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Numerical investigation of axisymmetric shock wave focusing
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Abstract. The problem of a plane shock wave incident to a paraboloidal reflector is numerically investi-
gated. The numerical solver used is developed by an improved, implicit, upwind total variation diminishing
scheme in a finite-volume approach. The real-gas effect is taken into account if high temperature occurs.
The solver is validated on four test problems. The complicated flow fields of axisymmetric shock wave
focusing for different-depth reflectors at various incident shock Mach numbers are studied. An interesting
result of a maximum pressure happening at the reflector center is found. This is due to the occurrence of an
implosion phenomenon. A maximum temperature might occur at the reflector center or at other locations,
depending on the incident shock Mach number and the reflector depth. Moreover, vortical flows induced
by shock wave focusing and their formation mechanism are explored. It was found that the vortices near
the reflector are caused by a ring-shaped shock/slipline interaction. Owing to the slipline on the symmetry
axis, a jet flow is induced, resulting in the formation of vortices near the symmetry axis.
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1 Introduction

Shock wave focusing in a medium such as air or water
is a special flow behavior of rapid energy concentration
at a small region, resulting in a high pressure at the fo-
cal region. The focal point, where a maximum pressure
occurred, is referred to as a gasdynamic focus. The gas-
dynamic focus may be different from the geometric focus
of a reflector due to the nonlinearity of shock wave fo-
cusing. Underwater shock wave focusing was successfully
applied to lithotriptors for clinical treatment of human
calculi, and shock wave focusing in air has applications in
material science and nuclear engineering.

In this study, axisymmetric shock wave focusing in air
is considered, since past literature that reporting on the
complicated flow field of shock wave focusing is limited.
The problem of interest is a plane shock wave which is
incident on a paraboloidal reflector. In the past twenty
years, there were many papers that related to the prob-
lem of shock wave focusing. No attempt is made to review
all papers. Only some recent papers on shock wave focus-
ing in a gas are mentioned here. Holl et al. (1991) used
a modified Chester-Chisnell-Whitham (CCW) model to
investigate the problem of reflected blast wave focusing,
and showed that the CCW method is an economic tool
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for the analysis of shock focusing process. Izumi et al.
(1991) experimentally and numerically studied focusing
process of shock waves reflected from parabolic reflectors
and its mechanism. In addition to the maximum pressure
caused by shock wave focusing, Kishige et al. (1991) ex-
perimentally confirmed the existence of a high tempera-
ture caused by a focused shock wave in argon by radi-
ation measurements. Apazidis (1994) theoretically stud-
ied weak shock focusing in a spherical region in confined
three-dimensional axisymmetric chambers. He found that
the pressure distribution on a converging spherical shock
wave is not homogeneous. Liang et al. (1995) numerically
investigated the detailed flow field of shock wave focusing
over parabolic reflectors using the Euler solver. Inoue et
al. (1995) computationally studied shock wave focusing in
a log-spiral duct. They analyzed the detailed flow field of
an imploding shock wave.

The mechanism of axisymmetric shock wave focusing
over paraboloidal reflectors is basically the same as in a
two-dimensional case. However, for an axisymmetric case,
reflected shock waves coming from all directions, the pres-
sure enhancement at the gasdynamic focus would be much
greater than that for the corresponding two-dimensional
case. The pressure enhancement is mainly dependent upon
the incident shock Mach number and the reflector depth.
Both the reflector shape and the incident shock Mach
number also have an effect on the type of shock wave re-
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Fig. 1. A sketch of the shock wave focusing problem and com-
putational domain

Fig. 2. Comparison of computed boundary layer profiles with
the Blasius solution for a flat-plate problem, MS = 0.5, Re =
1 × 104

flection. The classification of the type of shock wave reflec-
tion from a wedge was done in detail by Ben-Dor (1992).
Loosely speaking, there are two typical configurations of
shock wave reflection. One is the type of regular reflection
which consists of a reflected wave and an incident wave
with an intersection at the reflection point. The other is
the type of simple Mach reflection. A simple Mach reflec-
tion consists of a reflected wave, a slip line, a Mach stem
and an incident wave with an intersection point, referred
as a triple point.

