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Abstract. The inviscid equations of motion for the flow at
the downstream side of a curved shock are solved for the
shock–normal derivatives. Combining them with the shock–
parallel derivatives yields gradients and substantial deriva-
tives. In general these consist of two terms, one propor-
tional to the rate of removal of specific enthalpy by the re-
action, and one proportional to the shock curvature. Results
about the streamline curvature show that, for sufficiently fast
exothermic reaction, no Crocco point exists. This leads to a
stability argument for sinusoidally perturbed normal shocks
that relates to the formation of the structure of a detona-
tion wave. Application to the deflection–pressure map of a
streamline emerging from a triple shock point leads to the
conclusion that, for non–reacting flow, the curvature of the
Mach stem and reflected shock must be zero at the triple
point, if the incident shock is straight. The direction and
magnitude of the gradient at the shock of any flow quantity
may be written down using the results. The sonic line slope
in reacting flow serves as an example. Extension of the re-
sults — derived in the first place for plane flow — to three
dimensions is straightforward.

Key words: Streamline curvature, Crocco point, Pressure–
deflection map, Mach reflection, Detonation, Shock stability,
Vorticity, Sonic line

1 Introduction

Physical shock waves, which always have finite thickness,
may be modeled mathematically as infinitesimally thin en-
tities across which physical properties change discontinu-
ously. The relation between the two states at the discontinu-
ity is supplied by the conservation equations. Thus, given the
local and instantaneous velocity of propagation of a shock
relative to the medium and the orientation of this velocity
relative to the tangent–plane to the shock, the local and in-
stantaneous conditions on the downstream side of the shock
may be determined from the upstream state on the shock
and the thermodynamic properties of the medium. This is
true even if the shock is curved and accelerating, and if it

is propagating into a medium in which finite gradients exist.
Such relations will be referred to in the following as the
shock–jump relations.

When dealing with curved or accelerating shocks, or
with non–uniform upstream media, it is sometimes useful
to extend the shock–jump relations to include the connec-
tions between curvature or acceleration of the shock, and
the gradients on the downstream side of the shock. The case
considered here is that of a stationary curved shock with
uniform upstream conditions in a steady flow of a perfect or
a reacting gas. In this case the shock curvature and reaction
rate determine the gradients on the downstream side of the
shock.

A number of textbooks on gasdynamics partially cover
this topic, e. g., Hayes and Probstein (1959), Oswatitsch
(1952), and several publications treat different aspects,e.
g., Lighthill (1949), Munk and Prim (1948), Clarke(1969),
Mölder(1971). To present the problem coherently it is neces-
sary to repeat the analyses of previous publications to some
extent. In doing so the present approach begins with the
analysis of Hornung (1976), in which the equations required
for the present problem were used as a starting point for
an asymptotic analysis of endothermic reacting flow down-
stream of a convex shock.

2 Definition of the problem

Consider a curved shock wave in a uniform free stream
characterized by velocityV ′

∞, density ρ′
∞. The origin of

the shock–aligned curvilinear coordinatesx′, y′ is chosen at
the point where the streamline of interest crosses the shock
wave. Let the shock curvature at this point bek′ and the
shock and deflection angles beβ andδ as shown in Fig. 1.
Introduce dimensionless variables defined by

h = h′/V
′2
∞ , p = p′/ρ′

∞V ′2
∞, v = v′/V ′

∞,

ρ = ρ′/ρ′
∞, y = y′k′

0, k = k′/k′
0,

whereh, p, ρ, v are dimensionless specific enthalpy, pres-
sure, density andy-velocity, andk′

0 is a convenient reference
value of the shock curvature. Thex–component of velocity
u is made dimensionless in the same way asv.
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Fig. 1. Notation. Upstream of the curved shock wave, conditions are as-
sumed to be uniform. The origin of coordinates is the point where the
streamline of interest crosses the shock

The gas is supposed to obey caloric and thermal equa-
tions of state of the forms

h = h(p, ρ, ci), (1)

T = T (p, ρ, ci), (2)

in which T is the dimensionless absolute temperature
RT ′/V ′2

∞, with the specific gas constantR, and theci are
the mass fractions of then constituent species of the gas,i
taking values 1 throughn.

Since the mass fractions must satisfy the identity
n∑

i=1

ci = 1 ,

the number of mass fractions that are independent is one
less than the total numbern of components present. It is
usually convenient to choosec1 as a dependent variable and
the otherci’s as independent variables. Thus,

dh = hρdρ + hpdp +
n∑

i=2

hci
dci

where the subscripts denote partial differentiation.
In order to determine the gradients of physical properties

of the flow at the shock wave, it is necessary to solve the
differential equations of motion for the components of the
gradients. To do this, consider the two components of the
inviscid momentum equations, they–differentiated energy
equation and the continuity equation as follows:

uux + (1 − ky)vuy − kuv + px/ρ = 0, (3)

uvx + (1 − ky)vvy + ku2 + (1 − ky)py/ρ = 0, (4)

hppy + hρρy +
n∑

i=2

hci
ciy + vvy + uuy = 0, (5)

(ρu)x − kρv + (1 − ky)(ρv)y = 0. (6)

The case of interest here isy = 0, i. e., the term (1− ky)
that occurs in these equations may be written as 1 for our
purposes. Thex–differentiated form of the energy equation

