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Numerical simulations of nozzle starting process
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Abstract. The starting process of two-dimensional nozzle flow is investigated both experimentally and
numerically. Discussions are made on the comparison between experimental and numerical results. Perfor-
mances of two numerical methods which are used in the present study of unsteady flow problem are also
discussed and indications for future development of numerical tools to study nozzle problems are obtained.

Key words: Shock wave, Boundary layer, Nozzle flow, Numerical simulation

1 Introduction

The progress in the computational fluid dynamics (CFD)
due to implementations of TVD stability conditions made
in early 1980’s contributed much to the study of shock
wave phenomena as well as many other area of fluid dy-
namics (Harten 1983). The TVD schemes provide higher
resolutions of discontinuities such as shock waves and con-
tact surfaces without unphysical oscillations compared
with traditional numerical schemes. As a result, together
with the development of high performance computers, de-
tailed investigations of unsteady fluid flow are now possi-
ble.

The theoretical developments, however, on the prop-
erties of numerical schemes such as accuracy and stability
are established, in most cases, for linear scaler problems.
Therefore it is still important to verify limitations and ap-
plicabilities of numerical schemes for each specific case by
comparing them with reliable experimental data.

The gas behind the reflected shock wave at the shock-
tube end wall is expanded to high flow Mach numbers in
nozzles. The process starting with the incident shock wave
entering the nozzle until a quasi-steady flow is achieved
is called the starting process of the nozzle. The starting
process has been investigated by many researchers (Smith
1966, Amann 1969). The starting process was also inves-
tigated numerically by Prodromou and Hillier (1991). Al-
though they made some part of the starting process, es-
pecially the very beginning of it, clear by comparing the
numerical results with experimental data, one of the con-
clusions is that it is necessary to include viscous effect in
the numerical analysis in order to simulate details of the
process such as the interactions of the shock waves and
boundary layers. In the current study, the starting pro-
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cess of a two-dimensional nozzle is calculated by solving
the full Navier-Stokes equations and the results are com-
pared with experimental data obtained by the method of
double exposure laser holographic interferometry.

Detailed investigations of the starting process of nozzle
flow is necessary for developing high performance equip-
ments generating hypersonic flows. This study started in
conjunction to the project of developing a high perfor-
mance shock-tunnel at the Shock Wave Research Center
(SWRC), Tohoku University.

2 Numerical simulation

In this study, the full Navier-Stokes equations are solved
by using two different numerical schemes. One of them is
the explicit upwind TVD scheme of Harten and Yee and
the other is an implicit scheme, LUSGS (Lower Upper
Symmetric Gauss Siedel scheme). Both schemes are coded
for structured meshes in general curvilinear coordinates.

2.1 Governing equations

The two dimensional time dependent equations for vis-
cous, heat-conducting flow in Cartesian coordinates are
given in a conservative vector form by:

Ut + Fx + Gy = Fvx + Gvy . (1)

where t, x and y are the time and space coordinates (An-
derson 1984). The vector of conserved quantities, U , is of
the following form:

U =




ρ
ρu
ρv
E


 , (2)
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Fig. 1. Dimensions of 2-D nozzle

Fig. 2. Numerical grid of the nozzle (schematic)

and the convection terms, F and G, are expressed as:

F =




ρu
ρu2 + p

ρuv
(E + p)u


 , G =




ρv
ρuv

ρv2 + p
(E + p)v


 , (3)

where ρ, p, u, v are the density, pressure, flow velocity ele-
ments in x and y directions, respectively. The total energy
per unit volume, E, is expressed as E = ρε+ ρ(u2 + v2)/2
and an ideal-gas equation of state, ε = p/(γ + 1)ρ, is used
to close the whole system of equations. Here γ is the ratio
of specific heats of the gas.

The viscous terms, Fv and Gv are given by:

Fv =




0
τxx

τxy

uτxx + vτxy − qx


 , Gv =




0
τxy

τyy

uτxy + vτyy − qy


 ,

(4)
where the viscous stress tensors are expressed as:

τxx =
2
3
µ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2
3
µ

(
2
∂v

∂y
− ∂u

∂x

)
,

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
,

where µ is the coefficient of viscosity and q is the heat
transfer per unit volume per unit time. In actual compu-
tations, the equations in general curvilinear coordinates
are used. The equations are further transformed into com-
putational index space and nondimensionalized following
the standard process.