For the development of a numerical solver, we em-
ployed the implicit total variation diminishing (TVD)

method of Yee and Harten (1987) for shock capturing with
the improved flux limiters of Liang et al. (1996) for scheme
efficiency. Since a high temperature caused by shock wave
focusing may occur, a real-gas effect is taken into ac-
count by using the curve fitting method of Srinivasan et
al. (1987) for determining the value of the specific heat
ratio. Thus our objective is to explore, with the numerical
solver, flow fields such as a jet flow or an implosion phe-
nomenon caused by shock wave reflection and focusing at
different flow conditions, and to understand the formation
mechanism of the jet flow and implosion phenomenon.

2 Mathematical formulation
and numerical method

2.1 2D/axisymmetric governing equations

Neglecting the effects of external forces and heat transfer,
the equations governing the flow are the continuity, mo-
mentum, and energy equations. In Cartesian coordinates,
(x, y), the dimensionless equations can be expressed in a
conservative form as

Qt + (F − Fv/Re)x + (G − Gv/Re)y

+α(H − Hv) = 0 (1)

where subscripts t, x, y denote partial derivatives and sub-
script v denotes the viscous terms. Equation (1) represents
a planar flow for α = 0, and α = 1 for an axisymmetric
flow. Q is the conservative variables, F, G, H the invis-
cid flux vectors, Fv, Gv, Hv the viscous flux vectors, and
Re the Reynolds number, defined as Re = ρ̄2c̄2 l̄/µ̄2. Note
that the “bar” denotes dimensional quantities, ρ the den-
sity, c the speed of sound, µ the molecular viscosity, and
l̄ the characteristic length, defined as the focal length of
the reflector. The subscript 2 denotes the flow condition
behind the incident shock wave.

2.2 Real-gas effects

Since high temperatures can affect the value of the spe-
cific heat ratio, γ, the real-gas effect is taken into account
when high temperature occurs. To determine the value
of γ, the curve fitting method of Srinivasan et al. (1989)
is used to compute the thermodynamic properties of air
with the pressure and the density as two independent vari-
ables. Once the enthalpy, h, is determined, the value of γ
is computed by the relation: hρ/p = γ/(γ − 1). Then the
equivalent γ concept of Grossman and Walters (1989) for
real gases is adopted.

2.3 Numerical method

For simple treatments of boundary conditions, Eq. (1) is
transformed to a body-fitted coordinate, (ξ, η). Thus we
have

Q̂t +
(
F̂ − F̂v

)
ξ
+

(
Ĝ − Ĝv

)
η

+ α
(
Ĥ − Ĥv

)
= 0 , (2)
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Fig. 3a–c. Comparison of the present re-
sult with the experimental data of Back et
al. for a conical nozzle flow. a A 170 × 40
grid; b pressure distributions along the
symmetry axis and the wall; c Mach num-
ber distribution along the symmetry axis

where Q̂/J, F̂ = (ξxF + ξyG)/J, Ĝ = (ηxF + ηyG)/J , and
J is the Jacobian defined as J = (xξyη − xηyξ)−1. Let
t = n∆t, where ∆t is the time step. For time integration,
a trapezoidal method of second order is used. We get

R
(
Q̂n+1

)
≡ Q̂n+1 − Q̂n +

∆t

2
{
FD|n + FD|n+1} = 0 .

Here

FD =
[(

F̂ − F̂v

)
ξ
+

(
Ĝ − Ĝv

)
η

+ α
(
Ĥ − Ĥv

)]
.

