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Effect of boundary layer on Mach reflection over a wedge surface
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Abstract. In this paper, we consider the phenomenon of unsteady Mach reflection generated by a plane
shock wave advancing over a straight wedge surface, with particular attention to the deviation of the flow
field from the self-similar nature. We examine the observed change in angle between incident and reflected
shocks, which is in contrast to the fact that the angle should remain constant with time in a self-similar
flow. The effect of the boundary layer behind the advancing shock wave over the surface of the wedge is
considered to cause this, and boundary layer theory is utilized to estimate the thickness of the layer. It
is found that the thickness increases as

√
t to the time t compared with t by the overall expansion in the

self-similar flow. Assuming that the thicker boundary layer is effectively equivalent to a change in wedge
angle, the effect of the boundary layer on the flow field should be less in later stages with larger t values
in accordance with the observation above.
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1 Introduction

We consider the phenomenon of unsteady Mach reflection
generated by a plane shock wave advancing over a straight
wedge surface. Although the overall features of the phe-
nomenon can be seen from past experiments as well as
numerical simulation, there have been some renewed in-
terest in its crucial details, especially for its weak cases
(Itabashi et al. 1997; Kobayashi et al. 1997; Henderson
et al. 1997). These are mostly concerned with observing
various deviations of the flow field from the self-similar na-
ture. A close look at Fig. 1, which is for the development
of the reflection of a plane shock wave advancing over a
straight wedge, and the trajectory of its triple point shown
in Fig. 2, both of which are seen to exhibit a self-similar
nature of the phenomenon, reveals the deviation as ex-
plained below.

Here we are interested in the change in the angle ωir

between incident i and reflected r shocks (Kobayashi et al.
1997) as seen in Figs. 3 and 4. Since an angle in a self-
similar flow should remain constant with time, the above
clearly indicates at least a temporary deviation before the
change settles down to null as is seen in Fig. 4, where we
can see the deviation from the constant state being em-
phasized in lower Mach number case as it should be ex-
pected for viscous effects. The self-similar nature of the
flow field is based on the fact that there is no proper in-
fluential length scale to the flow field and the length scale
due to the viscosity is usually not so influential. However,
this scale can be effective in some critical cases, especially
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Triple point trajectory

Fig. 1. Development of reflection (Mi = 1.40, θw = 30.20◦)

that of weak Mach reflection where its three-shock pattern
is known to be sensitive to the configuration of the flow
field (Sakurai 1964). In fact, this kind of change is not
observed in a boundary-layer-free experiment in the re-
flection of two shock waves (Skews 1989). The purpose of
this present paper is to correlate the change with the be-
havior of the boundary layer generated by the advancing
Mach stem over the flat surface.

2 Effects of viscosity on self-similar flow

The effects of viscosity on Mach reflection phenomenon
have previously been discussed in general [for example,
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Fig. 2. Triple point trajectory. The x-axis is taken along the
wedge surface and the y-axis is perpendicular to it. The inci-
dent shock Mach number Mi is 1.40 and the wedge angle θw

is 30.20◦

(Hornung 1986; Sakurai et al. 1989; Henderson et al.
1997)], and we consider the problem with the Navier-
Stokes equation expressed in self-similar variables. Let
(x, y) be a coordinate system with its origin O for the
apex of the wedge as in Fig. 5; v = (u, v), the velocity;
p, the pressure; ρ, the density; T , the temperature of the
flow field; and t, time starting when the incident shock
wave arrives at the apex of the wedge. The Navier-Stokes
equations of continuity, momentum and energy for a two-
dimensional, viscous, heat conducting, ideal gas flow are
given as

Dρ

Dt
+ ρ div v = 0

ρ
Dv
Dt

= −grad p+
µ

3
grad div v + µ∆v (1)

p
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− 2
3
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]
+ κ∆T

where κ and µ are the coefficients of heat conduction and
viscosity, respectively.