ρx = −(uux + vvx + hppx)/hρ, (7)

will also be needed, as will the shock–jump relations

p − p∞ = sin2β
(
1 − 1/ρ

)
, (8)

ci = ci∞, (9)

v = sinβ/ρ, (10)

2(h − h∞) = sin2β
(
1 − 1/ρ2

)
, (11)

u = cosβ, (12)

ρ =
γ + 1

γ − 1 + 2/(M2sin2β)
, (13)

whereγ is the ratio of specific heats, andM is the free–
stream Mach number. The expression for the density ratio
across the shock, Eq. (13), is written for a constant–γ gas.
This is permissible in a reacting flow situation if the shock–
jump relations are taken to apply to the jump from the free–
stream conditions to the conditions downstream of the shock
before any reactions take place,i. e., to a jump that does not
involve a change of composition, as is made clear by Eq.
(9).

The problem of determining the gradients of the flow
variables at the shock consists of solving Eqs. (3 to 6) for
the y–derivatives, and determining thex–derivatives (along
the shock) by differentiating the shock–jump relations with
respect tox.

So far it has been tacitly assumed that the flow is plane.
As will be seen later, the extension to the general case is
quite straightforward.

3 Partial and substantial derivatives at the shock

Differentiation of the shock–jump conditions with respect to
x introduces the shock curvatureβx = −k:

ux

k
= sinβ (14)

ρx

k
= − 4ρ2cosβ

(γ + 1)M2sin3β
(15)

px

k
= −2 sinβ cosβ

(
1 − 1

ρ

)
+

sin2β

ρ2

ρx

k
(16)

vx

k
= − cosβ

ρ
− sinβ

ρ2

ρx

k
. (17)

Solving Eqs. (3 to 6) for they–derivatives yields:

pyF = ρ
n∑

i=2

hci
ciy

− kρ

[
u

(
1 − ρhρ

v2

)
K +

u

v
E + ρ

hρ

v
L

]
(18)

uy = −kE

v
(19)

vvyF = −
n∑

i=2

hci
ciy + k

[
ρuhpK +

u

v
E + ρ

hρ

v
L

]
(20)

ρyF =
ρ

v2

n∑
i=2

hci
ciy

− kρ

v2

[
ρuhpK +

u

v
E + (1 − ρhp)L

]
, (21)
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where

K =
vx

k
+ u, (22)

L =
(ρu)x
ρk

− v, (23)

E =
px

ρk
+ u

ux

k
− uv, (24)

F = 1 − ρ

(
hρ

v2
+ hp

)
. (25)

The y-derivatives of theci have to be kept as components
of a parameter, because they depend on the reaction rates,
which are functions of state that have so far been left unspec-
ified. As may be seen from Eqs. (14 to 17), anyx–derivative
is proportional tok, so that ratios likepx/k are independent
of the shock curvature, and all such ratios are known on the
shock in terms of the free–stream conditions andβ.

With bothx– andy–derivatives known, it is now possible
to form substantial derivatives according to

d

dt
= u

∂

∂x
+ v

∂

∂y
. (26)

For example, noting that the deflection angle is

δ = β − arctan(v/u), (27)

forming the derivatives of this function with respect tox
andy, and writing

V = ds/dt =
√

v2 + u2, (28)

wheres is distance along the streamline measured from the
origin, the streamline curvature at the shock,dδ/ds is ob-
tained as

vV 3

u
F

dδ

ds
=

n∑
i=2

hci

dci

dt
+

k

v

(
ρhρG − vV 2

ρu

px

k
F

)
, (29)

where

G = V 2 +
uvx

k
− upx

ρvk
− v

ux

k
. (30)

Similarly, other substantial derivatives may be formed:

F
dp

dt
= ρ

n∑
i=2

hci

dci

dt
+ kG

ρ2hρ

v
, (31)

F
dρ

dt
=

ρ

v2

n∑
i=2

hci

dci

dt
− kG

ρ2

v

(
hp − 1

ρ

)
, (32)

V
dV

dt
= −1

ρ

dp

dt
. (33)

At this point it is worth taking a closer look at these re-
sults. Note that the streamline curvature and the substantial
time–derivatives all consist of two terms, one of which is
proportional to the rate of change of specific enthalpy of the
gas that is caused by chemical reaction, and the other is pro-
portional to the shock curvature. (It is important to remember
that the coefficients of these two parameters – reaction rate

and shock curvature – are all determined by the free–stream
conditions and the shock–jump relations). It follows that, for
non–reacting flow, all of these derivatives are proportional
to the shock curvature, through a proportionality factor that
depends on the free–stream conditions and the shock angle.
Conversely, for chemically reacting flow through a straight
shock, the streamline curvature and time derivatives are di-
rectly proportional to the rate of specific enthalpy removal
by chemistry.

A special case of some interest warrants discussion: In
inviscid chemically reacting flow over a plane wedge at an
angle sufficiently small to give an attached shock, the stream-
line curvature at the tip of the wedge has to be zero (plane
wedge) and Eq. (29) gives

n∑
i=2

hci

dci

dt
= −k

v

(
ρhρG − vV 2

ρu

px

k
F

)
, (34)

i. e., the reaction–rate parameter is proportional to the shock
curvature at the tip, as has been pointed out by Clarke (1969),
Becker (1972) and others. This has also been used to deter-
mine reaction rates experimentally by Smith and Wegener
(see Becker, 1972) and by Kewley and Hornung (1974).