For each time step, the Newton iteration is applied to
improve time accuracy. With the replacement of the time

index n + 1 by S, we have

dR
(
Q̂S

)
dQ̂S

(
Q̂S+1 − Q̂S

)
= −R(Q̂S) , (3)

where

dR
(
Q̂S

)
dQ̂S

= I +
∆t

2

[(
Â − Âv

)
ξ
+

(
B̂ − B̂v

)
η

+α
(
Ĉ − Ĉv

)]S

.
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Fig. 4. A 200 × 200 grid for the 2D
parabolic reflector and a grid subplot
near the reflector center

Fig. 5. The effect of grid number on the maximum pressure
ratio for the 2D parabolic reflector, MS = 1.2

Note that I denotes the identity matrix, and the flux Ja-
cobian matrices are Â = ∂F̂ /∂Q̂, Âv = ∂F̂v/∂Q̂, B̂ =
∂Ĝ/∂Q̂, B̂v = ∂Ĝv/∂Q̂, Ĉ = ∂Ĥ/∂Q̂, Ĉv = ∂Ĥv/∂Q̂.

For spatial discretization, a finite volume approach is
employed. So we have a discretized equation of the form:{

I +
∆t

2

[
∆ξ

(
Â − Âv

)
+ ∆η

(
B̂ − B̂v

)

+α
(
Ĉ − Ĉv

)]S
} (

Q̂S+1 − Q̂S
)

= −
(
Q̂S − Q̂n

)
− 1

2

[
(RHS)n + (RHS)S

]
, (4)

where

RHS = ∆t
[
∆ξ

(
F̂ − F̂v

)
+ ∆η

(
Ĝ − Ĝv

)
+ α

(
Ĥ − Ĥv

)]

and ∆ξF̂j,k = F̃j+1/2,k − F̃j−1/2,k, ∆ηĜj,k = G̃j,k+1/2 −
F̃j,k−1/2. The subscripts j, k are the grid indices along the
ξ, η directions, respectively, and notations F̃j±1/2, G̃j,k±1/2
denote the numerical fluxes at the cell interfaces evaluated
with Roe’s averaging (1981). The constructions of ∆ξFv

and ∆ηGv are based on central differences. The time step,
∆t, is chosen to be the minimum of the local time steps
over the computational domain:

∆t = min
j,k

{∆t(ξ, η)} , for all j, k ,

where ∆t(ξ, η) = CFL · min(∆tξ, ∆tη), and CFL is the
Courant number. In this study, CFL is set to be 1.5.
Now we use the upwind TVD non-MUSCL scheme of Yee
and Harten (1987). The operators Â, B̂ are modified into
Hξ, Hη, respectively, in which a dissipation with improved
flux limiters of Liang et al. (1996) is added. The details
of Hξ, Hη are omitted here. For more details, readers can
refer to the paper by Yee and Harten. The improved flux
limiters can enhance scheme efficency. Finally, the left-
hand side of (4) is approximately factorized into a delta
form for computational efficiency:{

I +
∆t

2

[(
Hξ

j+1/2,k − Hξ
j−1/2,k

)

−
(
Â

(v)
j+1/2,k − Â

(v)
j−1/2,k

)]S
}

∆Q̂∗

= −
(
Q̂S − Q̂n

)
− 1

2
[RHS]n − 1

2
[RHS]S (5a)

{
I +

∆t

2

[(
Hη

j,k+1/2 − Hη
j,k−1/2

)
−

(
B̂

(v)
j,k+1/2 − B̂

(v)
j,k−1/2

)

+α
(
Ĉ − Ĉv

)]S
}

∆Q̂S = ∆Q̂∗ (5b)
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where ∆Q̂∗ = Q̂S+1 − Q̂S . Equation (5) is iterated until
convergence is satisfied for some integer m. The conver-
gence criterion is set to be the l2 norm of the density errors
is less than 10−6. The converged solution at time step n+1
is obtained, namely, Q̂n+1 = Q̂n + ∆Q̂m.

