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Commissariat à l’Energie Atomique, 75752 Paris Cedex 15, France

Received 19 April 1999 / Accepted 27 May 1999

Abstract. The 20th century saw the rapid development of quantum mechanics and micro-scales physics.
However, classical mechanics did not lose any interest, and did not cease setting severe enigmas. Among
them lies detonation, observed and measured since Berthelot (1881), but whose modeling required nearly
hundred years of effort. Following the fashion of celebrations, we could say that the publication by Chapman
in 1899 is a reason for rewriting, in modern terms, the main facts of past century: enhancing the few brilliant
steps and also mentioning their sluggish diffusion, which arises from linguistic and national fractures within
the scientific world and also reflects scientists’ great reluctancy to recognize and overcome the intrinsic
uncertainties of modeling.
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1 Wave modeling of reactive propagations

Considering, with hindsight, the phenomena of deflagra-
tion and detonation, and bearing in mind the modern
ideas about state laws and constitutive equations and dis-
sipative effects, we may undoubtedly say that Jouguet
(1917) and his contemporaries had expressed, in their own
clear words, the main features of wave modeling of chem-
ically reactive flows.

1. A flow with detonation or deflagration may be ascribed
the perfect fluid approximation, except for a narrow
zone, moving through the system.

2. In the lap of this zone, the behaviour of the substance
may still be ascribed the fluid – but non-perfect –
approximation: dissipation effects are not negligeable
therein, because of the deviation from chemical equi-
librium and because of velocity and/or temperature
gradients.

3. However, in the lap of this zone, the temperature rises
so high and the changes in velocity, pressure, volume,
etc., come out in the course of such a short path (ε
fraction of the total observable path), that it is accept-
able, in the frame of a global description, to consider
this zone as an approximately geometrical surface dis-
continuity named a wave, upstream of which the flow is
inert, and dowstream of which the flow is reactive un-
der the permanent condition of chemical equilibrium.

4. In the frame of such modeling, the local theory of
Hugoniot [2] is valid: at any point of Σ at any time
– the jumps in pressure p, specific volume v, and spe-

cific internal energy e are linked by the Hugoniot
relation

e− e0 =
1
2
(p + p0)(v0 − v) , (1)

– the normal relative velocities w0 (upstream) and w
(downstream) are given by

w0 = v0
√

(p− p0)/(v0 − v) , (2a)

w = v
√

(p− p0)/(v0 − v) , (2b)

where the normal to Σ is oriented from upstream
towards downstream.

2 Crussard curve and critical waves

After emphasizing how advanced the description synthe-
sized by Jouguet in his Mécanique des explosifs (1917) is,
it is proper to put the remainder in its proper light, since
there lie the origins of misunderstandings that will hang
heavily on the development of ideas.

For one reason at least (i.e. the available observations
at the turn of the century dealt with only gaseous systems
considered under normal conditions of pressure and tem-
perature), Jouguet did not move away from the assump-
tion under which the detonation products behave with a
constant γ ideal gas equation of state, e = pv/(γ − 1),
whose representation in (v, p, e) space is hyperboloid (D).
As a consequence, he faced a very simple analytical situ-
ation:

(i) Crussard curve (H), drawn over (D) as a result of (1),
is ‘fair’ enough to be projected on the (v, p) plane as
a hyperbola (H ′),
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(ii) given an upstream state (v0, p0) and an upstream rel-
ative normal velocity w0, determination of possible
downstream states results from a familiar discussion:
intersection of hyperbola (H ′) with a line originating
from (v0, p0) with slope −ρ0w

2
0.

Despite its obvious over-simplification, this discussion has
the indisputable merit of dividing, for the first time, the
substances in two categories according to whether it is
possible or not to draw two tangent lines to (H ′) from
point A(v0, p0) (for reasons which appear only at some
advanced status of theory, this division is no less than that
between explosive and non-explosive substances). In the
first case, the contact points on (H ′) of the tangent lines
determine waves named ‘critical’ by Crussard (1907), with
which correspond two downstream states on curve (H)
itself. These states were named, much later, ‘Chapman–
Jouguet’ states. For the sake of simplicity, we shall call J
the one related to a detonation (p > p0); the value of w0
at J will be written D∗. More generally, any quantity at
J will be marked with subscript ∗.

On top of this beautiful geometrical definition of point
J , come other remarkable physical features.
– One is mentioned by Chapman (1899): J is the point

on (H) where the upstream relative normal velocity
w0 is minimum.

