, and frac-
tures due to bone deficiency. However, the micro-cracks
and the breaking of the lacunar network seem to play an
important physiological role [60]. It has been observed that
pro-apoptotic molecules are elevated in osteocytes found in
the vicinity of the micro-crack, whereas anti-apoptotic
molecules are expressed 1–2 mm from the micro-crack
[60], suggesting that the apoptotic area may be restricted to
the neighborhood of the micro-crack.

The message transmitted by osteocyte apoptosis travels
through the canalicular network to the surface of the bone tissue
and is sent on to the progenitor cells. The real nature of this
message is not known. It may consist in fluid movement,
biochemical signals, or electrical stimuli [33, 51]. This
message leads to the initiation signals for remodeling, thereby,
stimulating the bone resorption/formation cycle. It should be
noted that this phenomenon could directly stimulate resorp-
tion without passing through the usual message pathways that
involve the lining cells. This direct initiation could be linked
to the molecular expression of (RANKL) Receptor Activator
for Nuclear Factor . B Ligand, also known as TNF-related
activation-induced cytokine (TRANCE), osteoprotegerin li-
gand (OPGL), and ODF (osteoclast differentiation factor) by
osteocytes and especially by the cytoplasmic dendritic
processes in the canaliculi [61]. Furthermore, it has been
demonstrated that osteocytes may be involved in a process of
direct stimulation of osteoblasts. This modeling phenomenon
does not require a preceding local resorption. This type of
bone formation could exist near fractures or during growth
[61, 62].

Until recently, no mechanism has been demonstrated
which explains the death of osteocytes either in old age or in
association with osteoporosis and osteoarthritis [60]. More
recently, Noble reported that the sudden suppression of
ovarian function in young women with endometriosis taking
(GnRH) Gonadotropin-releasing hormone, also known as
Luteinizing-hormone-releasing hormone (LHRH) and luli-
berin analogs is associated with high prevalence rates of
detectable deoxyribonucleic acid breaks in osteocytes [15].
Animal experiments show that both modulation of mechan-
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ical loading and ovariectomy induce an increase in apoptosis
of osteocytes and lead to micro-damages [63–66].

It is most likely that osteocyte death through apoptosis
occurs at very high and at very low strain levels. The
simplest explanation of the high rate of apoptosis of
osteocytes seen after plastic deformation is that the micro-
cracking of the matrix leads to mechanical damage of the
osteocyte cell processes [60]. Noble et al. hypothesized that
the death of osteocytes by apoptosis serves as a homing
signal for osteoclasts and thus acts to encourage local bone
resorption [67]. Alternatively, living osteocytes might act to
inhibit osteoclastic resorption by expression of osteoprote-
gerin or other osteoclast inhibitors [29]. Osteocytes are also
capable of generating the protein osteopontin, which
contains a (RGD) is a standard amino acid abbreviation,
meaning Arginine (Arg or R) – Glycine (Gly or G) –
Aspartic Acid (Asp or D) integrin recognition site and
appears able to induce osteoclast or osteoblast attachment
to the bone matrix depending on the circumstances [68].
Osteocytes interact with the extracellular matrix through
integrins [69, 70] and/or through dendritic processes in the
canalicular wall [71]. Fluid movement through the canalic-
uli resulting from mechanical loading may induce a

deformation of the extracellular matrix, generate tension
in the tethering elements, or directly disturb the cell
membrane [71, 72]. These changes may be transduced via
integrin clustering into resultant survival signaling [73].
Moreover, dying osteocytes serve as initiators of targeted
bone remodeling in response to physiologic or excessive
strain to prevent the accumulation of micro-damages [6].

Osteocytes, by their apoptosis, are cells whose sacrifice
acts to protect the integrity of bone strength [9]. Micro-
cracks, apoptosis of the osteocytes, and the classical
remodeling all lead to the resorption of the fragile matrix
zone beyond the micro-crack. It is thought that the zones
made up of old, highly mineralized bone are the most
subject to micro-cracks. One theory of bone turnover is a
finalist perspective, whereby, the remodeling leads to the
disappearance of the micro-cracks and surrounding old
mineralized bone and replaces this imperfect or “old” bone
with newly formed bone that has properties that are more
favorable.