Another interesting observation may be made by forming
the ratio of Eqs. (31) and (32). This gives

dp

dρ
= v2

∑n
i=2 hcidci/dt + kGρhρ/v∑n

i=2 hci
dci/dt − kGρv

(
hp − 1/ρ

) . (35)

Both the numerator and the denominator obviously contain
two terms, one from shock curvature and one from reaction
rate. Again consider the limiting cases of non–reacting flow
and straight shock: In the case of non–reacting flow, the first
terms in the numerator and in the denominator vanish. This
has the interesting consequence that the curvature terms also
cancel, so that the derivative ofp with respect toρ along the
streamline also becomes independent of the shock curvature!
The equation reduces to

dp

dρ
= − hρ

hp − 1/ρ
. (36)

This is just the expression for the value of this derivative at
constant entropy (the square of the frozen speed of sound)
for a gas with a general caloric equation of state. This is
as it should be, since the entropy will be constant along a
streamline in non–reacting flow.

In the other limit, that of reacting flow through a plane
shock, omitting the curvature terms again causes the other
parameter to cancel as well, and gives the well–known result

dp

dρ
= v2. (37)

4 Streamline curvature

Many interesting features of flows may be understood better
by studying the streamline curvature at a shock. This is, of
course, only one case where the results of the previous sec-
tion about gradients at the shock can be used to advantage.
However, it serves the purpose of demonstrating how the
jump conditions may be extended by considering gradients.
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Fig. 2. Ratio of streamline to shock curvature for perfect–gas flows with
γ = 1.4 and for free–stream Mach numbers 1.1 (uppermost curve), 1.2,
1.4, 1.7, 2.0, 2.5, 3,4, 5, 7, 10, 20. The ratio becomes singular at the Mach
angle, and goes to zero at the normal–shock point. A zero crossing occurs
again at the Crocco point (zero crossing) which always occurs between the
sonic and maximum–deflection point

4.1 Perfect–gas flows

With non–reacting flow,G, F , E, K, andL reduce to rela-
tively simple functions ofM , γ andβ:

G =

[
3 cos2β − sin2β

ρ2

] (
1 − 1

ρ

)
+

8cot2β
(γ + 1)M2

, (38)

F = − 1
γ − 1

(
1 − γ p ρ

sin2β

)
, (39)

E = −cosβ sinβ
ρ

[(
3 − 1

ρ

)
+

4

ρ (γ + 1)M2sin2β

]
, (40)

K = cosβ

[
1 − 1

ρ
+

4

(γ + 1)M2sin2β

]
, (41)

L = sinβ

(
1 − 1

ρ

)
− 4ρ cos2β

(γ + 1)M2sin3β
. (42)

Evaluating the ratio of streamline to shock curvature gives
the result shown in Fig. 2 forγ = 1.4. The features of
the streamline–to–shock curvature ratio may be described
in terms of a convex shock such as is shown in Fig. 1. At
the normal–shock point the streamline curvature has to be
zero, of course. It is of opposite sign to that of the shock
at values ofβ smaller than and close to 90◦, but reaches a
minimum before increasing again to positive values, and fi-
nally becomes singular at the Mach angle. The zero–crossing
occurs at the so–called Crocco point, at which the stream-
line curvature is zero for all values of the shock curvature.
For perfect–gas flows, the Crocco point always lies between
the point where the Mach number at the shock is unity –
the sonic point – and the maximum–deflection point. Thus,
for the convex shock, the streamline curvature is concave–
up near the normal–shock point, and goes to convex–up at
small shock angles. The singularity at the Mach angle does
not mean that the streamline curvature becomes infinite, but
rather that the shock curvature is identically zero there.

The dependence of the streamline to shock curvature ra-
tio on γ may be illustrated by plotting the same graphs for

Fig. 3. Ratio of streamline to shock curvature for perfect–gas flows with
γ = 1.05 and for free–stream Mach numbers 1.1, 1.2, 1.4, 1.7, 2.0, 2.5, 3,
4, 5, 7, 10, 20. Note how the high–Mach–number cases hug the ratio 1.
This is close to the Newtonian limit, where the streamlines lie close to the
shock for a large range of shock angles

γ = 1.05, see Fig. 3. At low Mach numbers the curves be-
have in much the same manner as for higherγ, but at higher
Mach numbers the minimum is much lower, the Crocco
point is pushed closer to the normal–shock point, and, as
the Mach number becomes very high, the curvature ratio
hugs the value 1 more and more closely and for a larger
range of shock angles. This is the behavior expected as con-
ditions approach the Newtonian limit (M → ∞, γ → 1),
where streamline and shock become almost congruent, since
the density ratio across the shock approaches infinity.

