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Abstract. The inviscid equations of motion for the flow at is propagating into a medium in which finite gradients exist.
the downstream side of a curved shock are solved for th&uch relations will be referred to in the following as the
shock—normal derivatives. Combining them with the shock—shock—jump relations.
parallel derivatives yields gradients and substantial deriva- When dealing with curved or accelerating shocks, or
tives. In general these consist of two terms, one proporwith non—uniform upstream media, it is sometimes useful
tional to the rate of removal of specific enthalpy by the re-to extend the shock—jump relations to include the connec-
action, and one proportional to the shock curvature. Resulttions between curvature or acceleration of the shock, and
about the streamline curvature show that, for sufficiently fastthe gradients on the downstream side of the shock. The case
exothermic reaction, no Crocco point exists. This leads to aonsidered here is that of a stationary curved shock with
stability argument for sinusoidally perturbed normal shocksuniform upstream conditions in a steady flow of a perfect or
that relates to the formation of the structure of a detona-a reacting gas. In this case the shock curvature and reaction
tion wave. Application to the deflection—pressure map of arate determine the gradients on the downstream side of the
streamline emerging from a triple shock point leads to theshock.
conclusion that, for non—reacting flow, the curvature of the A number of textbooks on gasdynamics partially cover
Mach stem and reflected shock must be zero at the triplehis topic, e. g, Hayes and Probstein (1959), Oswatitsch
point, if the incident shock is straight. The direction and (1952), and several publications treat different aspeets,
magnitude of the gradient at the shock of any flow quantityg., Lighthill (1949), Munk and Prim (1948), Clarke(1969),
may be written down using the results. The sonic line slopeMdlder(1971). To present the problem coherently it is neces-
in reacting flow serves as an example. Extension of the resary to repeat the analyses of previous publications to some
sults — derived in the first place for plane flow — to three extent. In doing so the present approach begins with the
dimensions is straightforward. analysis of Hornung (1976), in which the equations required
for the present problem were used as a starting point for
Key words: Streamline curvature, Crocco point, Pressure—an asymptotic analysis of endothermic reacting flow down-
deflection map, Mach reflection, Detonation, Shock stability,stream of a convex shock.
Vorticity, Sonic line

2 Definition of the problem

) Consider a curved shock wave in a uniform free stream
1 Introduction characterized by velocity’.., density ... The origin of
) ] o ) the shock—aligned curvilinear coordinat&sy’ is chosen at
Physical shock waves, which always have finite thicknessne point where the streamline of interest crosses the shock
may be modeled mathematically as infinitesimally thin en-yaye. Let the shock curvature at this point keand the

tities across which physical properties change discontinushock and deflection angles Beand s as shown in Fig. 1.
ously. The relation between the two states at the discontinUmiroduce dimensionless variables defined by

ity is supplied by the conservation equations. Thus, given the

local and instantaneous velocity of propagation of a shockh = h//V.2, p=p' /o V2 v=v )V,

relative to the medium and the orientation of this velocity — _ g " k= kK,

relative to the tangent—plane to the shock, the local and in =P /P ¥ = YT o

stantaneous conditions on the downstream side of the shoakhereh, p, p, v are dimensionless specific enthalpy, pres-
may be determined from the upstream state on the shockure, density ang-velocity, andkg is a convenient reference
and the thermodynamic properties of the medium. This isvalue of the shock curvature. The-component of velocity
true even if the shock is curved and accelerating, and if itu is made dimensionless in the same wayas
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shock P — Poo = szﬁ (l — 1/p) s (8)

v streamline Ci = Cico, (9)
5 v = sing/p, (10)
2(h — hoo) = siPB (1 — 1/p%), (11)

u = Ccog3, 12)

1/k’ p= i (13)

v — 1+ 2/(M?3sirfg)’

where~ is the ratio of specific heats, and is the free—

Fig. 1. Notation. Upstream of the curved shock wave, conditions are as-Stream Mach number. The expression for the density ratio
sumed to be uniform. The origin of coordinates is the point where theacross the shock, Eqg. (13), is written for a constargas.
streamline of interest crosses the shock This is permissible in a reacting flow situation if the shock—
jump relations are taken to apply to the jump from the free—
stream conditions to the conditions downstream of the shock
Fefore any reactions take plagee., to a jump that does not
involve a change of composition, as is made clear by Eq.

h = hip, p,cs), @ © . .
The problem of determining the gradients of the flow
T = T(p, p, i), 2 variables at the shock consists of solving Egs. (3 to 6) for
the y—derivatives, and determining the-derivatives (along

in_which T is the dimensionless absolute temperaturethe shock) by differentiating the shock—jump relations with
RT'/V!2, with the specific gas constarit, and thec; are respect tar.