– Another is given by Crussard (1907): J is the point on
(H) where the downstream relative normal velocity w
is equal to the local downstream sound velocity a.

– The last is demonstrated by Jouguet (1917): at any
point on (H) where p > p∗ (p < p∗), the ratio w/a is
less (more) than unity.
So many wonderful attributes would not have been

sufficiant for J to become, for decades, the cornerstone
of all detonation theories if the experimental results in
tubes, which Jouguet was aware of, had not strengthened
its singularity and suggested the ‘hypothesis’: J does rep-
resent the downstream state to be assigned to the det-
onation products of an explosive wave (Jouguet, p. 326)
defined as a propagation (i) indifferent to limiting rear
conditions (ii) in the form of a constant velocity transla-
tion. On pages 332 and 333 of Jouguet’s work, tables I
and II set forth twenty gaseous mixtures where the mea-
sured velocity agrees within experimental error with the
computed velocity D∗.

But several pages, 300 to 316, where Jouguet discusses
the “possibility of shock and combustion waves” show in-
disputedly that he never thought of his ‘hypothesis’ as
a ‘law’ whose validity would extend to all propagation
regimes.

3 Birth of a myth

There occur the first tricks of history, . . . and failings
of men, were they scientists. Let us pick up some lines
of the introduction in Detonation of condensed explosives
(Chéret, 1993).

“After smouldering under the embers of the first World
War, research was revived outside France as witnessed by

the works, which have become classics, of N.N. Semenov
(1928), B. Lewis and G. Von Elbe (1938), and W. Jost
(1939). All three, in contrast to the view of E. Jouguet,
which is synthetic and thermodynamic in nature, apply
themselves to a review of known phenomena and their ki-
netic aspects.
From 1940, the needs of nations involved in the Second
World War created a rapid and unprecedented expansion
in research into solid explosives. The use of such explo-
sives in nuclear weapons necessitated the characterization
of their properties and a modeling of their effects, which in
turn meant resorting to the most highly developed meth-
ods of physics. . . and to the most brilliant minds of the
time. The papers of Y.B. Zeldovitch (1940), G.I. Taylor
(1941), J. Von Neumann (1942), and W. Döring (1943)
date from these troubled years. Although the papers were
written in an isolation which we may only guess at, they
share a common characteristic – they abandon the kinetic
aspect envisaged during the interwar years and return to
the only existing theory, that of E. Jouguet, to try to prove
its obscure points or to draw from it simple conclusions”.

But unfortunately, the authors have another common
feature, that is, not being able or willing (lack of time?
lack of French original text or of faithful translation) to
deepen Jouguet’s arguments. In the following decades,
the memoirs still enhance the deficiency: thus the idea
of Chapman–Jouguet ‘law’ flourishes as a belief that the
work by the first as well as by the second guarantees some
well-established law, according to which one and the same
detonation velocity exists: D∗.

Yet, experimental results – especially dealing with TNT
and RDX based compositions – had been stored in the
1940s and should have led to such over-simplification be-
ing dispelled. Were they not saying that a translation ve-
locity δ~i is observed in a tube with axis ~i, that δ changes
when the diameter is varied, and does not accomodate
with a ‘law’ endowed with a unique value of velocity?
Were they not saying also that the wave in a tube is an
~i-axisymmetric surface, whose concavity faces the detona-
tion products, from which follows that a translation-type
propagation where δ = D∗, would mean that the nor-
mal relative velocity w0 = δ cosΨ equals D∗ on the axis
(Ψ = 0), but inexorably deviates from D∗ outside the axis
(Ψ > 0) and then takes values smaller than D∗, which
are incompatible with admissible downstream states on
(H+)?

Actually, such a gap between experimental results and
the Chapman–Jouguet ‘law’ is not unknown even by the
most enthusiastic users, and does not leave them uncon-
cerned. But, surprisingly enough, none of them goes back
to the origins; all of them have chosen an escape way
and state that, instead of being ‘completely’ true, the
Chapman–Jouguet ‘law’ is ‘asymptotically’ true, i.e. when
the flow is plane and steady. Such a statement, apart from
being pure conjecture, means a dramatic twofold regres-
sion: (a) first as regards the ambition shown by the authors
early in the century, who, following the spirit of Hugoniot’s
local analysis, aimed at finding some downstream state at
each point of the wave, whatever the spatial and time
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features of the overall flow were; (b) also as regards the
general development of theorical physics and the blossom-
ing of scaling laws. As a matter of fact, in 1949, Hermann
Weyl gives a wide diffusion to ideas expressed as early as
1944, on the right way of setting the equations of inter-
nal structure of a shock layer through an appropriate 1/ε
stretching along the normal line to Σ. As early as 1946,
K.O. Friedrichs alone, and then in 1948 R. Courant and
K.O. Friedrichs together, extend the ideas of Weyl to det-
onations, and show that the actual existence of an internal
structure ending at a downstream state of (H) is a prereq-
uisite of wave modeling of propagation. Their dissertation
means that, a contrario, putting up with no actual mark-
ing of a downstream state on (H) deprives the model of
any operative significance.