4.2 Reacting flow

In order to calculate explicit values of gradients in the case
of reacting flow, it is necessary to introduce a model for the
caloric equation of state and for the reaction rate. For this
purpose, the rate equation is written in the simple form

n∑
i=2

hci

dci

dt
=

θ

ε
exp(−θρ/p), (43)

so that a representative variation of the dependence of reac-
tion rate on shock angle is maintained by using the Arrhenius
form. The differential form of the caloric equation of state
becomes

dh = − γ

γ − 1
p

ρ2
dρ +

γ

γ − 1
1
ρ
dp +

θ

ε
exp(−θρ/p)dt. (44)

With this form of the reaction rate, the streamline curvature
may be calculated explicitly for given values ofθ andε. the
result of such a computation is plotted in Fig. 4. With the
sign convention chosen in Eqs. (43) and (44), positive values
of θ andε mean that the reaction is endothermic. Thus, Fig. 4
shows the remarkable fact that, for a given set of parameters
M , γ, andθ, there exists a particular reaction rate parameter
ε, below which the streamline–to–shock curvature ratio is
positive for all shock angles, and no Crocco point exists.
The reaction rate at this point is always exothermic,i. e., ε
is negative at this point. For the parameters chosen in Fig. 4,
the special value ofε is approximately -1/119.
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Fig. 4. Streamline to shock curvature ratio in reacting flow forγ = 1.4,
M = 6 andθ = 0.8. The values of the reaction rate parameter are 1/ε =
160 (lowest curve), 80, 40, 20, 0.1, -20, -40, -80, -119, -160, -320

Fig. 5. Schematic sketch of a convex and concave near–normal shocks with
associated streamlines, for a perfect gas. Both the concave and the convex
shocks produce streamline curvatures that can exist stably in steady flow

4.3 Application to geometrically perturbed normal shock

The fact that the curvature ratio is positive near the normal–
shock point, if the rate of an exothermic reaction is suffi-
ciently fast, has interesting consequences. In order to under-
stand this, consider first the case of a sinusoidally perturbed
normal shock in a perfect gas. Figures 2 and 3 show that,
for small negative perturbations of the shock angle from
90◦, the streamline–to–shock curvature ratio is negative for
a perfect gas. Similarly, for positive perturbations ofβ from
90◦, the ratio will be positive. Consequently, a concave–
upstream shock, which is associated with streamline conver-
gence toward the symmetry plane of the shock, will cause
the streamline curvature to be such that streamlines merge
into the direction of the symmetry plane, see Fig. 5, left.
A convex–upstream shock, for which the deflection is away
from the symmetry plane, produces streamlines that bend
away from the symmetry plane, see Fig. 5, right. This is very
different in the case of a sufficiently fast exothermic reac-
tion, of the type where no Crocco point exists, or where the
streamline–to–shock curvature ratio is positive in the range
0 < β < 90◦. In that case, the situation is as illustrated
in Fig. 6. The convex–upstream shock with deflection away
from the symmetry plane is also associated with a streamline
curvature away from the symmetry plane, see Fig. 6, left. On
the other hand, the concave–upstream shock, with deflections

Fig. 6. Schematic sketch of a convex and concave near–normal shocks
with associated streamlines, for a gas with fast exothermic reaction rate.
The convex–upstream shock on the left can exist with stable steady flow.
However, the concave–upstream shock shown in the center requires a pair
of unsteady shocks to deflect the flow parallel to the symmetry plane (right)

toward the symmetry plane, also produces a streamline cur-
vature toward the symmetry plane. On the symmetry plane,
this causes a clash between the two convergent streamlines
that will necessarily result in the production of two unsteady
shock waves traveling outward from the symmetry plane, see
Fig. 6, right.

Thus, it is evident that a concave–upstream shock can
not give a steady solution if an exothermic reaction of suffi-
ciently fast rate occurs at the shock. This is clearly related to
the unsteady waves that occur in detonations and that form
the cellular structure observed in such waves.

5 Shock and streamline in theV δ–plane

Many gasdynamical problems are simplified by mapping
the flow into the hodograph oruv–plane. It is sometimes
more convenient to choose other variables for this mapping,
such as theV δ–plane, or thepδ–plane. The condition after a
straight shock in non–reacting flow maps into theV δ shock
locus shown in Fig. 7 as the continuous curve, starting at
the infinitesimally weak shock point (1,0), moving smoothly
through the maximum–deflection point and back toδ = 0
at the normal–shock point. This curve is the same for flows
with finite reaction rate, of course, since it just represents
the shock–jump conditions, which we have taken to be the
same, by choosing the composition to be unchanged across
the shock.

The additional information that is brought into this pic-
ture by knowing the gradients at the shock, is that it permits
curved and reacting shocks to be treated in this way as well.
It is therefore convenient to treat perfect–gas and reacting
flows separately.