2.4 Initial and boundary conditions

An incident shock wave with Mach number MS is initially
located at a distance away from the reflector. The initial
thermodynamic properties prescribed ahead of and behind
the shock are related by the Rankine-Hugoniot equations.
As shown in Fig. 1, the boundary condition on the reflector
surface is the no-slip condition. At the inflow boundary,
the flow properties before the arrival of the reflected shock
wave are fixed to be the flow condition behind the incident
shock wave. Thus computation was terminated before the
reflected shock wave crossing over the inflow boundary.
The characteristic boundary condition is specified on the
top boundary of the computational domain. On the sym-
metry axis, a second-order extrapolation of Harten and
Osher (1987) is applied.

3 Results and discussion

3.1 Code validation

Case 1: The shock tube problem with high-temperature
effects. A shock tube problem studied by Grossman and
Walters (1989) was considered, and the result obtained is
given in the paper by Liang et al. (1995). It was found
that the Euler solver is able to accurately simulate the
flow with high-temperature effects.

Case 2: Laminar boundary layer over a flat plate. A sub-
sonic flow past a flat plate is calculated. The free stream
condition is chosen to be M∞ = 0.5, and the Reynolds
number is Re = 1 × 104. The computational domain is
selected to be {(x, y),−0.25 ≤ x ≤ 1, 0 ≤ y ≤ 0.5}. The
leading edge of the flat plate was located at x = 0. The
coordinates and flow variables were nondimensionalized
using the length of the flat plate and the free stream con-
dition. At the inflow and top boundaries, the flow quanti-
ties are fixed at the free stream condition. At the outflow
boundary, flow quantities are linearly extrapolated from
the interior points. A uniform flow is chosen as an initial
guess for numerical iteration. A grid with 31 × 41 grid
points was used. The grid is uniformly distributed in the
x direction and stretched exponentially upward from the
wall, and the smallest grid size near the wall is 0.001.
Numerical iteration is terminated when the convergence
criterion of the l2 norm of the density errors being less
than 1 × 10−6 is satisfied. The computed boundary layer
velocity profiles at several x stations are plotted in Fig. 2.
It can be seen that all velocity profiles merge into a single
curve, and they agree excellently with the Blasius solution.

Case 3: Conical nozzle flow. Consider the internal flow
in a conical nozzle studied by Back et al. (1965). The di-
mensionless nozzle length is 7 based on the radius (rt) of
throat chosen as the characteristic length. The nozzle ge-
ometry and the grid used are shown in Fig. 3a. On the noz-
zle wall, the boundary condition is the no-slip condition.
At the inflow boundary, the Riemann invariants are ap-
plied to obtain the flow quantities there. On the symmetry
axis, a second-order extrapolation from Harten and Osher
(1987) is applied. At the nozzle exit, the flow is mainly
supersonic and the flow quantities at the exit are extrap-
olated from the interior points. Chang et al. (1988) have
shown that the extrapolation condition is normally able
to produce reasonable results for viscous supersonic noz-
zle flows. An isentropic solution is chosen to be an initial
guess. Numerical iteration is terminated when the conver-
gence criterion of the l2 norm of the density errors being
less than 1 × 10−6 is satisfied. The inflow total pressure
and total temperature were 17.3 bar and 833.3 K, respec-
tively. The Reynolds number was chosen to be 1.8 × 106

based on the experimental data from Back et al.
The computed pressure distributions along the nozzle

walls and the symmetry axis are shown in Figs. 3b,c and
compared with the experimental data from Back et al. It
can be seen that the flow is accelerated from subsonic to
supersonic through the throat. Moreover, the sonic point
does not occur exactly at the throat (x = 0), but, at
x = 0.2. At the exit, the flow Mach number is about
2.9. The numerical result agree well with the experimental
measurements.

