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Abstract. The present paper is devoted to experimental and
theoretical investigation of the shock wave (SW) propagation
in a mixture of gas and solid particles in the presence of explicit
boundaries of the two-phase region (cloud of particles). The
effect of the qualitative change in the supersonic flow behind
the SW in a cloud of particles within the range of the volume
concentration of the disperse phase 0.1-3% is experimentally
shown and theoretically grounded.
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Nomenclature

Cd: drag coefficient of a particle
d, rs: diameter, radius of a particle
D: velocity of the cloud center of mass
f : distribution function
m: volume concentration
n: number density of particles
v, w: velocity components in x and y directions
ρ: density
p: pressure
T : temperature
E: specific internal energy
γ: specific heat ratio
µ, λ: viscosity and heat conductivity coefficients
cv, cs: heat capacities of gas and particles
τ : time of particle velocity relaxation
τv: time of gas velocity relaxation
Kn,Re,Nu, Pr: Knudsen, Reynolds, Nusselt and
Prandtl numbers
M0: shock wave Mach number
M1: gas flow Mach number
M12: Mach number of the relative motion of gas and particles

subscripts
1: gas parameters
2: particle parameters

Correspondence to: V.M. Fomin

1 Introduction

In a number of technological processes of powder production
and processing one should take care about a dust explosion. An
important reason for this is a shock wave propagating the dusty
gas mixture. Detailed knowledge of the relaxation processes
behind the SW front at temperatures and pressures typical for
dusty gas explosions are required for physical and mathemat-
ical simulation of this phenomenon. In particular, one of the
fundamental problems is the velocity relaxation of the phases
in the flow behind the SW front (Ivandaev et al. 1981; Soo
1971).

The major part of experimental efforts in this field cov-
ers subsonic flows. The velocity nonequilibrium in supersonic
flows is scantily explored where the relative Mach number of
gas and particles varies within a wide range during the ve-
locity relaxation process. Vast experimental data on Cd for a
single particle are presented in (Bailey and Hiatt 1972; Bailey
and Starr 1976). A large number of correlational dependences
Cd = Cd(M,Re) is also available in (Bailey and Hiatt 1972;
Bailey and Starr 1976; Carlson and Hoglund 1964; Henderson
1976; Rudinger 1970; Selberg and Nicholls 1968). However,
in the flows with high concentration of the disperse phase
the value of Cd deviates considerably from the values typi-
cal of single particles. Thus, in low-velocity two-phase flows
this effect becomes noticeable in fairly concentrated mixtures
m2 ≥ 5% (Gorbis 1964) while in a supersonic nozzle these
effects are manifested already at m2 ≥ 1% (Yanenko et al.
1980).

The lack of knowledge on two-phase flows (on the pecu-
liarities of the gas phase behavior, in particular) behind the
SW in a cloud of particles calls for further research in this di-
rection. Nevertheless, since no experimental methods for mea-
suring the gas parameters in nonequilibrium two-phase flows
are available, mathematical simulation of the process of the
SW/cloud interaction becomes urgent. Therefore, the present
paper suggests two approaches to the problem:

• experimental investigation of the physical mechanisms of
the SW/cloud interaction;

• mathematical simulation of the SW propagation in a cloud
of particles.
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Fig. 1. Layout of experimental facility. 1 - shock tube, 2 - pressure
transducers, 3 - device introducing particles, 4 - windows, 5 - time
intervals sensor, 6 - laser stroboscope, 7 - high-speed photocamera

2 Experimental investigation of the physical mechanisms
of the SW/cloud interaction

2.1 Experimental facility

The experiments were carried out in a shock tube equipped
with devices for the optical visualization of the shock wave
processes in two-phase media, for measuring the pressure pro-
files and the shock wave velocity (Fig. 1). Driver and driven
sections were 1.5 and 5 m long, respectively; the channel cross
section was 52× 52 mm2. The pressure of the driver gas (he-
lium) and the driven gas (air) were, respectively, 2.5−10 MPa
and 0.01−0.1 MPa. The SW Mach range wasM0 = 1.5−4.5.
The gas parameters behind the SW were determined through
the measured Mach number M0 taking into account the tem-
perature dependence of the specific heat ratio (Lapworth 1970;
Vasil’ev 1990).

Powders of acrylic plastic (d = 80 ÷ 300µm, ρ22 =
1.2 g/cm3) and bronze (d = 80 ÷ 130µm, ρ22 = 8.6 g/cm3)
were inserted into the channel by:
• an electromagnetic propelling device on the lower wall of the
measurement section which threw the powder up to a required
height;
• a vibrating grid on the upper lid of the measurement sec-
tion creating a vertical flow of freely falling particles with a
uniform concentration over the cross section. Interchangeable
diaphragms in the grid allowed us to obtain a cloud with the
geometry and particle concentration needed.