In particular, the derivativedδ/dV may be formed by
using the general results for the gradients at the shock. Thus,

dδ

dV
=

dδ

ds

ds

dV
=

dδ

ds

ds

dt

dt

dV
=

dδ

ds
(−ρV 2)

dt

dp
. (45)

Substituting from Eqs. (29) and (31), this gives

dδ

dV
= − u

V v

∑n
i=2 hci

dci

dt + k
v

(
ρhρG − vV 2

ρu
px

k F
)

∑n
i=2 hci

dci

dt + kG
ρhρ

v

(46)

This derivative indicates the direction in which the stream-
line departs from the shock in theV δ–plane.
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Fig. 7. V δ–plane map of a curved shock in non–reacting flow withM = 6
and γ = 1.4. The short straight lines indicate the direction in which the
streamline leaves the shock in the case of a convex–upstream shock. Note
how the direction is parallel to the shock locus at the weak–shock point,
becomes horizontal at the Crocco point, then vertical at the zero–G point,
and finally horizontal again at the normal–shock point

5.1 Perfect–gas flows

For the special case of non–reacting flow, the streamline
slope in theV δ–plane becomes

dδ

dV
=

−u

V v

[
1 − vV 2

ρ2hρu

px

k

F

G

]
. (47)

In Fig. 7 this direction is indicated by a short straight line
starting at the shock locus. Although theslopeof the stream-
line in theV δ–plane is independent of the shock curvature,
its direction is opposite to the one shown, for a shock wave
curvature of opposite sign. The direction of the streamline
shown in Fig. 7 is that for a convex–upstream shock.

The streamline direction in theV δ–plane undergoes sev-
eral changes as we proceed from the weak–shock point to
the normal–shock point. At the former, the streamline di-
rection is parallel to the shock locus. No dramatic change
occurs up to the vicinity of the Crocco point. In that vicin-
ity, the slope changes rapidly from negative to zero at the
Crocco point, and subsequently to infinite, where it changes
sign to minus infinity, and then approaches zero from below
at the normal–shock point. For non–reacting flow, the point
at which the slope becomes infinite is easily identified as the
zero–G point, see Eq. (47).

This kind of diagram was used extensively by Guder-
ley in the hodograph plane. He called it the hedgehog or
porcupine diagram. Figure 7 is a funny–looking porcupine,
with some of the “spines” pointing inward. However, it be-
comes obvious why the term porcupine seemed appropriate
to Guderley, when it is remembered that he was concerned
particularly with flows in the vicinity ofM = 1. Thus, Fig. 8
shows the same plot for the caseM = 1.5 in which all the
spines are seen to point outward.

Fig. 8. For M = 1.5, γ = 1.4, the streamline direction at the convex–
upstream shock is everywhere outward from the shock locus

Fig. 9. Plane shock with endothermic chemical reaction.M = 6, γ = 1.4.
Note the difference between the streamline slopes of this diagram and those
of Fig. 7

5.2 Reacting flow

In the other extreme case of a straight shock with finite
chemical reaction rate the streamline slope in theV δ–plane
becomes particularly simple:

dδ

dV
= − u

V v
. (48)

It is clear that this slope is negative throughout the range 0<
β < 90, and the spines point outward for an endothermic
reaction and inward for exothermic reaction. Figure 9 shows
that case withM = 6 andγ = 1.4 for endothermic reaction.

The streamline slopes in Figs. 7 and 9 are very different,
especially in the weak and medium shock strength regime.
Both are extreme cases, of course, and the general case of
finite reaction, Eq. (46), will give slopes anywhere between
the two extremes depending on the relative importance of
chemical reaction and shock curvature. It is also possible to
obtain the asymptotic behaviors of Eq. (46), both in the fast
and slow reaction limits. To do this, introduce the parameter

ω = −v
∑n

i=2 hci

dci

dt

kρhρ
= sinβ

γ − 1
γ

θ

εk
exp(−θρ/p), (49)
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where the last expression applies for the gas model of Eq.
(43). This variable measures the relative importance of reac-
tion rate and shock curvature. It is positive for endothermic
reaction and convex–upstream shocks. With this definition
of ω, Eq. (46) becomes

dδ

dV
= − u

V v

ω − G + vV 2

ρ2hρu
px

k F

ω − G
. (50)

Expanding this forω → 0, the slope becomes(
dδ

dV

)
ω→0

= − u

V v

[
1 −

(
vV 2

ρ2hρu

px

k
F

)
1
G

(
1 +

ω

G

)]
+ O(ω2). (51)

In the other limit, we obtain(
dδ

dV

)
ω→∞

= − u

V v

[
1 +

1
ω

(
vV 2

ρ2hρu

px

k
F

)]

+ O

(
1
ω2

)
. (52)

It is opportune here to stress again that the functions on
the right of 50 to 52 may all be expressed in terms of the
free–stream conditions,β andω.

The manner in whichdδ/dV changes with reaction rate
is shown for M = 6, γ = 1.4 and θ = 0.8 in Fig. 10,
using the reaction rate model of Eqs. (43) and (44). Consider
first the full lines in this graph: In the weak–shock limit,
the slope has a finite negative value. For a given value of
kε, asβ is increased from the weak–shock limit, the slope
increases and becomes infinite at a particular value ofβ, then
rises from negative infinity, toward zero at the normal–shock
point. This rise occurs almost exactly along the straight–
shock curve, which is the lower convergence line in the
graph. Note that, for straight shocks,i. e., infinite ω the slope
is negative everywhere except at the normal–shock point,
independently of whetherω is positive or negative. This
is the reason why this line is a convergence line between
the dashed and full curves. In theV δ–plane the difference
between endothermic and exothermic reactions would be that
the streamlines would leave the shock (at the same slope) in
opposite directions. The upper convergence line is the value
for a curved shock in non–reacting flow, the curve labeled
kε = ±1.