By way of an anecdote, let us mention two other es-
cape-routes, which are put forward in order to dodge the
difficulties linked with the Chapman–Jouguet ‘law’. One
consists in incriminating the explosive substance itself,
and in making a difference between ideal explosives (which
are ‘good’ enough and respectful of the ‘law’) and non-
ideal explosives; these labels are still in use! Another one
consists in incriminating the chemical equilibrium assump-
tion, and in maintaining that, in any circumstance, the
downstream state is endowed with a downstream relative
normal velocity w identical to some local ‘frozen’ sound
velocity a (‘frozen’ means that a is computed without ac-
knowledging the chemical equilibrium equations, i.e. with-
out making use of the correlation between chemical con-
centrations and state variables!); such an alteration, in
addition to the fact that it despises a great number of ex-
perimental results, destroys the consistency of the model
since it tolerates, beyond the ‘downstream state’, some
finite chemical dissipation effect!

4 Inexorable uncertainties

Such passion for establishing the Chapman–Jouguet ‘law’
and keeping it at the expense of intellectual contortions
deserves an explanation mostly grounded on human lazi-
ness, summarized below in the form of three questions:
– Why should we deny ourselves a law that is indeed im-

perfect since it is inconsistent with some experimental
results, but that brings somewhat satisfactory predic-
tive results for a great many applications?

– Why should we not hope for a simple detonation the-
ory like Bethe’s shock theory (1942) which shows that,
given an upstream state, there exists one and only one
downstream state whenever it is assigned to ensure
coincidence between the value of the relative normal
upstream velocity and the measured value.

– Why should we not hope, as a consequence of above
wish, to escape two difficult problems:
(i) make a choice between those two downstream

states, which ensure coincidence between the value
of the relative normal upstream and a measured
value higher than D∗;

(ii) make a guess for the absence of a downstream state
when the measured velocity is lower than D∗.

Actually this laziness keeps close to basic theoretical dif-
ficulties.

The wave modeling of detonation essentially ignores
the details of the internal structure that leads from the
upstream state to the downstream state, but does not
preclude that the downstream state itself results from
the matching between this internal structure and the re-
mainder of the flow-including boundary conditions. This
is exactly the kind of argument which is given by K.O.
Friedrichs (1946) when he denies the states (H+, p < p∗)
any physical meaning and thus answers question (i).

The wave modeling of detonation surrenders any pre-
tention to determining the downstream state (p, v, e) and
the corresponding relative normal velocities w and w0 bet-
ter than within O(ε); in other words, modeling does not
preclude that the downstream state, while matching some
external flow, leads through (2.a) to a normal relative up-
stream velocity w0, which may deviate within O(ε) from
the measured velocity D, at any point P of wave surface
Σ. In other words again, the measured velocity D(P ) is
not necessarily the one to be substituted for w0 in (2.a)
when looking for the downstream state. This last remark
is, obviously, an answer to question (ii).

5 Strong and quasi C–J detonations

The above considerations show that wave modeling of a
detonation is compatible with two and only two cases:

– either w0 is assigned a value higher than D∗; then the
downstream state belongs to (H+, p > p∗) and con-
sequently the thus modeled detonation deserves the
epithet strong ;

– or w0 is assigned the value D∗; then the downstream
state is a C–J state, but D(P ) = D∗[1 + O(ε)], which
implies to give the name quasi C–J to thus modeled
detonation.

The O(ε) quantity appears to ‘measure’ the normalized
effect of dissipative phenomena on the relative upstream
normal velocity. Thus, other things being equal, it ‘mea-
sures’ the geometrical effect (sphericity effect for spher-
ical detonation, diameter effect for tube or rod detona-
tion, etc.). Thus, for given dimensions, it measures the
mesostructural effects (grain distribution, void distribu-
tion, crystallite facies, relative orientation of propagation
and crystal, etc.). A contrario, given the macroscopic fea-
tures of an explosive system, the wave modeling will be
the same for two propagations different from one another
only through mesostructural features, either from the very
origin of the system, or later on due to aging. We shall
investigate this statement and its consequences in the epi-
logue.