1/ko

The gas is supposed to obey caloric and thermal equ
tions of state of the forms

the mass fractions of the constituent species of the gas, So far it has been tacitly assumed that the flow is plane.
taking values 1 through. _ S As will be seen later, the extension to the general case is
Since the mass fractions must satisfy the identity quite straightforward.

n
E Cizl,
=1

the number of mass fractions that are independent is ONBitarentiation of the shock—jump conditions with respect to
less than the total number of components present. It is . introduces the shock curvatufe = —k:

usually convenient to choogg as a dependent variable and
the othere;’s as independent variables. Thus,

3 Partial and substantial derivatives at the shock

Ug

. = sing (14)
) k
dh = h,dp + h,dp +§ he,dc; Pr 4p?cosp3 (15)
=2 . T T ANA/9~:3.
k (v + ))M2sin®s

where the subscripts denote partial differentiation.

In order to determine the gradients of physical properties?z = _5 gjinjcosg (1 B l) + sinzﬁpi (16)
of the flow at the shock wave, it is necessary to solve the ¥ P p? k
differential equations of motion for the components of the v, ~ cosj sing p,
gradients. To do this, consider the two components of the ;. = — P - 2 T (17)
inviscid momentum equations, the-differentiated energy ) o )
equation and the continuity equation as follows: Solving Egs. (3 to 6) for thg—derivatives yields:
uug + (L= ky)vuy, — kuv + py/p = 0, 3) pyF = pzhciciy
wy + (1= ky)ovy + ku® + (1= ky)p,/p = O, (4) i=2
n ph, U h,
hopy * hopy + Y heiciy + vy, + uuy = 0, () e {u (l - vz) Ky brey L (18)
=2 kE
(pu)e — kpv + (11— ky)(pv), = 0. (6) Uy = —— (19)

v

The case of interest here is= 0, i. e, the term (1— ky) _ - U o
that occurs in these equations may be written as 1 for oufVv = — thi% * k| puhp K+ ~E + p-=Li (20)
purposes. The—differentiated form of the energy equation =2

RN
Pz = —(uuy + vy + hpps)/hp, @) pyl' = ﬁzhwciy
i=2

will also be needed, as will the shock—jump relations kp m
-2 [puhpK +ZE+ (1- php)L} , (21)
v
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and shock curvature — are all determined by the free—stream
conditions and the shock—jump relations). It follows that, for
Vs non-reacting flow, all of these derivatives are proportional

K = % +u, (22) 1o the shock curvature, through a proportionality factor that
(pu)s depends on the free—stream conditions and the shock angle.

L= e v (23) Conversely, for chemically reacting flow through a straight
pp u shock, the streamline curvature and time derivatives are di-

E== = — uw, (24) rectly proportional to the rate of specific enthalpy removal
Pk k by chemistry.

F=1-) <hp ‘h ) (25) A special case of some interest warrants discussion: In

v2 i inviscid chemically reacting flow over a plane wedge at an

o angle sufficiently small to give an attached shock, the stream-
The y-derivatives of the; have to be kept as components |ine curvature at the tip of the wedge has to be zero (plane
of a parameter, because they depend on the reaction rate\ﬁedge) and Eq. (29) gives

which are functions of state that have so far been left unspec-

ified. As may be seen from Eqs. (14 to 17), amderivative " de; _ k V2 p,

is proportional tok, so that ratios likey, /% are independent Zhwﬁ -y <ph,,G N pukF) ’

of the shock curvature, and all such ratios are known on the=?

shock in terms of the free—stream conditions @hd i. e, the reaction—rate parameter is proportional to the shock
With bothz— andy—derivatives known, it is now possible curvature at the tip, as has been pointed out by Clarke (1969),

to form substantial derivatives according to Becker (1972) and others. This has also been used to deter-

mine reaction rates experimentally by Smith and Wegener

(34)

a = uﬁ + vﬂ_ (26) (see Becker, 1972) and by Kewley and Hornung (1974).
dt Ox dy Another interesting observation may be made by forming
For example, noting that the deflection angle is the ratio of Egs. (31) and (32). This gives

5= 5 — arctan/u), @) -2 dumhede/dl + kGphy/v (35)

dp " S he,de;/dt — kGpv (hy — 1/p)

andy, and writing Both the numerator and the denominator obviously contgin
' two terms, one from shock curvature and one from reaction

V =ds/dt = Vo +u2, rate. Again consider the limiting cases of non-reacting flow
and straight shock: In the case of non-reacting flow, the first

wheres is distance along the streamline measured from thderms in the numerator and in the denominator vanish. This

forming the derivatives of this function with respect 1o

(28)

origin, the streamline curvature at the shodk/ds is ob-
tained as

oV ds <~ de  k

—F— = he,— + — | ph,G —
w ds ; tdt v (p oG

where

G=V%+

2
prp>7 (29)
pu k

Uy  UPy Uz

k opok Uk

Similarly, other substantial derivatives may be formed:

(30)

has the interesting consequence that the curvature terms also
cancel, so that the derivative pfwith respect tg along the
streamline also becomes independent of the shock curvature!
The equation reduces to

p___ h
dp hy — 1/p

This is just the expression for the value of this derivative at
constant entropy (the square of the frozen speed of sound)
for a gas with a general caloric equation of state. This is

(36)

as it should be, since the entropy will be constant along a
streamline in non—reacting flow.

dp n de; pzhp In the other limit, that of reacting flow through a plane
FE = chciﬁ + kG o (31)  shock, omitting the curvature terms again causes the other
’ i=2 parameter to cancel as well, and gives the well-known result
do _p - de; p? 1 dp
F% = ?thiﬁ - kG; hy — ; ) (32) - = 02 (37)
i=2 0
av 1ldp
=== 33
dt p dt (33)

. . . 4 Streamline curvature
At this point it is worth taking a closer look at these re-

sults. Note that the streamline curvature and the substantidMany interesting features of flows may be understood better
time—derivatives all consist of two terms, one of which is by studying the streamline curvature at a shock. This is, of
proportional to the rate of change of specific enthalpy of thecourse, only one case where the results of the previous sec-
gas that is caused by chemical reaction, and the other is prdion about gradients at the shock can be used to advantage.
portional to the shock curvature. (It is important to rememberHowever, it serves the purpose of demonstrating how the
that the coefficients of these two parameters — reaction ratgimp conditions may be extended by considering gradients.
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Fig. 2. Ratio of streamline to shock curvature for perfect—gas flows with Fig. 3. Ratio of streamline to shock curvature for perfect-gas flows with
v = 1.4 and for free—stream Mach numbers 1.1 (uppermost curve), 1.2,y = 1.05 and for free—stream Mach numbers 1.1, 1.2, 1.4, 1.7, 2.0, 2.5, 3,
1.4,1.7,2.0, 25, 3,4, 5, 7, 10, 20. The ratio becomes singular at the MacH, 5, 7, 10, 20. Note how the high—-Mach—-number cases hug the ratio 1.
angle, and goes to zero at the normal-shock point. A zero crossing occurshis is close to the Newtonian limit, where the streamlines lie close to the
again at the Crocco point (zero crossing) which always occurs between thehock for a large range of shock angles

sonic and maximum-—deflection point

~v = 1.05, see Fig. 3. At low Mach numbers the curves be-
4.1 Perfect—gas flows have in much the same manner as for highdout at higher

Mach numbers the minimum is much lower, the Crocco
With non-reacting flow(, F', E, K, andL reduce to rela- point is pushed closer to the normal-shock point, and, as

tively simple functions of\/, v and g: the Mach number becomes very high, the curvature ratio
) hugs the value 1 more and more closely and for a larger
_ sir’ 3 1 8cof' 3 range of shock angles. This is the behavior expected as con-
G = |3coéB — | [1— +—— (38) - > e
P p (v +1)M?’ ditions approach the Newtonian limit{ — co, ~ — 1),
1 where streamline and shock become almost congruent, since
F=__—_ (1 _ 7pp) : (39)  the density ratio across the shock approaches infinity.
v—-1 sir3
cog?sin 1 4 .
E = —M {(3— ) + } ,  (40) 4.2 Reacting flow
p p)  ply+1)M3sir’3
1 4 In order to calculate explicit values of gradients in the case
K = cos3 {1 -5 + (+1)M23|n26} ) (41)  of reacting flow, it is necessary to introduce a model for the
v caloric equation of state and for the reaction rate. For this
I = sing <1_ 1) ~ 4pcosp . (42)  Purpose, the rate equation is written in the simple form
p)  (y+1M3sis "
. i . . dCl‘ 0
Evaluating the ratio of streamline to shock curvature givesy _ he,—r = geXp(—ep/p% (43)

the result shown in Fig. 2 foy = 1.4. The features of =2
the streamline—to—shock curvature ratio may be describedo that a representative variation of the dependence of reac-
in terms of a convex shock such as is shown in Fig. 1. Attion rate on shock angle is maintained by using the Arrhenius
the normal-shock point the streamline curvature has to bg@orm. The differential form of the caloric equation of state
zero, of course. It is of opposite sign to that of the shockpecomes
at values ofg smaller than and close to 90but reaches a 1 9
minimum before increasing again to positive values, and fi-dh = —L%dp + Lfdp + —exp(0p/p)dt. (44)
nally becomes singular at the Mach angle. The zero—crossing v—1p v—1p €
occurs at the so—called Crocco point, at which the streamWith this form of the reaction rate, the streamline curvature
line curvature is zero for all values of the shock curvature.may be calculated explicitly for given values ®finde. the
For perfect—gas flows, the Crocco point always lies betweemesult of such a computation is plotted in Fig. 4. With the
the point where the Mach number at the shock is unity —sign convention chosen in Egs. (43) and (44), positive values
the sonic point — and the maximum-—deflection point. Thus,of § ande mean that the reaction is endothermic. Thus, Fig. 4
for the convex shock, the streamline curvature is concave-shows the remarkable fact that, for a given set of parameters
up near the normal-shock point, and goes to convex—up at/, v, andd, there exists a particular reaction rate parameter
small shock angles. The singularity at the Mach angle does, below which the streamline—to—shock curvature ratio is
not mean that the streamline curvature becomes infinite, bupositive for all shock angles, and no Crocco point exists.
rather that the shock curvature is identically zero there.  The reaction rate at this point is always exothermie,, ¢