A detectable space is present between the mineralized bone
surface and the osteocyte surface. This space contains non-
mineralized extracellular matrix enriched in non-collagenous
proteins and proteoglycans. This matrix facilitates the
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Fig. 4 Osteocyte death—the sequence of events. a A micro-crack
( ) severes the canaliculi of several osteocyte dendritritic

processes. b The micro-crack induces osteocyte apoptotic death
( ) and a biochemical signal is transmitted to the lining cells at
the surface of the bone tissue. c Lining cells ( ) and
osteocytes ( ) both release local factors that attract cells in the

circulation and cells in marrow into the remodeling compartment
where osteoclastogenesis occurs. d Osteoclasts ( ) resorb the

matrix and the micro-crack (lacunae resorption: ). e
Reversal phase formation of the cement line, osteoblasts deposit
newly formed osteoid matrix: . f Newly reformed

canaliculi and an osteocyte network
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formation of bone fluids and the regulation of osteocyte
activity through soluble factors [74]. Numerous studies have
suggested that osteocytes orchestrate bone remodeling,
regulating osteoblast and osteoclast activities [44, 73]. While
the exact process, which leads to the initiation of bone
remodeling at a specific site is currently unknown, many
data suggest that osteocytes play a crucial role [44].

In 1968, Baud showed that some osteocyte lacunae
exhibit irregular borders and considered this shape as
reminiscent of osteocyte osteolysis activity [18]. The
hypothesis of osteocyte osteolysis recently got some
support from studies in rodents [75, 76]. Few studies have
attempted to assess whether or not osteocytes may also
have matrix deposition and mineralization ability [76–78].
The parathormone could have an influence on osteocyte
osteolysis and matrix synthesis [76].

Phosphate and vitamin D metabolism

Phosphate is very important at the cellular level, where it is a
component of many metabolic cycles (for example, during the
synthesis of adenosine triphosphate (ATP)) and in various
essential cellular functions, such as muscular conduction or
coagulation [79]. At the tissue level, phosphate ions are
necessary for the bone matrix mineralization [80]. However,
as extreme variations in the levels of circulating phosphate
(hypophosphatemia and hyperphosphatemia) have harmful
effects [79, 81], several pathways exist to control phospha-
temia. These control loops make it possible to avoid large
variations in phosphate production and/or degradation while
allowing bone mineralization to continue.

Historically, the first discovery of these loops controlling
phosphate involves the parathyroid hormone (PTH) and
vitamin D axes [82, 83]. This loop also controls calcemia
and phosphatemia. It is well known that hypocalcemia
leads to the production of PTH, which in turn acts on
osteoblasts to stimulate the release of calcium and phos-
phate from the skeletal reservoir [83] most likely via the
upregulation of RANKL, the osteoblastic signal for
osteoclastogenesis. It is unknown whether PTH acts
directly on osteoclasts to increase the resorption of the
mineral matrix [61] as PTH receptors have never been
identified on osteoclasts. PTH also causes a reduction in the
urinary calcium excretion from the distal tubule, an inhibition
of the phosphate urinary reabsorption from the proximal
tubule, and a stimulation of the production of di-hydroxylated
vitamin D, the active form of vitamin D [82]. The renal
production of active vitamin D, as a di-hydroxylated
metabolite, leads to an increase in calcium and phosphate
absorption by the small intestine enterocytes [82]. Finally,
this PTH/activated vitamin D axis is able to counterbalance
hypocalcemia while modulating phosphatemia [84].