2.2 Numerical schemes

Implicit schemes are usually used for solving basic flow
equations for steady problems since they have high sta-
bilities for large time steps. For transient flow problems,
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Fig. 3. Space between grid points

however, consecutive flow fields with relatively small time
intervals are sought. Especially in cases which deal with
complex wave interactions such as present study, time
steps can not be too large even if the scheme itself is sta-
ble. Implicit schemes usually takes much more CPU time
to calculate each time step compared with typical explicit
schemes. Therefore implicit schemes are not so efficient
for unsteady problems. In the current study, an implicit
scheme of LUSGS and an explicit TVD scheme of Harten-
Yee are used to investigate the benefits of each scheme
when applied to time-dependent shock interaction prob-
lems.

Details of LUSGS scheme which is used in this pa-
per are not described here. The method follows standard
processes and the details are found elsewhere (Yoon and
Jameson 1988; Kano et al. 1995). The only thing which
is specific to this problem is that the viscous terms are
included in the explicit terms only. The terms related to
the flux Jacobians which appear in rigorous formulations
are left out. The omission of these viscous Jacobian terms
make the matrix inversion unnecessary. Accordingly, the
scheme becomes much simple and fast to run. The Crank-
Nicholson scheme is used to obtain second-order time-
accuracy and solutions are obtained by Newton-iteration
at each time step. Therefore the spatial-accuracy of the
solution is determined by the explicit terms which are
based on second-order Harten-Yee TVD schemes. When
the solution is converged, the effect of viscosity is prop-
erly included despite the fact that the viscous Jacobian
terms are neglected.

The explicit code is based on the upwind TVD scheme
of Harten (1983) and Yee (1987). Strang type operator
splitting (Strang 1968) is employed to handle multi-dimen-
sional calculations and the viscous terms are included in
each split directions. The alternative, perhaps, is to in-
clude the viscous terms only once at each time step. How-
ever, although detailed investigations are not carried out,
the differences both in the solutions and in CPU time due
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(a) 15 µs (b) 50 µs

(c) 155 µs (d) 218 µs

(e) 319 µs (f) 471 µs

Fig. 4a–f. Experimental results

to different ways of including viscous terms are expected
to be negligibly small. As is usually done, Roe’s approx-
imate Riemann solvers are used and the minmod TVD
limiter with artificial compression is used in the current
study in order to avoid numerical oscillations while min-
imizing the diffusion of each wave front. The scheme has
second-order accuracy both in space away from solution’s
singularities and in time.

2.3 Grid generation

A reflection nozzle was placed at the end of the rectangu-
lar-cross-section (60mm×150mm) shock tube as schemat-
ically shown in Fig. 1.

A numerical grid of the nozzle is generated for the
numerical simulations and is shown in Fig. 2 with reduced
numbers of grid lines for clarity. The number of nodes
is 600 x 100. The numerical grids are contracted toward
the solid wall by using the following formula proposed by
Roberts (1971),

y =
h(β + 1) − (β − 1){[(β + 1)/(β − 1)]1−ȳ}

[(β + 1)/(β − 1)]1−ȳ + 1
,

where ȳ is the value obtained by dividing the node number
counted from the wall by the total number of grid points
in the y direction. The parameter β is the stretching pa-
rameter which takes values greater than unity. The grid
points are clustered more for smaller values of β.
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Table 1. Initial and boundary conditions

Shock tube Nozzle

Pressure (Pa) 1.05 × 105 1.47 × 104

Density (Kg/m3) 5.93 × 10−1 1.78 × 10−1

Flow velocity (m/s) 5.96 × 102 0
Sound speed (m/s) 4.98 × 102 3.40 × 102

Temperature (K) 6.16 × 102 2.88 × 102

The grid spacings measured at the middle of the nozzle
are plotted in Fig. 3. The space between the wall and the
adjacent grid point is about 10 µm and is small enough to
resolve details of the boundary layer for the current study.
The same numerical grid is used for the two numerical
schemes.

2.4 Initial and boundary conditions

Calculations are carried out only for the lower half of the
nozzle due to symmetry of the flow. The initial conditions
correspond to the moment when a plane incident shock
wave with Mach number of 2.5 reaches to the shock-tube
end wall where the nozzle entrance is located. The test
gas is air with γ = 1.4, and the initial flow conditions are
listed in Table 1.