The dependence of the streamline to shock curvature rais negative at this point. For the parameters chosen in Fig. 4,
tio on v may be illustrated by plotting the same graphs for the special value of is approximately -1/119.
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Curvature ratio

7=1.40 M= 6.0 6=0.80

Fig. 6. Schematic sketch of a convex and concave near—normal shocks
‘ ‘ ‘ with associated streamlines, for a gas with fast exothermic reaction rate.
0 20 40 60 80 100 The convex—upstream shock on the left can exist with stable steady flow.
shock angle, 8 However, the concave—upstream shock shown in the center requires a pair
of unsteady shocks to deflect the flow parallel to the symmetry plane (right)

Fig. 4. Streamline to shock curvature ratio in reacting flow for= 1.4,

M =6 and@ = 0.8. The values of the reaction rate parameter ase=1/ .
160 (lowest curve), 80, 40, 20, 0.1, -20, -40, -80, -119, -160, -320 toward the symmetry plane, also produces a streamline cur-

vature toward the symmetry plane. On the symmetry plane,
this causes a clash between the two convergent streamlines
that will necessarily result in the production of two unsteady
shock waves traveling outward from the symmetry plane, see
Fig. 6, right.

Thus, it is evident that a concave—upstream shock can
not give a steady solution if an exothermic reaction of suffi-
ciently fast rate occurs at the shock. This is clearly related to
the unsteady waves that occur in detonations and that form
the cellular structure observed in such waves.

5 Shock and streamline in theV d—plane
Fig. 5. Schematic sketch of a convex and concave near—normal shocks with
associated streamlines, for a perfect gas. Both the concave and the convédany gasdynamical problems are simplified by mapping
shocks produce streamline curvatures that can exist stably in steady flowthe flow into the hodograph osv—plane. It is sometimes
more convenient to choose other variables for this mapping,
L . such as thé §—plane, or thesd—plane. The condition after a
4.3 Application to geometrically perturbed normal shock straight shock in non—reacting flow maps into #ié shock
o o locus shown in Fig. 7 as the continuous curve, starting at
The fact that the curvature ratio is positive near the normal~ye infinitesimally weak shock point (1,0), moving smoothly
shock point, if the rate of an exothermic reaction is suffi- {hrough the maximum—deflection point and backste: 0
ciently fast, has interesting consequences. In order to undets; the normal-shock point. This curve is the same for flows
stand this, consider first the case of a sinusoidally perturbedithy finite reaction rate, of course, since it just represents
normal shock in a perfect gas. Figures 2 and 3 show thalie shock—jump conditions, which we have taken to be the
for small negative perturbations of the shock angle fromsame, by choosing the composition to be unchanged across
90°, the streamline—to—shock curvature ratio is negative folne shock.
a perfect gas. Similarly, for positive perturbationsfofrom The additional information that is brought into this pic-
90°, the ratio will be positive. Consequently, a concave—yre py knowing the gradients at the shock, is that it permits
upstream shock, which is associated with streamline convergryed and reacting shocks to be treated in this way as well.
gence toward the symmetry plane of the shock, will causqy js therefore convenient to treat perfect-gas and reacting
the streamline curvature to be such that streamlines mergggs separately.
into the direction of the symmetry plane, see Fig. 5, left. | particular, the derivativels/dV may be formed by
A convex-upstream shock, for which the deflection is awayysing the general results for the gradients at the shock. Thus,
from the symmetry plane, produces streamlines that bend
away from the symmetry plane, see Fig. 5, right. This is very‘ﬁ = dd ds = dé ds dt = dﬁ(fpVZ)ﬁ_ (45)
different in the case of a sufficiently fast exothermic reac-dV  dsdV  dsdtdV  ds dp
tion, of the type where no Crocco point exists, or where theSubstituting from Egs. (29) and (31), this gives
streamline—to—shock curvature ratio is positive in the range )
0 < B < 9C°. In that case, the situation is as illustrated g u S he e+ k (PhpG - %%’F
in Fig. 6. The convex—upstream shock with deflection away ;7 = Vo ST h der 4 1P
from the symmetry plane is also associated with a streamline =2 "¢ dt K
curvature away from the symmetry plane, see Fig. 6, left. OnThis derivative indicates the direction in which the stream-
the other hand, the concave—upstream shock, with deflectiorline departs from the shock in tHés—plane.