More recently, a second pathway for the regulation of
phosphate has been identified. FGF23, Klotho, phosphate-
regulating gene with homologies to endopeptidases on the X
chromosome (PHEX), and DMP1 have all been implicated in
this second pathway [85]. Fibroblast growth factor 23
(FGF23) is a low molecular weight, fibroblastic growth
factor of 32 kDa [86, 87]. It is produced and secreted mainly
by osteocytes, but also by bone marrow venous pericytes,
ventrolateral thalamic nodes, and lymphatic elements [88,
89]. The osteocyte basal expression of FGF23 is low and
increases when the DMP1/PHEX pathway is inhibited [90].
FGF23 is produced in response to an increase in the levels of
di-hydroxylated vitamin D [89], and it transmits a signal on
binding to a dimeric trans-membrane receptor. Indeed, this
receptor is composed by both an isotype of the FGF receptor
(type-1c, -3c or -4) and by an essential cofactor which is
represented by the Klotho glycoprotein [91, 92]. The gene
coding for this Klotho protein was identified as one of the
genes that controls aging as its loss or mutation leads to an
accelerated senescence with the early appearance of ectopic
calcifications, muscular and cutaneous atrophies, osteoporo-
sis, arteriosclerosis, and pulmonary emphysema [89, 91, 92].
Moreover, the disruption of the Klotho-FGF23 axis may be a
consequence of the expression of progerin that is involved in
the development of progeria (Hutchinson–Gilford syndrome)
[93]. Constitutively, the Klotho protein is expressed only in
some organs (including the parathyroid gland, kidneys,
testicles, ovaries, brain, pituitary gland, and choroids
plexuses) [90, 94]. However, the normal biological action
of the binding of FGF23 on its Klotho receptor is observed
primarily at the parathyroid gland and kidneys. Osteocytes
produce FGF23 in response to high rates of di-hydroxylated
vitamin D and this production causes an inhibition of the
renal reabsorption of phosphate from the distal tubule and a
reduction in the di-hydroxylated vitamin D production [92,
95]. In addition, the binding of osteocyte FGF23 on
parathyroid glandular cells will induce a suppression of
PTH secretion leading to increased calciuria and phosphatu-
ria [96]. In summary, FGF23 produced by osteocytes in
response to increased rates of di-hydroxylated vitamin D will
act on kidneys and parathyroid gland via Klotho and lead to
a reduction of phosphatemia [97].

An excess of FGF23 leads to a hypophosphatemia and
can lead to an osteomalacia. FGF23 is secreted in excess by
some mesenchymal tumors [98, 99]. Constitutively, FGF23
is mildly expressed by osteocytes and its synthesis is tightly
controlled by the combined and inhibiting action of the
DMP1 and PHEX proteins [90, 100]. The dentin matrix
protein 1 (DMP1) protein may be capable of interacting with
the PHEX protein [85]. Phosphate-regulating gene with
homologies to endopeptidases on the X chromosome
(PHEX) is expressed by osteocytes and osteoblasts and is
an endopeptidase of the plasma membrane's external surface
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[23, 101]. Biologically, both the native DMP1 protein and
the PHEX enzyme cause an inhibition of FGF23 expression
by acting negatively on the promoter sequences of this
growth factor [25]. Therefore, increases in FGF23, in
response to an increased di-hydroxylated vitamin D, could
be inhibited by DMP1 or PHEX [85]. However, the intricate
mechanism of this regulation currently remains unclear.

Effects of osteoporosis and physical activity
on osteocytes

Osteoporosis is the consequence of a disturbance in the
existing balance between osteoblastic bone formation and
osteoclastic bone resorption [102]. This disease occurs
mainly in post-menopausal women, and it is characterized
by an increase in bone resorption without enough compen-
sating formation of new bone [103, 104]. Osteoporosis is
also defined by a loss of bone strength and a reduction of
mass with a deterioration of bone quality, leading to an
increased fracture risk [105].

It is presently unknown exactly how the suppression of
estrogen can induce osteocyte apoptosis. If estrogen
suppression has a direct effect on osteocytes, the two most
probable possibilities are (1) the anti-oxidant effect of
estrogen is critical for osteocytes that are vulnerable to
anoxia or at least to hypoxia [43]; or (2) estrogens act
directly via their osteocyte receptor [63]. Osteoporosis
induced by chronic glucocorticoid treatment is often
complicated by an area of local bone necrosis that is
associated with the apoptosis of fracture-boarding osteo-
cytes [106]. In this situation, the osteocyte apoptosis
constitutes a cumulative and irrevocable effect that stops
the lacuno-canalicular network and prevents the repair of
micro-cracks, directly inducing bone fragility, and probably
playing a major role in corticosteroid-induced osteoporosis
and surrounding of fractures.