It is interesting to consider a particular shock angle, say
55◦ and fixed shock curvature, and changingε from ∞ (non–
reacting flow) to 0 (fast reaction rate). The slope starts on
the upper convergence line (kε = ±1), wheredδ/dV is ap-
proximately –1.8, then increases rapidly to∞ at ε ' 10−3,
where it flips to−∞ and then approaches the lower con-
vergence line from below. For a convex–upstream shock,
these changes represent a smooth anticlockwise rotation of
the “spine” of the porcupine from the direction in Fig. 7 to
that in Fig. 9.

6 Three–shock points

Across the streamline coming out of an intersection of three
shock waves in inviscid, steady flow the velocity is discon-
tinuous, but the deflection and pressure are continuous. This

Fig. 10. Effect of reaction rate ondδ/dV as a function of shock angle, for
M = 6, γ = 1.4 andθ = 0.8. The values of the reaction rate parameter are
kε = 1, 10−3, 10−6, 10−9, 10−12, –1, –0.0084, –10−3, –10−6, –10−9,
and –10−12. The dashed lines indicate the cases where the reaction is
exothermic. The lower convergence line corresponds to the straight–shock
solution shown in Fig. 9. The non–reacting curved–shock case is the upper
convergence line at low shock angles, and – at larger shock angles – may
be identified as the lines forkε =±1 that are practically congruent

makes representation of the flow in theδp–plane very at-
tractive. With the knowledge of the gradients, it is relatively
simple to extend arguments about triple points of straight
shocks to include cases where the shocks are curved. To
this end, the derivativedδ/dp at a curved shock may be
evaluated quite straightforwardly as:

dδ

dp
=

dδ

ds

ds

dp
=

dδ

ds

ds

dt

dt

dp
=

dδ

ds
V

dt

dp
. (53)

Substituting from Eqs. (29) and (31),

dδ

dp
=

u

ρV 2v

∑n
i=2 hci

dci

dt + k
v

(
ρhρG − vV 2

ρu
px

k F
)

∑n
i=2 hci

dci

dt + kG
ρhρ

v

, (54)

which is just (−1/ρV )dδ/dV . This means that the qualita-
tive behavior ofdδ/dp is like −dδ/dV .

An example of the occurrence of a triple point is the
Mach reflection of a straight shock from a wall, as shown
schematically in the upper part of Fig. 11. The lower part of
Fig. 11 shows a map of non–reacting flow of this kind in the
δp–plane. The regions labeled 1 through 5 in the physical
space are labeled similarly at the corresponding points in the
δp–space. Now suppose that, at the triple point, the Mach
stem is curved, the incident shock is plane, and the reflected
shock is curved. Sinceδ and p must be continuous across
the slip line not only at the triple point, but also atds from
the triple point,dδ/dp has to be continuous across the slip
line at the triple point.

The value ofdδ/dp, for non–reacting flow and a con-
cave–upstream shock, gives the slopes and directions shown
in Fig. 11 for the chosen parameters. It is clear from Fig. 11
that, with a straight incident shock, the slope inδp–space of
the slip line issuing from the Mach stem isnot the same as
that issuing from the reflected shock at the point 3,4. Since
the slopes are independent of the shock curvatures, there
is no possibility for the curvatures to adjust to meet the
constraint. The only possible conclusion to be drawn from
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Fig. 11.Mach reflection. Top: Schematic sketch of the shock configuration,
with labels identifying regions and points of the flow in physical space. Bot-
tom: δp–map of this flow, showing the incident shock (1–2), the reflected
shock (2–3) and the Mach stem (4–5), as determined from the shock–jump
relations.M = 6, γ = 1.4, non–reacting steady flow. Also shown are the
streamline directions from the reflected shock and the Mach stem. Note
that the two streamline directions coming from 3 and 4 are not the same,
leading to the conclusion that these two shocks must have zero curvature
at the triple point

Fig. 12. Definition of angles

this result is that – in non–reacting flow – the curvatures of
both the Mach stem and the reflected shock must be zero
at the triple point (except in very special cases). This is
not to say that these two shocks can not be curved at other
locations, but rather that – at the triple point – both have
a point of inflection. (In the more general case of a curved
incident shock, M̈older (1972) shows that the curvature of
the other shocks need not be zero.)

It is interesting that this result may be different for the
case of reacting flow. This is because, with finite reaction
rate, dδ/dp is no longer independent of the shock curva-
ture. The reaction therefore provides an additional degree
of freedom that may permit the shocks to assume the finite

curvatures that correspond to the local reaction rates and the
streamline curvature constraint at the triple point.

7 Some other derivatives

The derivatives of the flow quantities at the shock obtained
in Sect. 3 permit a number of other interesting quantities to
be determined. In this section the vorticity at a shock is used
as an example, and an illustration of how the results may be
used generally is given.

7.1 Vorticity at the shock

In the curvilinear coordinates chosen, the vorticity at the
shock is given by

ζ = uy − vx + ku. (55)

Substituting foruy from Eqs. (19) and (24), this becomes

ζ = −k

v

(
px

ρk
+ u

ux

k
− uv − v

vx

k
+ uv

)
. (56)

In this expression, the terms with explicit Mach–number and
γ dependence in thep− andv−derivative terms cancel when
using Eqs. (8–17), and only theβ− andρ−dependence re-
mains. The result is

ζ = −kρ cosβ

(
1 − 1

ρ

)2

. (57)

This is the well–known expression for the vorticity at a
curved shock, seee. g., Hayes and Probstein (1959). Clearly,
the vorticity at the shockis independent of the reaction rate.
Note that this is because the problem considered here is that
where the composition is constant across the shock and con-
tributions from the reaction occur only after the shock, rather
than that of equilibrium shocks.