) (46)
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1.2 0.0 0.2 0.4 0.6 0.8 1})‘ 1.2
v

Fig. 7. Vé—plane map of a curved shock in non—reacting flow with= 6 Fig. 8. For M = 1.5, v = 1.4, the streamline direction at the convex—
and~y = 1.4. The short straight lines indicate the direction in which the upstream shock is everywhere outward from the shock locus
streamline leaves the shock in the case of a convex—upstream shock. Note
how the direction is parallel to the shock locus at the weak—shock point,
becomes horizontal at the Crocco point, then vertical at the zéqsint, 60
and finally horizontal again at the normal—-shock point

5.1 Perfect—gas flows 40;

For the special case of non-reacting flow, the streamline.,
slope in theV §—plane becomes

— 2 20 4
ié = 7’[14 — vV &E . (47) L
v Vwu pPhou k G
In Fig. 7 this direction is indicated by a short straight line
starting at the shock locus. Although thlepeof the stream- P e

line in the Vj—plane is independent of the shock curvature,

its directionis opposite to the one shown, for a shock wave

curvature of opposite sign. The direction of the streamlineFig. 9. Plane shock with endothermic chemical reactiof.= 6, v = 1.4.

shown in Fig. 7 is that for a convex—upstream shock. Note the difference between the streamline slopes of this diagram and those
The streamline direction in tHes—plane undergoes sev- " 7197

eral changes as we proceed from the weak—shock point to

the 'norr.nal—shock point. At the former, the strea_mllne d|—5_2 Reacting flow

rection is parallel to the shock locus. No dramatic change

occurs up to the vicinity of the Crocco point. In that vicin- h h ¢ iaht shock with fini
ity, the slope changes rapidly from negative to zero at thd" the other extreme case of a straight shock with finite

Crocco point, and subsequently to infinite, where it changs\ihemical reaction rate the sFreamIine slope in'the-plane
sign to minus infinity, and then approaches zero from belowP&COMes particularly simple:

at the normal—-shock point. For non—reacting flow, the point 4§ U
at which the slope becomes infinite is easily identified as thejy = Vo (48)

zero-G point, see Eq. (47). . . . .

This kind of diagram was used extensively by Guder-tis clear that this slo_pe is negative throughout the range O_
ley in the hodograph plane. He called it the hedgehog o < 90, and the spines point outward for an endothermic
porcupine diagram. Figure 7 is a funny—looking porcupine reaction and inward for exothermic reaction. Figure 9 shows
with some of the “spines” pointing inward. However, it be- that case with\/ = 6 andy = 1.4 for endothermic reaction.

comes obvious why the term porcupine seemed appropriate The streamline slopes in Figs. 7 and 9 are very different,

to Guderley, when it is remembered that he was concerne§SPecially in the weak and medium shock strength regime.
particularly with flows in the vicinity of\/ = 1. Thus, Fig. 8 Both are extreme cases, of course, and the general case of

shows the same plot for the cadé = 1.5 in which all the finite reaction, Eq. (46), wi'II give slopes ar)ywhere between
spines are seen to point outward. the two extremes depending on the relat_lve importance of

chemical reaction and shock curvature. It is also possible to
obtain the asymptotic behaviors of Eq. (46), both in the fast
and slow reaction limits. To do this, introduce the parameter

77]2;;2 hCL% -
kph,

w =

. -190
Smﬂ%ge)(p(*ep/p), (49)
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where the last expression applies for the gas model of Eq.

(43). This variable measures the relative importance of reac-
tion rate and shock curvature. It is positive for endothermic e 101 et
reaction and convex—upstream shocks. With this definition i = =
of w, EQ. (46) becomes o i
w— G+ P p s
o __ v Prhou k7 50) >
av Vo w—G ® ,
Expanding this forw — 0, the slope becomes -or ke=+L
2 -
(d5) - [1_<121V mF>1(1+w)] , :
av ) .o Vo pehou k G G of o |
+0(wW?). (51) 0 20 40 60 80 100

shock angle, 8

In the other limit, we obtain
2 Fig. 10. Effect of reaction rate odd/dV as a function of shock angle, for
Cﬁ =_ " 1+ 1/ 0V Pz & M =6,~ =14 andd = 0.8. The values of the reaction rate parameter are
dv w thpu k ke = 1, 1073, 10°%, 1079, 10-12, -1, —0.0084, —103, 106, —10°°,
wmree and —10°12. The dashed lines indicate the cases where the reaction is
+0 < 1 > ) (52) exothermic. The lower convergence line corresponds to the straight-shock
solution shown in Fig. 9. The non-reacting curved—shock case is the upper
. . . convergence line at low shock angles, and — at larger shock angles — may
It is opportune here to stress again that the functions Ofbe identified as the lines fdes =+1 that are practically congruent

the right of 50 to 52 may all be expressed in terms of the
free—stream conditiong} andw.