Case 4: A 2D shock wave focusing problem. Consider
a plane shock wave which is incident on a plane, concave,
parabolic reflector with a focal length (f) of 12.5 mm. The
aperture width (H) is 65 mm. We already have some ex-
perimental data obtained from our own shock tube facility.
The experimental setup was described in the dissertation
by Wu (1997). The incident shock Mach number is chosen
to be 1.2 and 1.85. For the MS = 1.2 case, the initial pres-
sure ahead of the incident shock was set to be about 105

Pa (750 torr). The Reynolds number is 361500. For the
MS = 1.85 case, the pressure ahead of the incident shock
wave was about 1.33 × 104 Pa (100 torr). The Reynolds
number for MS = 1.85 is 81760. Four grids 100 × 100
(grid 1), 150 × 150 (grid 2), 200 × 200 (grid 3), 250 × 250
(grid 4), were used to study the effect of the grid number
on the numerical solution. A 200 × 200 grid with a sub-
plot for the grid points near the reflector center is shown
in Fig. 4. Figure 5 shows the variation of the maximum
pressure ratio with the grid number. The maximum pres-
sure ratio is defined as the maximum pressure normalized
by the pressure (P2) behind the incident shock wave. It is
found that the variation in the maximum pressure ratios
is 7.1% when grid 1 is changed to grid 2, 3.9% for chang-
ing grid 2 to grid 3, and 1.5% for changing grid 3 to grid
4. Since the improvement on the maximum pressure ratio
is small for a grid finer than grid 3, grid 3 is used, and will
be used for the later study of the axisymmetric case.
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Fig. 6. a, c Computer schlieren graphs. b, d Color schlieren photographs for the 2D parabolic reflector. a, b t = 0.5, MS = 1.2;
c, d t = 1.559, MS = 1.85

Figure 6 shows the comparison of the computer
schlieren graphs with the color schlieren photographs after
shock wave focusing for MS = 1.2 and 1.85. One can see
that the computed reflected shock wave patterns agree
well with those obtained from the experiments in both
cases. Unfortunately the slipline could not be resolved by
the present solver. In the case of a weaker incident shock
wave with MS = 1.2, no visible vortex is found, as seen in
Fig. 6a,b. But, for a stronger shock wave with MS = 1.85,
vortices are generated after shock wave focusing, which
can be clearly seen from Fig. 6c and from the red color
regions in Fig. 6d. The vortices are generated at the ends
of the sliplines.

We also compared the computed maximum pressure
distributions along the symmetry axis for MS = 1.2 and
1.85 with the experimental data (Wu, 1997). A reasonable
agreement is obtained.

3.2 Results for the axisymmetric reflector

Values of parameters. The flow field of shock wave fo-
cusing over a concave reflector is mainly influenced by the
two parameters: the reflector depth and the incident shock
Mach number. The reflector depth is defined by the ratio
of the aperture length (H) to the geometrical focal length
(f). The reflector shape and the grid used are shown in
Fig. 4a,b. Based on our experimental reflector model in
test case 4, two different shapes of the reflector are cho-
sen: H/f = 5.2 (model 1), and H/f = 8.5 (model 2). The
aperture length is fixed to be H = 65 mm. So the Model 1
reflector has a focal length of f = 12.5 mm and the model
2 reflector has f = 7.69 mm. For convenience, the reflector
focus is chosen to be the coordinate origin. Thus we have
dimensional coordinates x = (x̄−f)/f, y = ȳ/f . As in test
case 4, the incident shock Mach number (MS) is chosen to
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Fig. 7a–h. The isopycnic fields at different instants for the axisymmetric reflector of model 1; MS = 1.2. a t = −0.286; b
t = 0; c t = 0.285; d t = 0.429; e t = 0.571; f t = 1.036; g locally enlarged graph of isopycnics at t = 1.036; h its corresponding
velocity field
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Fig. 8. a, c Isopycnics and b, d velocity fields for the axisymmetric reflector of model 1, MS = 1.85. a, b t = 0.269; c, d
t = 0.527

be MS = 1.2 and 1.85. Thus the flow parameter values are
the same as those in the 2D shock wave focusing problem.

The dimensionless time (t) is reset to be zero (t = 0)
when the incident shock wave is totally reflected. So the
flow corresponds to a negative instant before the shock
wave is totally reflected, and positive for the flow after
total wave reflection.