Recent work highlights the positive impact of physical
activity on bone quality in post-menopausal women [107,
108]. However, the exact response of the osteocyte to
physical activity or to the absence of mechanical loading is
still largely unknown. Aguirre showed that mechanical
stimulation of mouse osteocytes in culture attenuated
apoptosis [109]. On the other hand, the reduction of
mechanical loading in a tail-suspension murine model
mimicking weightlessness increased the prevalence of
osteocyte apoptosis, which was followed by osteoclast
recruitment and associated bone resorption [109]. The same
group also showed that mechanical stimulation of bone
tissue activates extracellular regulated kinases pathways
through integrin recruitment [73]. This serine–threonine
kinase activated a kinase-induced decline in osteocyte
apoptosis [73]. The global role of the osteocyte in

mechano-sensing is generally accepted and the modeling
processes usually include the triggering role of the osteocyte
[4]. However, the molecular pathways involved in the
mechano-sensing phenomenon remains debated [10, 44].

Therapeutic opening

The osteocyte is now regarded as being both at the center of
bone remodeling and as the initiator of the bone remodeling
processes. The biology and functions of this cell are
becoming the subject of more and more studies and are
leading to a better understanding of the role and actions of
osteocytes. In addition, molecular elements controlling
osteocyte functions have now been identified and many
have become possible therapeutic targets for osteo-articular
pathology treatment. Among the most recent and most
promising targets, the sclerostin protein that is encoded by
the SOST gene, the connexin 43 which forms gap
junctions, the E11/gp38 glycoprotein coded by the human
E11 gene or murine gp38 gene, and the Wnt/β-catenin
pathway controlled by the Dkk1 protein, have all been
identified [110]. Sclerostin globally plays a negative role on
bone formation [49], and this molecule is preferentially
produced by the osteocytes and pre-osteocytes [3, 50].

The osteocyte SOST gene encodes the sclerostin protein
[49, 111]. Its expression is controlled by the levels of PTH,
and an increase in PTH secretion causes a reduction of SOST
expression [112, 113]. However, this SOST regulation is also
varied according to the bone localization. Indeed, an increase
in PTH leads to the reduction of SOST only in bone
epiphysis and diaphysis, while SOST expression rates remain
unchanged in the metaphysis [62, 112]. It should be noted,
however, that as sclerostin is expressed in mature osteocytes,
particularly those close to cartilage zones that are not
resorbed, it is very likely that sclerostin expression plays a
role in the local targeting of bone remodeling [114–116]. For
this reason, both the SOST gene and its sclerostin protein
represent very promising therapeutic targets for the regula-
tion of targeted bone remodeling [117, 118].

Connexin 43, which acts to form gap junctions between
osteoblasts and osteocytes, is a current hot topic and is the
subject of many studies. Osteocytes are able to contact
adjacent cells by forming a connection using half-channels
called “connexons” (Fig. 2). When two cells form a whole
channel by the attachment of their separate connexons, a
gap junction is formed and the cells are able to exchange
information in the form of ions or small molecules [119].
Osteoblast and osteocyte connexons are formed by the
juxtaposition of six connexin 43 proteins [120]. These
connexin 43-composed connexons have the capacity to
control the passage of E2 prostaglandin or ATP produced in
response to mechanic stimulations [57]. Moreover, con-
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nexin 43 is deemed to be involved in the mechanism of
action of bisphosphonates in osteoblasts and osteocytes
[121–123]. Finally, it has recently been reported that
connexin 43 could be regarded as a key molecule in inter-
osteocyte communication [124, 125]. Connexin 43 may be
involved in the regulation and the amplification of the
osteocyte responses to mechanical stimulation and also in
cell survival and apoptosis or in the differentiation from
osteoblasts into osteocytes [126]. Thus, connexin 43 could
be a potential therapeutic target.