The manner in whichl§ /dV changes with reaction rate makes representation of the flow in thg—plane very at-
is shown forM = 6,y = 1.4 andd = 0.8 in Fig. 10, tractive. With the knowledge of the gradients, it is relatively
using the reaction rate model of Egs. (43) and (44). Considesimple to extend arguments about triple points of straight
first the full lines in this graph: In the weak—shock limit, shocks to include cases where the shocks are curved. To
the slope has a finite negative value. For a given value ofhis end, the derivativeld/dp at a curved shock may be
ke, as g is increased from the weak—shock limit, the slope evaluated quite straightforwardly as:
increases and becomes infinite at a particular valug dfen ;s g5 as  dsds dt dS. dt
rises from negative infinity, toward zero at the normal—shockd— = Tsdo = T didv = d—Vd—. (53)
point. This rise occurs almost exactly along the straight-“? ~ ¢s¢P  asdtap ds dp
shock curve, which is the lower convergence line in theSubstituting from Egs. (29) and (31),
graph. Note that, for straight shockse., infinite w the slope

: . . de; vV? pa

is negative everywhere except at the normal-shock pointgs Do he G+ % (PhpG - T‘; 5 )
independently of whethew is positive or negative. This % - pV2p S he den + Nern , (54)
is the reason why this line is a convergence line between i=27"¢ di v

the dashed and full curves. In thé&—plane the difference which is just (1/pV)dé/dV . This means that the qualita-
between endothermic and exothermic reactions would be thaive behavior ofdd/dp is like —dd/dV .

the streamlines would leave the shock (at the same slope) in  An example of the occurrence of a triple point is the
opposite directions. The upper convergence line is the valuMach reflection of a straight shock from a wall, as shown
for a curved shock in non-reacting flow, the curve labeledschematically in the upper part of Fig. 11. The lower part of

ke = +1. Fig. 11 shows a map of non—reacting flow of this kind in the
It is interesting to consider a particular shock angle, saysp—plane. The regions labeled 1 through 5 in the physical
55° and fixed shock curvature, and changinfgom co (non—  space are labeled similarly at the corresponding points in the

reacting flow) to O (fast reaction rate). The slope starts onsp—space. Now suppose that, at the triple point, the Mach
the upper convergence linés = +1), wheredé/dV is ap-  stem is curved, the incident shock is plane, and the reflected
proximately —1.8, then increases rapidlydo at e ~ 103, shock is curved. Sincé and p must be continuous across
where it flips to—oco and then approaches the lower con- the slip line not only at the triple point, but also &t from
vergence line from below. For a convex—upstream shockthe triple point,dd/dp has to be continuous across the slip
these changes represent a smooth anticlockwise rotation dihe at the triple point.
the “spine” of the porcupine from the direction in Fig. 7 to The value ofdd/dp, for non—-reacting flow and a con-
that in Fig. 9. cave—upstream shock, gives the slopes and directions shown
in Fig. 11 for the chosen parameters. It is clear from Fig. 11
that, with a straight incident shock, the slope&p-space of
6 Three—shock points the slip line issuing from the Mach stemrigt the same as
that issuing from the reflected shock at the point 3,4. Since
Across the streamline coming out of an intersection of threghe slopes are independent of the shock curvatures, there
shock waves in inviscid, steady flow the velocity is discon-is no possibility for the curvatures to adjust to meet the
tinuous, but the deflection and pressure are continuous. Thisonstraint. The only possible conclusion to be drawn from
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curvatures that correspond to the local reaction rates and the
streamline curvature constraint at the triple point.

7 Some other derivatives

The derivatives of the flow quantities at the shock obtained
in Sect. 3 permit a number of other interesting quantities to
be determined. In this section the vorticity at a shock is used
as an example, and an illustration of how the results may be
used generally is given.

{ 7.1 Vorticity at the shock

. In the curvilinear coordinates chosen, the vorticity at the
| shock is given by

¢ = uy — vy + ku. (55)
Substituting foru, from Egs. (19) and (24), this becomes

% k ) v
§:—<px+uz—uv—v;+uu>. (56)

v \ pk k
Fig. 11.Mach reflection. Top: Schematic sketch of the shock configuration, . . . _
with labels identifying regions and points of the flow in physical space. Bot- I this expression, the terms with explicit Mach-number and
tom: Sp—map of this flow, showing the incident shock (1-2), the reflected ¥ dependence in the— andv—derivative terms cancel when
shock (2-3) and the Mach stem (4-5), as determined from the shock—jumpising Eqgs. (8—17), and only the— and p—dependence re-
relations.M = 6, v = 1.4, non—reacting steady flow. Also shown are the mains. The result is
streamline directions from the reflected shock and the Mach stem. Note
that the two streamline directions coming from 3 and 4 are not the same, (1 1) 2

leading to the conclusion that these two shocks must have zero curvature = —kp COS3 (57)
at the triple point
This is the well-known expression for the vorticity at a

curved shock, see. g, Hayes and Probstein (1959). Clearly,

shock the vorticity at the shocks independent of the reaction rate.
Note that this is because the problem considered here is that
streamline where the composition is constant across the shock and con-
5 tributions from the reaction occur only after the shock, rather
B & than that of equilibrium shocks.

