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One of us (MJK) found some errors in Hornung (1998). A
relatively minor one is that the term

(1 — php)L

in Eq. (21) should be multiplied by v. More substan-
tial errors result from several mistakes in the section on
three-dimensional flows. None of the conclusions are af-
fected, but Figs. 16 and 17 are substantially modified
in the small-3 range. Figure 18 is also changed some-
what. The simplest way to present the corrections is to
re—present the whole of Sect. 8, which is done in the fol-
lowing:

8 Three—dimensional flows

Finally, consider the extension of these results to the more
general case of three—dimensional flow. To this end, choose
the zy—plane to be the plane of the free—stream direc-
tion and the local normal to the shock wave at the point
of interest. With this choice, the velocity component in
the third (z) direction and its gradients in the zy—plane
are zero. Thus a suitable name for this plane is the “flow
plane”. By choosing x and y to lie in the flow plane, the
derivatives of p, p and u with respect to z (the dimension-
less coordinate normal to the flow plane) are zero, and the
only non—zero gradient normal to the flow plane is

w, = lsing,

where w is the dimensionless z—component of velocity and
[ is the shock curvature in the yz—plane. k+1 is the Gaus-
sian curvature of the shock at the point considered.

If we write Eqs. (3) to (6) for y = 0, the only changes to
these equations are that the term —kpv in the continuity
equation becomes —(k + [)pv, and a new term pl sin 3 is
added. The equation (at y = 0) becomes

(pu)e — (k + )pv + plsing + (pv), = 0. (63)
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Fig. 15. Hyperbolic shock shapes, with finite curvature at the
normal-shock point and asymptoting to a Mach wave at large
X. Mach numbers are: 1.1, 1.2, 1.4, 1.7, 2, 2.5, 3, 4, 5, 6, 8, 10,
20

This causes additional terms proportional to [ to appear
in Egs. (18), (20) and (21) of Hornung (1998), for the y—
derivatives of p, v, and p as follows:

pyF = ... + 1p*h,(1 — sinB/v), (64)
Vo B = ... + Iphy(sinf/v — 1), (65)
pyF = ...+ lp(1 — phy)(1 — sinB/v).  (66)

Equation (19) for u, remains unchanged.

A relatively simple example is that of axisymmetric
flow. In this case, the flow plane is the meridional plane.
Consider an axisymmetric shock wave of hyperbolic shape
in the flow plane, such that the normal-shock point has
finite curvature equal in both directions, and the shock is
asymptotically conical with half-angle equal to the Mach
angle far from this point. Defining the distance along the
axis of symmetry, normalized by the radius of the shock
at the nose, to be X, and the normal to it (similarly nor-
malized) as Y, the shock shapes for a set of Mach number
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Fig. 16. Streamline-to—shock curvature ratio for plane curved
shocks. Perfect gas, v = 1.4, Mach numbers as in Fig. 15
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Fig. 17. Streamline—to—shock curvature ratio for axisymmetric
shocks as shown in Fig. 15. Perfect gas, v = 1.4, Mach numbers
as in Fig. 15. The ratio is the streamline curvature divided by
the shock curvature k in the xy—plane

values are as shown in Fig. 15. The equation of the shock

shape is
2
Y:tan,u\/X<X+ 5 )
tan®p

where p is the Mach angle arcsin(1/M). This gives a shock
angle 8 that can be determined from

(67)

1+ 1/(X tan?p)

tan 8 = tan . 68
V1 + 2/(X tan?p) (68)
Solving this for X,
tan?g
Xtan?y = | ———-—F—— — 1 69
s \/ tan®5 — tan?u (69)
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Fig. 18. Sonic line angle in axisymmetric flow. Shock shape
as in Fig. 15, notation as in Fig. 13 of Hornung (1998). v =
1.4, 8 = 0.8, ke = —0.0001, —0.001, —0.003, —0.01, 0.01, 0.003,
0.001, 0.0001

With this, the shock curvature in the meridional plane
becomes

k= (14 2X/cos’u + X?tan?u/cos?u) =32, (70)
This gives an explicit relation between k£ and § with Mach
number as a parameter. For an axisymmetric shock, the
transverse curvature in the yz—plane is | = cos 3/Y.

The shape of the shock now permits the streamline to
shock curvature ratio to be determined for the axisym-
metric case as a function of the shock angle 8. For plane
flow the results are, of course, the same as those given in
Fig. 2 of Hornung (1998), reproduced here as Fig. 16. For
axisymmetric flow, the results are shown in Fig. 17. As
may be seen, the transverse curvature causes no qualita-
tive changes. Quantitative changes include slight changes
in the Crocco points and a greater negative value of the
curvature ratio for axisymmetric flow.

It is interesting to find the effect of the third dimension
on the sonic line slope at the shock. This is not new in non—
reacting flow (see Hayes and Probstein), but our results
permit it to be obtained directly for reacting flow also.
Figure 18 shows how a behaves in an axisymmetric flow
with the same shock shapes as in Fig. 15. The effect of
reactions is very similar to that for plane flow.
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