The dynamics of the SW/particles interaction were ob-
served by fast-acting laser visualization methods in passing
(multiframe shadow visualization method) and scattered (laser
“knife” method) light. The exposure duration was 30 ns, the
number of exposures and the intervals between them were de-
fined by the laser stroboscope (Boiko et al. 1983). The frames
were spatially separated in the high-speed camera by a rotating

mirror prism. The accuracy of the time interval was 0.1µs. The
system of synchronization provided the required sequence of
the starting of various elements of the shock tube and regis-
tering equipment. The generator originating a series of pulses
was started by a piezoprobe located in the observation region.
This provided an accuracy of the light pulse synchronization
of as good as 1µs with respect to the moment when the SW
passes throught the region under study.

2.2 The effect of the particle concentration on the
dynamics of their acceleration behind the shock wave

Consider some experimental data reflecting the dynamics of a
cloud of particles behind the shock wave. Figures 2a,b show
series of photos for two concentrations of the acrylic plastic
particles: m2 < 0.2% and m2 > 3%. As the cloud starts to
move, it immediately becomes “blurred” both in longitudi-
nal and transverse direction, hence, its mean concentration is
reduced. One of the evident reasons for the increasing longi-
tudinal size of the cloud is polydispersity. Small particles are
accelerated faster than the large ones, which, alongside with
the concentration decrease, leads to the particle separation by
their size. The transverse expansion is connected to some ex-
tent with particles collisions but, as will be shown later, more
essential are such effects as the transverse pressure gradient
related to gas flow transformation.

Figure 3 shows the photos obtained for two kinds of par-
ticles (bronze, acrylic plastic) at m2 ≤ 0.1% and m2 > 1%.
Figure 4 presents the trajectories of the front boundary of the
cloud of bronze particles at m2 ∼ 1% and m2 < 0.1%. Sim-
ilar plots x(t) for acrylic plastic particles at m2 < 0.1% and
m2 ∼ 3% are given in Fig. 5. It is seen that the particles accel-
eration differs nearly by a factor of 2 when the concentration
changes from m2 < 0.1% to m2 ∼ 1%.

In our opinion, the basic reason for such a pronounced ef-
fect of concentration on the dynamics of the particle accelera-
tion in the cloud is caused by the change in the wave structure
on the particles in supersonic flow. Indeed, the flow about the
particles is supersonic at the initial stage of the particle ac-
celeration behind the SW with a Mach number M0 > 2. The
photos presented in Fig. 6a,b indicate that at low concentration
of the particles the leading shocks are formed near each one
(a). When the concentration is increasing, the shock waves, in-
terfering with each other, overlap and form a collective leading
shock (b).

Before considering the particle dynamics in the cloud, one
should examine in more detail the acceleration of a single
particle in a supersonic flow behind the SW front. The drag
coefficients were found in a special experimental series with
spherical bronze particles of d = 180± 10µm selected under
the microscope. The range of variation of the relative Mach
number 0.8 < M12 < 1.2 corresponds to the change in the
flow regime from supersonic to subsonic. A large amount of
experiments carried out with particles of equal sizes showed
that the spread in the absolute Cd values is no more than 10%
and the mean Cd value and the behavior of Cd = f (M ) corre-
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Fig. 2a,b. SW interaction with clouds of acrylic plastic for various concentrations of disperse phase: a m2 < 0.2%, b m2 > 3%,M0 =
4.5, p0 = 0.01 MPa,∆t = 20µs
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Fig. 3a–d. Two types of particles: bronze a,b and acrylic plastic c,d accelerated behind the SW:m2 ≤ 0.1% a,b;m2 > 1% c,d.M0 = 2.8, p0 =
0.1 MPa,∆t = 100µs

sponds to the curve presented in Fig. 7. These data for a single
spherical particle are well described by the formula

Cd(Re,M ) = (0.38 + 24/Re + 4/Re0.5)

× [1 + exp(−0.43/M 4.67
12 )]

(1)

This empirical formula will be used below in the numerical
calculations.

The results obtained give grounds to argue that the ob-
served effect is caused by the formation of a “collective” SW

in front of the cloud. It results in the change of the flow about
the particles from supersonic to subsonic, reduction of Cd and
of dynamic pressure.

3 Mathematical simulation of the SW/cloud interaction

3.1 Continuum-discrete model of the gas/particles mixture

Consider a cloud of solid spherical particles impacted by the
shock wave. The parameters of gas and particles resulting from
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Fig. 4. Trajectories of bronze particles: d = 80 ÷ 130µm, ρ22 =
8.6 g/cm3 at m2 < 1% and m2 ∼ 1%; computations for d =
130µm;M0 = 2.8; p0 = 0.1 MPa

Fig. 5. Trajectories of acrylic plastic particles: d = 80 ÷ 300µm,
ρ22 = 1.2 g/cm3 for m2 < 1% and m2 ∼ 3%; computations for
d = 300µm,M0 = 2.8; p0 = 0.1 MPa

the SW/cloud interaction are to be found. The particle motion
is simulated by a collisionless kinetic equation, the gas is mod-
eled by the dusty gas equations. The particles are supposed to
be dispersed in velocities and sizes. This model is described
in detail in (Kiselev and Fomin 1986; Kiselev et al. 1992). It
can be applied in the case when the particle trajectories inter-
sect in the flow region and the particle collisions are scarce
Kn ≈ d/(6m2L) ≥ 1, L is the distance covered by a particle
in the cloud.