sonic line

7.2 Gradients at the shock, sonic line direction

The results of Sect. 3 may be used to determine the magni-
tude and direction of the gradient of any flow quantity. For
example, the pressure gradient direction and magnitude will
be

arctanpy /p.), \/ D%+ 3 (58)

gince reactions strongly affect the direction of the density
adient, knowledge of this direction is very valuable, for
ample, in the interpretation of interferograms of reacting

Fig. 12. Definition of angles

this result is that — in non—reacting flow — the curvatures of
both the Mach stem and the reflected shock must be zer ;
at the triple point (except in very special cases). This isY

not to say that these two shocks can not be curved at oth : .
y ow. Other gradients are of interest. For example, the slope

locations, but rather that — at the triple point — both haveOf the sonic line. for which a closed—form solution exists
a point of inflection. (In the more general case of a curved. IC TIn€, Tor whi - ution exi

o . in the case of plane flow of a perfect gas (see Hayes and
{Ece:liiﬂérsgﬁglél’(y r:((jai:j %&7 é)e szr;?;v)s that the curvature of Probstein, 1959), is also affected by the reaction rate.

It is interesting that this result may be different for the In order to determine the sonic line slope, consider the

case of reacting flow. This is because, with finite reaction"€r9Y equation for our isoenergetic flow and the model gas

rate, dé/dp is no longer independent of the shock curva- in the form
ture. The reaction therefore provides an additional degred’? a?

of freedom that may permit the shocks to assume the finite o * -1 * henem = o, (59)
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Fig. 14. Sketch of sonic lines fodl/ = 10, v = 1.4 with endothermic
reaction. The equilibrium situation is modeled by & 1.2 flow to provide

the asymptotic sonic—line direction. The sonic lines for three reacting—flow
cases and the frozen case are shown as heavy lines

streamline

is approximately 2.5. This is the point where the reaction
sonic line rate term inV,, just cancels the one that occurs explicitly in

conic line (endothermic) the denominator of (62). This condition occurs at

(non—reacting)

pr2 A2 —1
Fig. 13. Top: Dependence of sonic line angle on Mach number Using (8), (10) and (13) to express v andp in terms

and reaction rate, plane flowy = 14, 6 = 0.8. The deflection of M, 7y and 3 then leads — for the particular value of
and shock angles at the sonic condition are also shown as a dot

ted and a chain—dotted line. The chain—dotted line with three dotsB - BS(%M) at the SOI’I_IC point — to a partlcular value Of.
is for the non-reacting case, in agreement with the solution givenM(V) at which the reaction rate does not influence the sonic
by Hayes and Probstein. Continuous lines and dashed lines reprein€ slope.

sent endothermic and exothermic reaction rate cases respectively, for For very fast reactiong; switches from—90° to +90° at

ke = —0.0001, —0.001, —0.003 —0.01, 0.01,0.003 0.001,0.0001 Bot- this critical Mach number, so that, at large Mach number, the
tom: Schematic sketch of shapes of subsonic pocket behind a plane Conveﬁ‘miting sonic line direction for very fast reaction is a|0ng
shock in near—sonic flow the shock. In endothermic flow it is at = +90° and in

exothermic flow at—90°.

p _ P —qyt2

where hcnem is chemically stored specific energy ands The response of the sonic line to reaction rate at high
the frozen speed of sound. = a along the sonic line, for Mach number has been observed by Hornung and Smith
which we can therefore write (1979), who used it to make an argument about the influ-
v+l ence of non—equilibrium dissociation on the shock detach-
= V2?4 hepem = ho. (60) ment process in flow over a wedge. This behavior was also
2ty-1) observed in recent numerical computations of these wedge
Differentiating this along the sonic line, and recalling that flows by Candler (unpublished work). In endothermic flow
Ciz =0, near the shock, at high Mach number, streamlines cross the