In the present calculations, it is assumed that the co-
efficient of viscosity is dependent only on the temperature
and follows Sutherland viscosity law:

µ

µ0
=

( T

T0

) 3
2 T0 + S1

T + S1
,

where S1 is a constant value of 110 K and µ0 is the
coefficient of viscosity at a reference state. The value of
1.79 × 10−5 Pa · s is used for µ0. The constant value of
0.72 for the Plandtl number is also assumed. The non-slip
boundary condition is used on solid walls and the wall
temperature is kept at the room temperature of 288 K.

3 Experimental results

A series of experiments with the conditions listed in Ta-
ble 1 was carried out in order to investigate the initial
transient flow in the nozzle. The flow is visualized by us-
ing the double exposure laser holographic interferometry.
The results are shown in Figs. 4(a) to (f) corresponding to
different times from the moment of arrival of the incident
shock wave at the nozzle throat.

On the arrival of incident shock wave, upper and lower
parts of the incident shock wave are reflected at the shock-
tube end wall and propagates back away from the wall
leaving behind a stationary high pressure region. The in-
cident shock wave at the nozzle throat, on the other hand,
is transmitted unchanged. As a result, shock waves, trans-
verse to the main flow, are created at the upper and lower
edges of the nozzle throat and propagate towards the plane
of symmetry. The two shock waves soon collide at the

Fig. 5. Experimental result at 155µs

plane of symmetry and transmitted with each other,
Fig. 4(a). This can also be considered as reflections of
the shock waves at an imaginary solid plane replacing the
plane of symmetry. The symmetric nature of the flow is
kept quite well as seen in the series of pictures in Fig. 4
which justifies the assumed symmetry of the flow in the
numerical calculations.

The transverse shock waves repeat reflections between
the nozzle walls behind the primary transmitting shock
wave. Soon a secondary shock wave is generated and the
flow field increases its complexity. Due to interactions with
the boundary layers, the secondary shock wave is bifur-
cated at the wall creating bubbles of boundary layer fluid
as seen in Fig. 4. and Fig. 5 which is an enlarged image of
Fig. 4(c).

4 Numerical results and discussions

Figure 6 shows the holographic images of the density field
corresponding to times of experimental results obtained
by the explicit scheme of Harten and Yee.

Figure 7 is the density contour lines in the x-t plane
recorded at the plane of symmetry. It is noted that, at
about 2 cm from the nozzle throat, a left-running sec-
ondary shock wave is clearly formed and is carried to the
right because of the supersonic counter flow.

Bifurcations of the secondary shock wave at the noz-
zle walls are clearly seen together with the formation of
bubbles at the foot of bifurcated portions of the shock
wave. The mechanism of the bifurcation was investigated
by Mark (1958) using a shock tube as a study of inter-
action of the boundary layer induced behind the incident
shock wave and the shock wave reflected at the end wall.
In the current nozzle flow problem, in addition to the sim-
ple shock tube case, interactions of transverse waves and
diverging geometry make the flow field more complex. Al-
though the detailed shapes and positions do not match ex-
actly, the creation of vortices behind the interface which
separates gases originally came from the upstream and
the downstream of the nozzle throat is seen. The mecha-
nism of vortex creation and complex wave interactions in
the region between the primary and the secondary shock
waves are analyzed by Amann (1968; 1971) and the source
of the vortices is found to be the large differences in the
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(a) 15 µs (b) 50 µs

(c) 155 µs (d) 218 µs

(e) 319 µs (f) 471 µs

Fig. 6a–f. Numerical results (explicit calculations)

tangential velocity at the interface. A series of animation
was made using 400 numerically obtained interference im-
ages. The creation and the time evolution of vortices are
observed more clearly in the animation.

The agreement between the experimental and the nu-
merical results is quite good from the beginning to about
218 µs, (a) to (d) of Figs. 4 and 6. Then the numerically
obtained flow field starts to deviate from that of experi-
ment. Most noticeable difference is the grow rate of the
bubble of the boundary-layer fluid. It becomes larger in
the numerical results compared with those of the experi-
ment. This is most likely the result of the current laminar
calculations. It is pointed out by Mark that the shock bi-
furcation is suppressed once the boundary layer becomes
turbulent. Accordingly, the growth of the bubble is also
suppressed. Another evidence that the boundary layer be-
ing turbulent in the experiment is that the flow separation
is clearly seen in the numerical results, Figs. 6(e) and (f),
while in the experiment, the flow is still attached to the

Fig. 7. Isophcnics in x-t plane

nozzle walls without clear signs of boundary layer separa-
tions. Although it is difficult to clearly define the Reynolds
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(a) 15 µs (b) 50 µs

(c) 155 µs (d) 218 µs

(e) 319 µs (f) 471 µs

Fig. 8a–f. Numerical results (implicit calculations)

number in strongly unsteady flows such as the current
problem, the Reynolds number estimated from the con-
ditions behind the incident shock wave and the distance
fromt the primary shock wave to the secondary shock wave
is about 8 × 105 at the time 218 µs. This value usually is
considered for turbelent flows and it may apply to the
current study as well.