We now introduce the dimensionless similarity vari-
ables X, Y , U , V , P and R defined by

X =
x

ct
, Y =

y

ct
, U =

u

c
−X, V =

v

c
− Y,

P =
p

p1
, R =

ρ

ρ1
(2)

and use
s =

µ

γp1t

where γ is the ratio of specific heats, p1 and ρ1 are the
pressure and the density values of a certain uniform state,
and

c2 = γp1/ρ1.
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Fig. 3a,b. Visualization of the decrease in ωir for Mi = 1.30
and θw = 10.75◦. a x = 14.87 mm. b x = 55.52 mm
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We then have the relations

D

Dt
=

1
t

[
U

∂

∂X
+ V

∂

∂Y
− s

∂

∂s

]
,

div v =
1
t
[UX + VY + 2],

p

γ − 1
D

Dt
[log (pρ−γ)] =

1
γ − 1

[
Dp

Dt
− γ

p

ρ

Dρ

Dt

]

=
1

γ − 1

[
Dp

Dt
+ γpdiv v

]

=
p1

t(γ − 1)
[UPX + V PY − sPs

+γP (UX + VY + 2)],

κ∆T =
κ

c2t2
[TXX + TY Y ]

=
1
σ

µ

t2(γ − 1)

[(
P

R

)
XX

+
(
P

R

)
Y Y

]
,

assuming an ideal gas and the Prandtl number σ.
The system of Eq. (1) is transformed into

URX + V RY +R(UX + VY + 2) = sRs,
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(see Sakurai et al. 1989).
While the left-hand sides of Eq. (3) altogether repre-

sent the non-viscous, self-similar flow field, the effect of
viscosity (and heat conductivity as well) on the field, is
given by the the right-hand sides of Eq. (3). Each of these
terms is seen to be multiplied by the variable s (=µ/γp1t),
which is negligibly small in a usual situation so that we
may expect to have self-similar flow in general. However,
these terms can be significant in some cases. For exam-
ple, the early stage of t ≈ 0 should have large s values,
and indeed this can be the cause for the RR → MR tran-
sition there [Fig. 6 (Itabashi et al. 1997; Walenta 1987;
Henderson et al. 1997)] as well as the bent triple point
trajectory that is supposed to be a straight line through
the apex of the wedge to the self-similar flow [Fig. 7 (Wa-
lenta 1987)]. Still another significant effect is expected
from higher derivatives appearing in the right-hand sides
of Eq. (3), which can become large enough near the sur-
face to effectively surpass small factor s. We will examine
the effect of this boundary layer and correlate this with
the flow behind the advancing Mach wave.

3 Effect of boundary layer
over the wedge surface

Consider the boundary layer generated by the advancing
Mach stem m (shock wave) over a wedge surface (Fig. 5).
Another boundary layer starts from the apex of the wedge
and may possibly be combined with or embedded in the
first layer as illustrated in the figure. There is also the
problem of the thermal boundary layer that interacts with
the above layer through the compressibility of the fluid.
Here we assume for the sake of simplicity that the main
flow is uniform and the flow in the boundary layer is in-
compressible. We can thus examine the effect of the for-
mer boundary layer in a separate way from the latter and
thermal one. Take y = 0 for the surface of the wedge and
let U be the main flow velocity behind the Mach stem
m propagating with velocity Um (Fig. 5). Previous papers
have investigated on the boundary layer generated by an
advancing shock wave over a plate (Hornung 1986; Becker
1961; Mirels 1958; Schlichting 1979). They indicate the
growth of thickness of the layer with time. Here we con-
struct an approximate solution so that we can see the
growth explicitly.

The equation of momentum conservation in the bound-
ary layer is given for the velocity u as

U
∂δ

∂t
+ U2 ∂δM

∂x
= ν

(
∂u

∂y

)
y=0

, U = constant (4)

where δ and δM are the displacement and momentum
thickness and are given respectively as

δ =

∞∫
0

(
1 − u

U

)
dy, δM =
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0

u

U

(
1 − u

U

)
dy (5)

so that
δ(Umt, t) = 0 (6)
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Fig. 6. Schematic of the RR→MR transition on the ramp
and double exposure holographic interferogram [(Itabashi et
al. 1997) Mi = 2.332, θw = 52◦]

and ν is the coefficient of kinematic viscosity.
We utilize the Kármán-Pohlhausen approximation

(unsteady)

u =



U

4∑
i=1

Ci(x, t)(
y

δ
)i, 0 ≤ y ≤ δ

0, y > δ

with the boundary conditions

y = 0 : u =
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=
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Fig. 7. Low density gas experiment (Walenta 1987)

to yield
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+ a
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74
189
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40ν
3

which is integrated to

δ2 =
b

2
η + f(ξ), ξ = t− x

a
, η = t+

x

a

with f(ξ) being an arbitrary function to be determined by
condition (6). Finally, we have

δ =
√

b

Um − a

√
Umt− x . (7)

Equation (7) shows that the thickness grows with the
time t as

√
t, as we can see from

δ(0, t) = A
√
νt, A2 =

7860
382 + 185M−2

where M is the Mach number of the Mach stem. The
boundary layer thickness behind the Mach stem is shown
in Fig. 8 with the present experimental conditions in
Fig. 1. However, the global flow field expands as t in the
self-similar flow, so that the thickness decreases as 1/

√
t

relative to the main flow. The situation is expressed better
in the self-similar variables as

δ̄ ≡ δ(x, t)
Umt

=
A√
γ

√
s

M

√
1 − x

xm

and it is shown schematically in Fig. 9, where δ̄ indeed
decreases as 1/

√
t.