n sonic line from a subsonic region, while, for sufficiently fast
V, cosp + V, sing + sinp y-11 Z he,ciy = 0. (61) exothermic reactions, the opposite holds (negatiye
y+1V par ' In the low Mach number range, the sonic line direction
is very sensitive to slight heat removal by endothermic re-
action. NearM = 1, a change from non-reacting to slow
endothermic reaction switchesfrom +90° to —90°, while
exothermic reactions have a weaker effect. This will cause
a=¢— 3+, the subsonic pocket behind a convex shock to change as
shown in the sketch of Fig. 13. (bottom).
The effect of chemical reaction on the sonic line may be
Vi illustrated by considering frozen and equilibrium flow limits.
Voy =Lt S hecs : (62) In the endothermic case, the equilibrium limit is displaced,
Vool Vsl ey relative to the non-reacting limit, toward the direction of
Figure 13 shows that, at high Mach number, endothermicsmallery. For smallery the sonic point is displaced to larger
reactions cause to increase, andice versabut these trends 3. This is shown with the correct values 6f in Fig. 14
are reversed at low Mach number. The reversal occurs at for the example of a circular—arc shock &f = 10 with
particular Mach number, which, for the value fchosen, ~ = 1.4 and 1.2. Also plotted are the correct streamline

Here, ¢ is the angle between the sonic line and the shock
It is related to the angle: between the sonic line and the
streamline through

see Fig. 12 for notation. Thus,

tang =
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and sonic line directions for the two cases. In flow with
endothermic reaction, the sonic lines depart fromthel.4
sonic point at angles: that increase with reaction rate. If
the reaction is completed to equilibrium over a distance that
is small compared with the shock radius of curvature, all
the directions at equilibrium should be something like that
for v+ = 1.2 in this crude model. Thus, the sonic line for
finite reaction rate leaves the= 1.4 sonic point at a finite
angle relative to that of non—reacting flow and asymptotically
blends into they = 1.2 sonic line. In the sketch, sonic lines
for three finite rates are shown to illustrate how the transition
from frozen flow to larger and larger rates proceeds.

The situation is reversed for exothermic flow. It is easily
seen from Fig. 14 that the streamline always crosses the
sonic line from the subsonic to the supersonic side with
endothermic flow at these conditions, while both directions
are possible with exothermic flow, as has been pointed out
earlier.

Fig. 16. Streamline—to—shock curvature ratio for axisymmetric shocks as

shown in Fig. 15. Perfect gas, = 1.4, Mach numbers as in Fig.15. The
ratio is the streamline curvature divided by the shock curvakuie the

zy—plane

sl
I

Curvature ratio
o

Fig. 17. Streamline—to—shock curvature ratio for plane shocks of the shap
shown in Fig. 15. Perfect gag,= 1.4, Mach numbers as in Fig. 15
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8 Three—dimensional flows

Finally, consider the extension of these results to the more
general case of three—dimensional flow. To this end, choose
thezy—plane to be the plane of the free—stream direction and
the local normal to the shock wave at the point of interest.
With this choice, the velocity component in the third) (
direction and its gradients in they—plane are zero. Thus a
suitable name for this plane is the “flow plane”. By choosing
x andy to lie in the flow plane, the derivatives of p and

u with respect toz (the dimensionless coordinate normal
to the flow plane) are zero, and the only non—zero gradient
normal to the flow plane is

w, =1,

wherew is the dimensionless—component of velocity and
[ is the shock curvature in thez—plane.k +[ is the Gaussian
curvature of the shock at the point considered.

If we write Eqgs. (3 to 6) fory = 0, the only changes
lo these equations are that the terrhpv in the continuity
equation becomes (k +1)pv, and a new term-pl is added.

The equation (ay = 0) becomes
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(pu)z — (kK + Dpv + pl + (pv), = 0. (63) curvature ratio to be determined for the axisymmetric and
the plane case as functions of the shock amgl€he results

are shown in Figures 16 and 17. These exhibit no qualitative
differences. Quantitative changes include slight changes in

This causes additional terms proportionalltto appear in
Egs. (18), (20) and (21), for the-derivatives ofp, v, and

p as follows: the Crocco points and a greater negative value of the curva-
pyF = ...+ lphy(1/v — 1), (64) ture ratio for axisymmetric flow.
vo,F = ...+ Iph,(1/v — 1) (65) It is interesting to find the effect of the third dimension

Y r ’ on the sonic line slope at the shock. This is not new in
pyF =+ 1L =1/p+ p/v). (66) non-reacting flow (see Hayes and Probstein), but our results
Equation 19 foru, remains unchanged. permit it to be obtained directly for reacting flow also. Fig-

A relatively simple example is that of axisymmetric flow. ure 18 shows howw behaves in an axisymmetric flow with
In this case, the flow plane is the meridional plane. Considethe same shock shapes as in Fig. 15. The effect of reactions
an axisymmetric shock wave of hyperbolic shape in the flowis very similar to that for plane flow.
plane, such that the normal-shock point has finite curvature
equal in both directions, and the shock is aymptotically CON-pcknowledgementsSome of the work presented here has been part of var-
ical with half—angle equal to the Mach angle far from this ious courses I have taught over the last 20 years at the Australian National
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Fig. 15. The equation of the shock shape is all.
2
Y =tanu/ X (X + —— (67)
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