It is easily understood that the quantity O(ε), the nor-
malized summation of varied dissipative effects, is present-
ly scarcely predicted and that even its sign remains un-
known. In such a way that measuring D(P ) and comparing
to D∗ do not allow us to decide whether a detonation is
locally strong or quasi C–J. The decision is to be taken
only as a result of a deep analysis of the whole flow, when
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using scaling laws and having recourse to the matched
asymptotic expansions (MAE) method.

6 Matched asymptotic expansions
and propagation rule

The MAE method has given birth and unity to a wide
field, which includes especially the boundary layer, shock
layer and detonation layer. We are not going to visit the
founding texts, nor the developments in Chéret (1971,
1993), dealing specifically with detonation. We just re-
call that, when addressing the question ‘given a detona-
tion, is it to be considered strong or quasi-C–J?’, the MAE
method provides us with a local answer: ‘at point P ∈ Σ
with positive mean curvature, an autonomous detonation
is quasi-C–J; at point P ∈ Σ with negative mean curva-
ture, detonation is strong’.

This rule, which must be regarded as a theorem, is bet-
ter understood and applied when complemented with the
definitions below.

(a) The mean curvature is algebraic and equal to

1
2

[
1

P ~C1, ~N
+

1

P ~C2, ~N

]
,

where ~N stands for the normal at P to Σ and is di-
rected from upstream to downstream, where C1 and
C2 stand for the two main curvature centers of Σ at
P .

(b) A detonation is autonomous when the field of nor-
mal velocities is decelerated in the near downstream
flow. N.B. Refering to the usual conditions on prim-
ing boundaries and free boundaries of usual explosive
devices, experiment shows the autonomous nature of
detonation. However, should some overmighty spher-
ical constantly expanding priming device be available,
non-autonomous spherically diverging detonation may
occur (Chéret, 1993, p. 83).

A few examples, drawn from usual experimental work,
allow us to illustrate and demonstrate the pertinency of
the rule.

– Spherically converging detonation exhibits uniform ne-
gative mean curvature, consequently it is strong (Ché-
ret, 1993, p. 88).

– Spherically diverging detonation exhibits uniform pos-
itive mean curvature. Whenever the central boundary
velocity is less than some critical value, then it is au-
tonomous and consequently quasi-C–J. Whenever the
central boundary velocity is higher than that critical
value, then it is strong (Chéret, 1993, p. 83). What a
nice example of bifurcation!

– End priming of a rod turns into an autonomous det-
onation whose mean curvature is positive everywhere,
consequently it is uniformly quasi-C–J (Chéret, 1993,
p. 308).

– Lateral priming of a rod turns into an autonomous
detonation whose mean curvature – whenever lateral

velocity is properly chosen – is negative in the vicinity
of the axis and positive elsewhere, consequently it is
strong near the axis and quasi-C–J elsewhere (Chéret,
1993, p. 311).

These four examples bear evidence that the strong or
quasi-C–J nature is a local feature of the detonation, and
that conditions on the boundaries of the flow may be of
determinant or even critical importance.

7 Epilogue

One hundred years after Chapman’s letter, is it possible
to say that reality has triumphed over myth? Alas, no,
since models are still developed that strive to patch up
the Chapman-Jouguet ‘law’.

No doubt that errare humanum est and that the scien-
tist who explores dead-end paths before finding the way
through does not escape the common human condition;
no doubt either that persevarere diabolicum.

This persistancy in error is all the more heart-breaking
because of the long-lasting evidence of wave-modeling of
detonation being unable to provide for a detailed predic-
tion of the actual propagation D(P, t) and of the influence
of mesostructural parameters on the propagation. This in-
ability is yet implicitly known since those numerical sim-
ulations which are based on front tracking do not succeed
in matching computed progression and observed progres-
sion, unless they throw away unicity and universality of
the equation of state of the detonation products!

Does this mean that there is no other salvation than
3-D dissipative codes? In my opinion, no, on the contrary. I
am convinced that such codes will reach predictive ability
well after physicists have got insight into O(ε) within the
frame of simple configurations, an example of which is
given in Detonation of condensed explosives (Chéret, 1993,
p. 98). One should not need one century more if one uses
the phenomena which underlie the internal structure: the
so-called ZND ignitor shock, and appropriate reactivity
(Chéret, 1993, p. 204).
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dans les corps et plus spécialement dans les gaz parfaits.
Journal de l’Ecole Polytechnique, 57: 3–97, 58: 1–125
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