4 Concluding remarks

If we accept that the thicker boundary layer is effectively
equivalent to the change in wedge angle, the effect of the
boundary layer on the flow field should be large in the
beginning and become less in later stages with increasing
time t; this is in accordance with the observations in Figs. 3



T. Adachi et al.: Effect of boundary layer on Mach reflection over a wedge surface 275

δ
[m

m
]

Distance from Mach stem, Um t-x [mm]

Mi =1.40

θ w=30deg.

M =1.73

Um =588m/s

U =326m/s

p 0=101.3kPa

Fig. 8. Boundary layer thickness behind the Mach stem cal-
culated by Eq. (7) with the experimental conditions of Fig. 1
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Fig. 9. Decrease of boundary layer thickness with increasing
time in self-similar variables

and 4. In examining this in more detail, we first notice the
ωir values settling to a certain level after decreasing with
time; shown as 38.1◦ for Mi = 1.30 in Fig. 3, about 32◦ for
Mi = 1.20 and 42◦ for Mi = 1.40 in Fig. 4. They should
be correlated with the corresponding values given by the
self-similar solution expressed in an explicit form for weak
cases as (Kobayashi et al. 1997)

ωir = cos−1

√
M2

i + 5
7M2

i − 1
(γ = 1.4) .

Indeed, this gives, ωir = 32.63◦, 38.19◦ and 42.29◦ for
Mi = 1.2, 1.3 and 1.4, respectively, which compares well
with the above values.

Next, we see how the thin boundary layer can change
ωir from the self-similar value above. In fact, the actual
boundary layer is estimated to be very thin, on the order
of several tens of microns, based on Eq. (7) in the present
experimental set-up as shown in Fig. 8. It should be noted
in this regard that the three-shock configuration is known
to be sensitive to the change of the wedge angle, especially
for weak cases, as can be found in Appendix A (Sakurai
1964).

Let us consider the feature in the following somewhat
simplified situation. The configuration of the three-shock
system for Mach reflection can be given by the three-
shock theory, where we have two equations, Eq. (A4) or
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Fig. 10. Flow field of the stationary Mach reflection in the
coordinate attached to the triple point

Eqs. (A5) and (A6), to determine two unknowns, ω′ and
λ, for given ε and ω in Eq. (A1). This procedure can be
very sensitive to a small change in M or ω, especially for
weak cases. The reason for this is due to the fact that
terms including ω′ in these equations become very small
in the case, as we can see in Table 1 in Appendix A where
they are as small as 10−4 ∼ 10−7.

We consider this in a more explicit way in Appendix B
to a modified three-shock condition (B1), where the ef-
fect of viscous layers is added to the original condition
(A4) through the terms a, b to represent the small change
above. The real situation is more involved, but, in any
case, the essential feature can be as such to give a change
in ω′ from a change in ω caused by the boundary layer
thickness, so that the expected boundary layer can be suf-
ficiently thin to significantly change the pattern.

Appendix A

Consider the flow field of a stationary Mach reflection
[Fig. 10 (Sakurai 1964)] consisting of three steady shock
waves, incident i, reflected r and Mach wave m, and a slip
line s. It is assumed that the flow field in region (I) is uni-
form and the shock wave i is a plane shock wave. The flow
field in region (II) is also uniform. Region (III) is bounded
by two shock waves, r and m, and includes a slip line s,
dividing the region into two uniform subregions (III′) and
(III′′). Assuming V , p0, and ρ0 as the velocity, pressure,
and density of the uniform flow region (I), then the veloc-
ity V ′, its deflection angle δ′ from the velocity in (I), the
pressure p′ and the density ρ′ in the uniform region (II)
are given by the shock condition at the shock wave i, and
we have

p′

p0
≡ 1

ξ
= 1 +

2γ
γ + 1

ε, ε = M2 sin2 ω − 1, (A1)
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tan δ′ = ε

(
γ + 1

2
M2 − ε

)−1

cotω,

where ω is the incident shock angle defined by the angle
between i and V as shown in Fig. 10, M is the Mach num-
ber of the incident wave i, and γ is the ratio of specific
heats.