It is noted that the numerically obtained interface is
corrugated while the experimental picture shows smooth
interface. This is considered to be the result of accumu-
lation and propagation of numerical error created at the
nozzle axis. As mentioned before, the numerical calcula-
tions are carried out for one half of the nozzle area by
treating the nozzle axis as a solid wall. It is suspected
that the combination of the boundary conditions and the
grid distribution around the axis produces some numer-
ical error which accumulates and become visible on the
interface.

Figure 8 shows the numerical results of LUSGS scheme.
Comparing Fig. 8 with Fig. 6, it is seen that the difference
between the two are negligibly small. Although numeri-
cal fluxes in the explicit part of the LUSGS are evaluated
with the same scheme as in the explicit calculations of
Harten and Yee, this good agreement between the two is
much more than expected if we consider the quite differ-
ent solution processes of the two numerical schemes. It is
also found that LUSGS scheme converges without viscous
Jacobian terms and provides the same resolutions as the
explicit Harten-Yee TVD scheme. This helped to reduce
CPU time for LUSGS calculation since no matrix inver-
sion was necessary.

Calculations are carried out for 473 µs from the mo-
ment when the incident shock wave arrives at the noz-
zle throat. It took 5 hours and 29 minutes CPU time
for the explicit scheme and 4 hours and 18 minutes for
the implicit scheme. The CFL number used for the ex-
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plicit and implicit schemes are 0.8 and 20, respectively.
Both schemes are optimized for Cray C90 supercomputer
system with reasonable amount of efforts except that the
computations are carried out for all grid points at each
time step although the region ahead of the primary shock
wave is not needed to be calculated.

The difference in the CPU time is not much between
the implicit and explicit schemes for the present study of
unsteady flow problem since the time step is limited more
from the physical restriction than from numerical stability.
Although no extensive investigations were done on the op-
timization of the time increment and the number of New-
ton iterations for LUSGS scheme, it is probably possible
to reduce the number of Newton iteration by half without
too much degradation in the resolution of numerical re-
sults. It may also be possible to increase the CFL number
in LUSGS calculations more except at the beginning of
the calculations. Even then, however, the difference in the
CPU time is not so large as in usual cases of steady flow
calculation. Considering the complex coding which makes
implementations of sophisticated physical models such as
turbulence more difficult and the sensitive optimization
for combinations of operational parameters such as CFL
number and numbers of iterations for each time step, the
LUSGS implicit scheme is not so beneficial to use for such
nonstationary problems as the current problems.

In order to simulate whole process of initiation of noz-
zle flow, it is now clear that the implementation of tur-
bulence model in the numerical calculations is necessary.
Considering the complex unsteady wave interactions, it
may also be expected that the shear stress inside the flow
field away from the nozzle wall play some significant role.
In continuing numerical simulations of nozzle flow by tak-
ing these effects into account, it is expected that the un-
structured mesh code with the grid adaptation is more
suitable than the code with fixed structured grid and such
a code is now being developed.

5 Conclusions

The starting process of a two-dimensional nozzle flow were
calculated by explicit scheme of Harten-Yee TVD scheme
and by implicit scheme of LUSGS. The numerical results
are compared with the experimental results. It is found
that the agreement between numerical results and those
from experiment is good until the boundary layers become
turbulent. It is, therefore, important to include the turbu-
lence in the numerical simulations. Although LUSGS im-
plicit scheme provides solutions with the same quality as
the explicit TVD scheme with less CPU time, it may not

so advantageous to use for strongly nonstationary flows
such as the present nozzle starting process. Time steps in
the numerical simulations are determined more from the
nonstationary nature of the flow than from the stabilitys
of numerical codes.

An unstructured code with grid adaptation is now be-
ing developed so that the effect of shear stresses not just at
the wall but anywhere in the flow can be taken automat-
ically. It is hoped that this new code with an appropriate
turbulence model will become a good simulation tool for
our experimental equipments.
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