Analysis of flow patterns. Case 1: The model 1 reflector
with MS = 1.2. Figure 7 shows the isopycnic fields at
different (dimensionless) instants. When t < 0, the type of
shock wave reflection is of regular reflection. From Fig. 7a,
one can clearly see the incident shock wave (i), the re-
flected shock wave (r) and the expansion wave (e) before
the incident shock is totally reflected. When t = 0, the
incident shock wave completed a total reflection. After
that, the reflected shock wave became a converging, con-
cave wave. In addition, compression waves indicated by
CW are developed along the reflector surface, as shown in
Fig. 7b. These waves are propagating toward the reflector

center, as shown in Fig. 7c, and will develop into a ring-
shaped shock wave (RS). At this instant the concave re-
flected shock wave is also converging toward the symmetry
axis. The converging process continues as time advances,
and the pressure and the temperature behind the reflected
shock wave are increasing. As t = 0.429, the ring-shaped
shock comes out again after a merging process, as shown
in Fig. 7d. The converging reflected shock wave starts to
focus, later resulting in a maximum pressure and a maxi-
mum temperature. Table 1 shows the computed maximum
pressures and maximum temperatures and their locations
at different incident Mach numbers. Note that the maxi-
mum pressure and maximum temperature have been nor-
malized by the flow condition behind the incident shock
wave. The maximum pressure and temperature ratios are
approximately 20 and 2.8, respectively, which are greater
than those for the two-dimensional case. The maximum
pressure occurs at x = 0.44, and the maximum temper-
ature at x = 0.30. The reason for this difference is not
clear yet, and it needs further investigation by using a
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Fig. 9. a Pressure and b temperature
ratio distributions for the model 1 re-
flector; MS = 1.85, t = −0.247

non-equilibrium model. Moreover, the gasdynamic focus
is found to be different from the geometrical focus, the
coordinate origin. When t = 0.571, after shock wave fo-
cusing, the pattern of the reflected shock wave is of simple
Mach reflection. So a ring-shaped slipline (SL) is devel-
oped, as shown in Fig. 7e. At this instant, the maximum
pressure and maximum temperature are decreased com-
pared to those at the focusing instant. Later on, the ring-
shaped slipline merges on the symmetry axis, as shown in
Fig. 7f,g. Because of the slipline formation, a local jet flow
(J) is developed, as shown in Fig. 7h.

Case 2: Model 1 reflector with MS = 1.85. The flow
field is more complicated than those in case 1. Figure 8a,c
shows the flow fields before and after the ring-shaped
shock (RS) crosses a complicated structure indicated by
CS. By observing the color schlieren photograph in the
corresponding 2D problem, we thought that the compli-
cated structure was developed at the end of the slipline
emitted from the triple point. From Fig. 8b, one can see
that there is no visible vortical flow near the reflector be-
fore the wave passes the complicated structure. After the
wave passes the complicated structure, vortices are gener-
ated, as shown in Fig. 8d. Table 1 compares the computed
results for MS = 1.2 and MS = 1.85. One can see that the
maximum pressure and the maximum temperature occur
at different locations. For MS = 1.85, the maximum pres-
sure occurs at the reflector center, x = 1, which is different
from the gasdynamic focus (x = 0.44) in the previous case.
This is due to the contribution of the ring-shaped shock
wave merging at the reflector center. But, the maximum
temperature occurs at x = 0.54. Figure 9a,b shows the
pressure and temperature ratio fields at t = 0.247. There
are two pressure peaks. The front pressure peak is lower
than the back one that occurs at the reflector center. There
are four temperature peaks – two on the symmetry axis,
one on each side of the symmetry axis. Both the front
pressure and temperature peaks result from shock wave

focusing. The front temperature peak is highest among
the four peaks. For MS = 1.85, a stronger jet flow was
generated on the symmetry axis than that occurring in
case 1, and it also induced vortices behind the reflected
shock wave. The generation of vortices is due to the non-
zero pressure and non-zero density gradients behind the
reflected shock wave.