Let us call the angles between the flow direction of V
and r, ω′, and that of V and m, λ, respectively (cf. Fig. 10).
Pressure p1 and deflection angle δ1 at the shock wave m
are then given as

p1

p0
= 1 +

2γ
γ + 1

ε1, ε1 = M2 sin2 λ− 1, (A2)

tan δ1 = ε1

(
γ + 1

2
M2 − ε

)−1

cotλ.

Similarly, the corresponding quantities p2 and δ2 at
the shock wave r are given by

p2

p0
=

p2

p′
p′

p0
=

(
1 +

2γ
γ + 1

ε2

) (
1 +

2γ
γ + 1

ε

)
,

ε2 = M ′2 sin2(ω′ + δ′) − 1, (A3)

tan δ2 = −ε2
(
γ + 1

2
M ′2 − ε2

)−1

cot(ω′ + δ′),

where M ′ is the Mach number of the flow in (II).
The problem of stationary Mach reflection is to deter-

mine its configuration represented by the angles ω′ and λ,
which depend on the configuration of the incident shock
wave produced by its angle ω and strength ε (or ξ). For
this purpose, the three-shock theory utilizes the continu-
ity in the pressure as well as in the flow direction across
the line s. This leads to the following conditions:

∆p = p2 − p1 = 0, ∆δ = δ′ + δ2 − δ1 = 0. (A4)

Let us write conditions (A4) in more detail using Eqs.
(A1), (A2) and (A3) as

ε2 + ε− ε1 +
2γ

γ + 1
εε2 = 0, (A5)

tan−1

[
ε

(
γ + 1

2
M2 − ε

)−1

cotω

]

+ tan−1

[
−ε2

(
γ + 1

2
M ′2 − ε2

)−1

cot(ω′ + δ′)

]

− tan−1

[
ε1

(
γ + 1

2
M2 − ε1

)−1

cotλ

]
= 0. (A6)

It will now be shown that the terms in Eqs. (A5) and
(A6), including ω′ appear to be very small for the observed
ω′ values of weak shock experiments, which always give
values very close to 90 degrees. Variable ε2 is expressed as

ε2 = M ′2 − 1 −M ′2 cos2(ω′ + δ′)

and ω′ occurs in fact in Eq. (A6) through cos2(ω′ + δ′).
Since δ′ turns out to be a small, positive angle in these
cases, the angles ω′ + δ′ become almost 90 degrees for the
experimental ω′ values and cos2(ω′ + δ′) values are very
small for these values. As for the second term in Eq. (A6),
we have a factor cot(ω′ + δ′), which is small, and another
small factor, ε2, which also becomes small for the weak
case, since M ′ is very near to 1 in this case. Let us check
these in more detail numerically by taking ξ = 0.9 (ε =
2/21) and using the measured values of ω′ such as given in
the references (Harrison and Bleakney 1947). The results
are tabulated in Table 1, where we can see that the terms
are indeed very small. This suggests the sensitivity of the
systems to the amount of ω′, so that a small change in
the configuration of the incident shock wave can cause a
significant change in the amount of ω′.

Appendix B

Consider the modified three-shock condition (Adachi et
al. 1992),

∆p = a, ∆δ = b (B1)

where a and b are the terms representing the effect of
viscous layers for the differences in pressure and shock
angle, respectively. The feature of the solution of (B1)
was studied numerically for a, b values given parametri-
cally a priori (Adachi et al. 1992). It was found that the
case of a = 0, b �= 0 agreed well with corresponding ex-
perimental data in comparison with the case of a �= 0,
indicating that the pressure difference is negligible as it
should be in a viscous layer. Results of (ω, ω′) values for
Mi = 1.41 (ε = 0.98) with a = 0 and various b values are
shown graphically in Fig. 11 We can notice in the figure
that branches of (ω, ω′)-curves for various b(�= 0, small
values) near MR(trivial) curve of b = 0 are almost per-
pendicular to the ω-axis in the crucial area near ω ≈ 60◦,
indicating that a small change in b or the existence of a
small non-zero b itself can result in a significant change
in ω′. In the followings, we will see this in a more specific
way in an appropriate expression of the solution of (B1).
We have from (B1) with a = 0 with use of (A1), (A2) and
(A3) that

ε2 ·B(ε, ω; ε2, λ) = tan b ≡ b′ (B2)

where B is given as

B =

[
− cot(ω′ + δ′)

γ+1
2 M ′2 − ε2

+
1 + 2γ

γ+1ε

1 +A′A1
· A1

sinλ cosλ

×
{

−γ + 1
2

1 + ε1
εε1

A′ +
1

1 + ε
· 1
(cotω + cotλ)