7.2 Gradients at the shock, sonic line direction

The results of Sect. 3 may be used to determine the magni-
tude and direction of the gradient of any flow quantity. For
example, the pressure gradient direction and magnitude will
be

arctan(py/px),
√

p2
y + p2

x. (58)

Since reactions strongly affect the direction of the density
gradient, knowledge of this direction is very valuable, for
example, in the interpretation of interferograms of reacting
flow. Other gradients are of interest. For example, the slope
of the sonic line, for which a closed–form solution exists
in the case of plane flow of a perfect gas (see Hayes and
Probstein, 1959), is also affected by the reaction rate.

In order to determine the sonic line slope, consider the
energy equation for our isoenergetic flow and the model gas
in the form

V 2

2
+

a2

γ − 1
+ hchem. = h0, (59)
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Fig. 13. Top: Dependence of sonic line angle on Mach number
and reaction rate, plane flow,γ = 1.4, θ = 0.8. The deflection
and shock angles at the sonic condition are also shown as a dot-
ted and a chain–dotted line. The chain–dotted line with three dots
is for the non–reacting case, in agreement with the solution given
by Hayes and Probstein. Continuous lines and dashed lines repre-
sent endothermic and exothermic reaction rate cases respectively, for
kε = −0.0001, −0.001, −0.003, −0.01, 0.01, 0.003, 0.001, 0.0001. Bot-
tom: Schematic sketch of shapes of subsonic pocket behind a plane convex
shock in near–sonic flow

wherehchem. is chemically stored specific energy anda is
the frozen speed of sound.V = a along the sonic line, for
which we can therefore write

γ + 1
2(γ − 1)

V 2 + hchem. = h0. (60)

Differentiating this along the sonic line, and recalling that
cix = 0,

Vx cosφ + Vy sinφ + sinφ
γ − 1
γ + 1

1
V

n∑
i=2

hci
ciy = 0. (61)

Here,φ is the angle between the sonic line and the shock.
It is related to the angleα between the sonic line and the
streamline through

α = φ − β + δ,

see Fig. 12 for notation. Thus,

tanφ =
−Vx

Vy + γ−1
γ+1

1
V

∑n
1=2 hciciy

. (62)

Figure 13 shows that, at high Mach number, endothermic
reactions causeα to increase, andvice versa, but these trends
are reversed at low Mach number. The reversal occurs at a
particular Mach number, which, for the value ofγ chosen,

Fig. 14. Sketch of sonic lines forM = 10, γ = 1.4 with endothermic
reaction. The equilibrium situation is modeled by aγ = 1.2 flow to provide
the asymptotic sonic–line direction. The sonic lines for three reacting–flow
cases and the frozen case are shown as heavy lines

is approximately 2.5. This is the point where the reaction
rate term inVy just cancels the one that occurs explicitly in
the denominator of (62). This condition occurs at

p

ρ v2
=

γ2 − γ + 2
γ2 − 1

.

Using (8), (10) and (13) to expressp, v and ρ in terms
of M , γ and β then leads — for the particular value of
β = βs(γ, M ) at the sonic point — to a particular value of
M (γ) at which the reaction rate does not influence the sonic
line slope.

For very fast reactions,φ switches from−90◦ to +90◦ at
this critical Mach number, so that, at large Mach number, the
limiting sonic line direction for very fast reaction is along
the shock. In endothermic flow it is atφ = +90◦ and in
exothermic flow at−90◦.

The response of the sonic line to reaction rate at high
Mach number has been observed by Hornung and Smith
(1979), who used it to make an argument about the influ-
ence of non–equilibrium dissociation on the shock detach-
ment process in flow over a wedge. This behavior was also
observed in recent numerical computations of these wedge
flows by Candler (unpublished work). In endothermic flow
near the shock, at high Mach number, streamlines cross the
sonic line from a subsonic region, while, for sufficiently fast
exothermic reactions, the opposite holds (negativeα).

In the low Mach number range, the sonic line direction
is very sensitive to slight heat removal by endothermic re-
action. NearM = 1, a change from non–reacting to slow
endothermic reaction switchesα from +90◦ to −90◦, while
exothermic reactions have a weaker effect. This will cause
the subsonic pocket behind a convex shock to change as
shown in the sketch of Fig. 13. (bottom).