Case 3: Model 2 reflector with MS = 1.2. Since the
model 2 reflector (H/f = 8.5) is deeper than the model 1
reflector (H/f = 5.2), the reflected shock wave (r) is more
curved so that parts of the reflected wave cross each other
after total wave reflection. A closed-loop shock wave is de-
veloped, which occupies a small region before shock wave
focusing. Figure 10 shows the pressure and temperature
ratio fields at t = 0.111 and t = 0.114. When t = 0.111,
before the RS shock wave crosses the reflector center, as
mentioned in case 1, there are two pressure peaks and
two temperature peaks. The highest pressure peak and
the highest temperature peak occur near the focal point.
When t = 0.114 after the RS shock crosses the reflector
center, the highest pressure peak occurs at x = 1 and
the highest temperature peak occurs at x = 0.396. In this
case, there is almost no vortical flow developed near the
reflector.

Case 4: Model 2 reflector with MS = 1.85. In this case,
the type of shock wave reflection from the reflector for
t < 0 was found to be of simple Mach reflection, as shown
in Fig. 11a,b. When t = 0, an implosion phenomenon hap-
pened, as shown in Fig. 11c. The implosion phenomenon
results from the merging of the incident shock wave and
the Mach stem at the reflector center. As mentioned by
Milton (1989), an implosion is a type of maximization
of energy concentration at a single point. The maximum
pressure and temperature ratios were found to be as high
as 1285 and 13, respectively. In the study of a shock wave
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Fig. 10a–d. The fields of the (a, c)
pressure and (b, d) temperature ratios
for the axisymmetric reflector of model
2; MS = 1.2. a, b t = 0.111; c, d t =
0.114

Table 1. The computed result for the axisymmetric reflector of model 1 at two different
incident Mach numbers

Location of Location of
MS Pmax/P2(Axi : 2D)† Tmax/T2(Axi : 2D) max. pressure max. temperature

(x) (x)

1.2 19.7 : 3.34 2.76 : 1.45 0.44 0.30
1.85 24.8 : 6.88 3.61 : 1.93 1.0 0.54

† (Axi : 2D) means that the maximum pressure ratio for the axisymmetric case versus
that for the corresponding two-dimensional case.
The subscript 2 denotes the flow condition ahead of the incident shock wave
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Fig. 11a–c. The isopycnic fields for the axisymmetric reflector
of model 2, MS = 1.85. a t = −0.117; b t = −0.012; c t = 0

focusing problem, Kishige et al. (1991) confirmed the ex-
istence of a high temperature. After implosion, the re-
flected shock wave started to focus, resulting in a second
pressure peak as shown in Fig. 12. The second pressure
peak is lower than the maximum pressure at the reflec-
tor center. The Reynolds number is also investigated by
increasing the value of the Reynolds number from 81760
to 1.2 × 105. It was found that the effect of the Reynolds
number on the pressure and temperature magnifications

Fig. 12. Pressure ratio distribution along the symmetry axis
for the axisymmetric reflector of model 2 at t = 0.03, MS =
1.85

is almost negligible; the inviscid flow dominates the shock
wave focusing flow problem.

Comparison of axisymmetric and 2D shock wave fo-
cusing. When an incident shock wave propagates in a
contracting channel, the shock wave becomes stronger be-
cause of a compression effect. Similarly, for an incident
shock with partial reflection from the paraboloidal reflec-
tor, the incident shock becomes stronger. After total wave
reflection, the reflected shock wave, coming from all direc-
tions, is focused at a point. Thus the pressure enhance-
ment is much greater than that for the two-dimensional
case. On the other hand, since an implosion might hap-
pen for the axisymmetric case, the enhanced pressure at
the reflector center could be higher than the pressure at
gasdynamic focus. However, the temperature did not be-
have like that. Tables 1 and 2 tabulate the computational
results for the reflectors of models 1 and 2. For the model
1 reflector, from Table 1 we can see that the pressure and
the temperature magnifications in the axisymmetric case
are 19.7 and 2.8 for MS = 1.2, and are 24.8 and 6.9 for
MS = 1.85, respectively, which are much greater than
those for the two-dimensional case.