}]

×
(

1 +A2
A′ −A1

1 +A′A1

)−1

(B3)

A′ = tan δ =
sinω cosω · ε

γ+1
2 (1 + ε) − ε sin2 ω

,

A1 = tan δ1 =
sinλ cosλ · ε1

γ+1
2 (1 + ε1) − ε1 sin2 λ

,
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Table 1. cos2(ω′ + δ′), ε2{(γ + 1)/2 · M ′2 − ε2}−1 cot(ω′ + δ′) values derived from experimental ω′ values

ω 68.0 71.6 73.6 65.6 66.6 67.2 73.5 72.0 73.9◦

ω′ 86.9 88.3 89.1 84.2 85.7 86.4 88.9 87.9 88.2◦

δ′ 1.5 1.3 1.2 1.7 1.6 1.6 1.2 1.3 1.2◦

cos2(ω′ + δ′) × 104 8 0.1 0.001 60 20 10 0.01 0.1 0.1
ε2{(γ + 1)/2 · M ′2 − ε2}−1 6 0.01 −0.02 5 2 1 −0.0002 0.04 0.02
× cot(ω′ + δ′) × 104

RR

MR

MR(trivial)

∆δ 0 & 0.01 ∆δ  0.01

10

0.

1

7
4

0.

Mi = 1.41

ω [deg.]

ω
 '  

[d
eg

.]

Fig. 11. Relation between angles of incidence and reflection.
Mi = 1.41. Open and solid circles denote experimenatal data
for Mach and regular reflections, respectively. Solid line, dashed
line and dash-dotted line denote modified three-shock, two-
shock and trivial solutions, respectively

A2 = tan δ2 =
− cot(ω′ + δ′) · ε2

γ+1
2 M ′2 − ε2

,

1 + ε1
1 + ε

=
sin2 λ

sin2 ω
, ε2 = M ′2 sin2(ω′ + δ′) − 1

M ′2 =
[
2 +

(γ − 1)(1 + ε)
sin2 ω

]

×
[

1
γ + 1 + 2γε

+
2

γ − 1
· 1
γ + 1 + (γ − 1)ε

]
− 2
γ − 1

.

We have ε2 ·B ≡ b′ (B2), and consider first the case of
b′ = 0 or the original three-shock condition (A4), to which
we have either (i) ε2 = 0 or (ii)B = 0. The first case of
(i) leads to the trivial solution where we have M ′ = 1
and λ = ω, while the second case (ii) is for the classical
three-shock solution.

Now, we set b �= 0, small and look for the solution
ω′ which is not far from its trivial solution, B can be
simplified the case to B0 with an approximation ε2 = 0
and λ = ω as

B0 = B(ε, ω ; 0, ω)

= − 2
γ + 1

√
M ′2 − 1
M ′2 +

A′

1 +A′2
1 + 2γ

γ+1

sinω cosω

×
[
−γ + 1

2
1 + ε

ε2
A′ +

1
2

tanω
1 + ε

]
(B4)

So that we have approximately,

ε2(ω′) = B−1
0 b′ (B5)

where ε2 is given by (A1), (A2) and (A3) as

ε′2 = M ′2 sin2(ω′ + δ′)

and we have

M ′2 sin2(ω′ + δ′) = 1 +B−1
0 b′ . (B6)

We have also from the trivial solution ω′
0, δ

′
0 ,

M ′2 sin2(ω′
0 + δ′

0) = 1 (B7)

(B6) and (B7) are combined to

M ′2B0 sin(ω′ + δ′ + ω′
0 + δ′

0)
× sin(ω′ + δ′ − ω′

0 − δ′
0) = b′ . (B8)

Since ω′ + δ′ ≈ ω′
0 + δ′

0 ≈ 90◦ as we can see in Table 1 to
a typical case, sin(ω′ + δ′ + ω′

0 + δ′
0) ≈ 0 and accordingly

magnitude of ω′ +δ′ −ω′
0 −δ′

0 can be significant to a small
b′. In fact, the magnitude of B0 is of the order of one as we
have B0 = −0.43, −0.44 to the typical cases of Mi = 1.2,
1.4 (ε = 0.44, 0.98) with ω = 60◦, and b′ = 8.8 × 10−4,
8.4 × 10−4 respectively for Mi = 1.2, 1.4 when we assume
ω′ + δ′ + ω′

0 + δ′
0 = 180◦ + 1◦, ω′ − δ′ − ω′

0 + δ′
0 = 6◦.
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