The podoplanin protein (otherwise known as GP38, T1
alpha, or E11/gp38 protein) is coded by the E11 human or
the gp38 murine gene and is selectively expressed by
osteocytes in response to mechanical stimulation [127,
128]. This protein is also necessary for osteocyte dendrite
elongation in response to shear stress [129]. However, as
dendrite formation is an active process and not a passive
mechanism, it is likely that the E11/gp38 protein is critical
not only during dendritic formation, but also for osteocyte
viability and function [129]. Indeed, its neutralization by
antibodies led to the rapid degradation of dendritic
podocytes, whereas its over-expression caused the forma-
tion of tubule-like membrane expansions [130, 131]. This
molecule, therefore, seems to play an essential role in the
osteocyte mechanical load perception capacities and may
become a therapeutic target of interest.

The Wnt/β-catenin pathway is currently regarded as an
important regulator of bone mass and bone cellular functions
[44]. Indeed, this pathway is implicated in the differentiation
and proliferation of osteoblasts as well as the synthesis of
bone by osteoblasts, and it has been shown to play a role in
the transmission of osteocyte signals that are generated by
mechanical loads to the bone surface cells [132–135]. This
pathway is particularly well controlled by several molecular
inhibitors including the SOST gene and the Dkk1 gene and
protein [136]. Indeed, mutations in SOST or Dkk1 in
humans and in mice lead to an increase in bone mass [110,
117, 137–139]. Clinical trials aimed at the treatment of
osteoporosis have shown that the Wnt/β-catenin pathway
also induces anabolic effects within the clinical treatment
setting [117, 140]. Thus, this Wnt/β-catenin pathway and/or
its regulators (such as SOST or Dkk1) are also interesting
therapeutic targets for new treatments of bone pathologies.

Summary and perspective

In conclusion, the osteocyte is no longer regarded as only
an old osteoblast or as an inactive cell embedded in the
bone matrix. Therefore, the functions of the viable
osteocyte are now viewed as being equally or possibly
more important than the functions of the dead or dying
osteocyte. In fact, the osteocyte is currently considered as

the mechano-sensing cell of the bone tissue. The osteocyte
is thus perceived as being at the center of bone remodeling
by coordinating both osteoblast activity and osteoclast
resorption, but also as the initiator of the bone remodeling
processes by locally sensing bone matrix deformation (i.e.,
cracked zones or overused areas). In that way, significant
differences in osteocyte tridimensional morphologies and
lacunae have been recently reported in human cortical bone
from different pathologies with various bone mineral density
(osteoarthritis, osteopenia, and osteopetrosis) [141], assum-
ing that osteocytes may acquire phenotypical and adaptative
differences according to various external mechanical strains.
Furthermore, the osteocyte apoptosis has been recently
reported as being insufficient for repair of micro-damage
without physiological loading stimulation [142]. While
manipulation of osteocyte responsiveness to mechanical
loading offers potential for therapies aimed at preventing
bone loss, the exact relationship between osteocyte mor-
phology, bone architecture, mechano-responsiveness, and
apoptosis is complex and needs further study.

Next to its mechano-sensibility, the osteocyte has also
been shown to play a major role in phosphate homeostasis
through PHEX, DMP1, and FGF23. Recent studies have
furthermore shown that its sclerostin expression plays a
critical role in the bone mass regulation and may be
important in bone anabolic responses to PTH. At last, a
recent study has demonstrated that the osteocyte marker
DMP1 and SOST are regulated by muscle-related genes
such as myogenin and Mef2 [143], supporting the idea that
muscle-related gene network may play a role in the
osteocyte cytoskeleton contractility and movements.

In summary, in the last few years, the perception of the
osteocyte has changed from being viewed as an old inactive
osteoblast to a highly active mechano-sensing and secretory
cell that plays major roles in regulating osteoblast and
osteoclast activity. Molecular pathways that control osteo-
cyte functions might therefore become potential therapeutic
targets for the treatment of bone diseases.
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