For the model 2 reflector at MS ≥ 1.65, the incident
shock wave and the Mach stem arrived at the reflector
center simultaneously and merged there, resulting in an
implosion phenomenon as indicated in Table 2. Thus the
maximum pressure and the maximum temperature oc-
curred at x = 1, the reflector center. The pressure mag-
nification was found to be much greater than that in the
two-dimensional case, as shown in Table 2. However, the
temperature magnification is not as large as the pressure
magnification. From Tables 1 and 2, it is concluded that
the pressure and temperature magnifications are affected
by the two factors: the reflector depth and the incident
shock Mach number. The effects of the two factors on the
pressure magnification are more significant than the tem-
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Table 2. The computed result for the axisymmetric reflector of model 2 at four different
incident Mach numbers

Location of Location of
MS Pmax/P2(Axi : 2D)† Tmax/T2(Axi : 2D) max. pressure max. temperature

(x) (x)

1.2 90 : 4.6 6.90 : 1.62 1.0 0.40
1.65∗ 470 : 9.6 7.06 : 2.23 1.0 1.0
1.85∗ 1139 : 11.5 12.8 : 2.31 1.0 1.0
2.00∗ 1285 : 12.4 13.0 : 2.39 1.0 1.0
∗ means that implosion happened

Fig. 13a,b. The variations of the maximum pressure a and
maximum temperature b ratios for different incident shock
Mach numbers

perature magnification. Moreover, the pressure and tem-
perature magnifications in the axisymmetry case is much
greater than those in the 2D case.

Figure 13 shows the variations of the pressure and tem-
perature magnifications for different incident shock Mach

numbers and different-depth reflectors. For the deeper re-
flector (model 2), the pressure magnification is increased
exponentially with the incident shock Mach number. For
the model 1 reflector, the pressure magnification grows
much slower than that for the model 2 reflector, as shown
in Fig. 13a. Note that for the deeper reflector the temper-
ature magnification is increased exponentially with the in-
cident shock Mach number up to 1.85 and then increased
gradually with MS for MS > 1.85, as shown in Fig 13b.
From Fig. 13b, we also found that the temperature mag-
nifications for the 2D reflector of model 2 and for the ax-
isymmetric reflector of model 1 are increased linearly with
the incident shock Mach number. The one-dimensional re-
sult of shock wave reflection from a plain wall was included
for comparison, as indicated by the bottom dashed line.
The dashed line next to the bottom line represents the
result for the case of a two-dimensional model 1 reflector.
The solid line without symbols represents the result for
the case of a two-dimensional model 2 reflector.

4 Conclusion

Numerical investigation of shock wave focusing over ax-
isymmetric paraboloidal reflectors with different depths
at various incident shock Mach numbers has been car-
ried out. A robust numerical solver with a simple equi-
librium model for real-gas effects was developed by an
improved TVD scheme. An inner iteration for enhanc-
ing stability and accuracy was also included. The solver
was verified to be reasonably accurate on the test prob-
lems. For the paraboloidal reflector, it was found that the
pressure and temperature magnifications are much greater
than those for the two-dimensional case. Moreover, an im-
plosion phenomenon can occur, depending on the incident
shock Mach number. For the deeper axisymmetric reflec-
tor of model 2, the implosion occurred at the reflector cen-
ter and at a lower incident shock Mach number, compared
to the shallower reflector of model 1. Also, the implosion
can cause extremely large pressure magnification. Using
the simple equilibrium model for real-gas effects, it was
found that the location where a maximum temperature
occurred can be different from the gasdynamic focus. The
reason for this difference needs further investigation using
a non-equilibrium model. Vortical flows caused by axisym-
metric shock wave focusing and their formation mecha-
nism were explored. It was found that the vortices near
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the reflector are caused by a ring-shaped shock/slipline
interaction. Due to the slipline formation at the symme-
try axis, a jet flow could be induced. The jet flow resulted
in vortices near the symmetry axis.
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