The effect of chemical reaction on the sonic line may be
illustrated by considering frozen and equilibrium flow limits.
In the endothermic case, the equilibrium limit is displaced,
relative to the non–reacting limit, toward the direction of
smallerγ. For smallerγ the sonic point is displaced to larger
β. This is shown with the correct values ofβs in Fig. 14
for the example of a circular–arc shock atM = 10 with
γ = 1.4 and 1.2. Also plotted are the correct streamline
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Fig. 15.Hyperbolic shock shapes, with finite curvature at the normal–shock
point and asymptoting to a Mach wave at largeX. Mach numbers are: 1.1,
1.2, 1.4, 1.7, 2, 2.5, 3, 4, 5, 6, 8, 10, 20

Fig. 16. Streamline–to–shock curvature ratio for axisymmetric shocks as
shown in Fig. 15. Perfect gas,γ = 1.4, Mach numbers as in Fig.15. The
ratio is the streamline curvature divided by the shock curvaturek in the
xy–plane

Fig. 17. Streamline–to–shock curvature ratio for plane shocks of the shape
shown in Fig. 15. Perfect gas,γ = 1.4, Mach numbers as in Fig. 15

Fig. 18. Sonic line angle in axisymmetric flow. Shock shape as
in Fig. 15, notation as in Fig.13.γ = 1.4, θ = 0.8, kε =
−0.0001, −0.001, −0.003, −0.01, 0.01, 0.003, 0.001, 0.0001

and sonic line directions for the two cases. In flow with
endothermic reaction, the sonic lines depart from theγ = 1.4
sonic point at anglesα that increase with reaction rate. If
the reaction is completed to equilibrium over a distance that
is small compared with the shock radius of curvature, all
the directions at equilibrium should be something like that
for γ = 1.2 in this crude model. Thus, the sonic line for
finite reaction rate leaves theγ = 1.4 sonic point at a finite
angle relative to that of non–reacting flow and asymptotically
blends into theγ = 1.2 sonic line. In the sketch, sonic lines
for three finite rates are shown to illustrate how the transition
from frozen flow to larger and larger rates proceeds.

The situation is reversed for exothermic flow. It is easily
seen from Fig. 14 that the streamline always crosses the
sonic line from the subsonic to the supersonic side with
endothermic flow at these conditions, while both directions
are possible with exothermic flow, as has been pointed out
earlier.

8 Three–dimensional flows

Finally, consider the extension of these results to the more
general case of three–dimensional flow. To this end, choose
thexy−plane to be the plane of the free–stream direction and
the local normal to the shock wave at the point of interest.
With this choice, the velocity component in the third (z)
direction and its gradients in thexy–plane are zero. Thus a
suitable name for this plane is the “flow plane”. By choosing
x andy to lie in the flow plane, the derivatives ofp, ρ and
u with respect toz (the dimensionless coordinate normal
to the flow plane) are zero, and the only non–zero gradient
normal to the flow plane is

wz = l,

wherew is the dimensionlessz−component of velocity and
l is the shock curvature in theyz–plane.k+l is the Gaussian
curvature of the shock at the point considered.

If we write Eqs. (3 to 6) fory = 0, the only changes
to these equations are that the term−kρv in the continuity
equation becomes−(k + l)ρv, and a new term−ρl is added.
The equation (aty = 0) becomes
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(ρu)x − (k + l)ρv + ρl + (ρv)y = 0. (63)

This causes additional terms proportional tol to appear in
Eqs. (18), (20) and (21), for they–derivatives ofp, v, and
ρ as follows:

pyF = . . . + lρhρ(1/v − 1), (64)

vvyF = . . . + lρhρ(1/v − 1), (65)

ρyF = . . . + l (1 − 1/ρ + ρ/v). (66)

Equation 19 foruy remains unchanged.
A relatively simple example is that of axisymmetric flow.

In this case, the flow plane is the meridional plane. Consider
an axisymmetric shock wave of hyperbolic shape in the flow
plane, such that the normal–shock point has finite curvature
equal in both directions, and the shock is aymptotically con-
ical with half–angle equal to the Mach angle far from this
point. Defining the distance along the axis of symmetry,
normalized by the radius of the shock at the nose, to beX,
and the normal to it (similarly normalized) asY , the shock
shapes for a set of Mach number values are as shown in
Fig. 15. The equation of the shock shape is

Y = tanµ

√
X

(
X +

2
tan2µ

)
(67)

whereµ is the Mach angle arcsin(1/M ). This gives a shock
angleβ that can be determined from

tanβ =
tanµ√

X

1 + 1/(X tan2µ)√
1 + 2/(X tan2µ)

. (68)

Solving this forX,

X tan2µ =

√
tan2β

tan2β − tan2µ
− 1. (69)

With this, the shock curvature in the meridional plane be-
comes

k = (1 + 2X cos2µ + X2 sin2µ)−3/2. (70)

This gives an explicit relation betweenk andβ with Mach
number as a parameter. For an axisymmetric shock, the
transverse curvature in theyz–plane isl = cosβ/Y . The
shape of the shock now permits the streamline to shock

curvature ratio to be determined for the axisymmetric and
the plane case as functions of the shock angleβ. The results
are shown in Figures 16 and 17. These exhibit no qualitative
differences. Quantitative changes include slight changes in
the Crocco points and a greater negative value of the curva-
ture ratio for axisymmetric flow.

It is interesting to find the effect of the third dimension
on the sonic line slope at the shock. This is not new in
non–reacting flow (see Hayes and Probstein), but our results
permit it to be obtained directly for reacting flow also. Fig-
ure 18 shows howα behaves in an axisymmetric flow with
the same shock shapes as in Fig. 15. The effect of reactions
is very similar to that for plane flow.
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Mölder S (1971) Reflection of curved shock waves in steady supersonic

flow. CASI Trans. 40:73-80
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