Let the x axis be directed along the velocity vector of the
center of mass of the cloud of particles, and the y axis be
perpendicular to it. For the plane case the collisionless kinetic

Fig. 6. Wave structure in a supersonic flow behind the SW with low
m2 ≤ 0.1% a and high m2 > 1% b concentration of particles in the
cloud

Fig. 7. Drag coefficient Cd of a particle as the function of the relative
Mach number M12 of the flow

equation has the following form in the system of the center of
mass of the cloud of particles:

∂f

∂t
+ v2

∂f

∂x
+ w2

∂f

∂y
+

∂

∂v2
(axf )+

∂

∂w2
(ayf ) +

∂

∂T2
(qf ) = 0,

(2)

where the velocity and acceleration of particles along the x
axis are designated as v2, ax, and along the y axis - as w2, ay;
T2, q are the particles temperature and the specific heat flux
to a particle. The velocities and accelerations in the system
of the center of mass of the cloud of particles are related to
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the velocities and accelerations in the laboratory coordinate
system through the Galileo transforms:

v2 = vl2 −D, ax = alx − Ḋ, w2 = wl
2, ay = aly, (3)

where the superscript l denotes parameters in the laboratory
coordinate system. The velocity D and acceleration of the
center of mass of the cloud are determined by the formulas

D =

∫
ρ2v

l
2fdV dV0∫

ρ2fdV dV0
, Ḋ =

dD

dt
, (4)

where dV = dv2dw2drsdT2 is a volume element in the phase
space, dV0 = dxdy. The distribution function of particles f
depends on time t, coordinates x, y, particle velocities v2, w2,
particle radius rs and temperature T2. If f is known, then the
concentration of particles n and the volume concentration of
particles m2 are found from the equations

n =
∫

fdV, m2 =
4
3
π

∫
r3
sfdV, (5)

The quantity m2 determines the fraction of unit volume occu-
pied by particles. It is related to the volume concentration of
gas by the equation

m1 + m2 = 1 (6)

The components of the particle acceleration in the laboratory
coordinate system are found from the formulas

alx =
v1 − v2

τ
− 1
ρ22

∂p

∂x
, aly =

w1 − w2

τ
− 1
ρ22

∂p

∂y
, (7)

where v1, w1 are the gas velocity components along the x and
y axes, p is the gas pressure. The first component in (7) is con-
ditioned by the difference in the velocity of gas and particles,
and the second one appears due to the pressure gradient in the
gas. The value of τ is determined by the character of the gas
flow around the particle and is found by the formula

1
τ

=
3
4

(
Reµ

ρ22d2

)
Cd(Re,M12), (8)

where Cd = Cd(Re,M12) is determined by formula (1), Re =
ρ12|v1 − v2|d/µ is the Reynolds number, M12 = |v1 − v2|/c is
the Mach number, c =

√
γp/ρ11 is the speed of sound, d = 2rs

is the particle diameter, ρ22 is the density of the particle ma-
terial, ρ11 is the true density of gas, µ is the viscosity of gas,
γ = cp/cv , cp, cv are the specific heats of the gas at constant
pressure and volume. The heat flux to the particle q is deter-
mined by the equations obtained by processing experimental
data which have the form

q = 2πλrsNu
T1 − T2

csms
, Nu = 2 + 0.6Re0.5Pr0.33, (9)

where Nu is the Nusselt number, Pr = cpµ/λ is the Prandtl
number, λ is the heat conductivity of the gas, T1 is the gas
temperature, cs is the specific heat of the particle, ms =
(4/3)πr3

sρ22 is the particle mass.

Let us write the equations of gas motion in vector form:

∂φ

∂t
+
∂F

∂x
+
∂G

∂y
+ Φ = 0, (10)

where the vectors φ, F,G,Φ have the form

φ =


ρ1

ρ1v1

ρ1w1

ρ1(E1 + (v2
1 + w2

1)/2)

 ,

F =


ρ1v1

ρ1v
2
1 + pm1

ρ1v1w1

ρ1v1A1

 ,

G =


ρ1w1

ρ1v1w1

ρ1w
2
1 + pm1

ρ1w1A1

 , Φ =


0
Φ1

Φ2

A2

 .

(11)

The components of vector φ are ρ1 = ρ11m1, the mean density
of the gas; ρ1v1, ρ1w1, the momenta densities of the gas along
the x and y axes (v1 = vl1 − D,w1 = wl

1); E1 = cvT1 , the
specific energy of the gas; ρ1(E1 + (v2

1 + w2
1)/2) , the mean

energy density of the gas. The components of vectors F and
G are the fluxes of the above quantities along the x and y
axes, and A1 = H1 + (v2

1 +w2
1)/2 where H1 = E1 + pm1/ρ1 is

the specific enthalpy of the gas. The components of vector Φ
designated as Φ1 and Φ2 describe the force affecting the gas
from the particles along the x and y axes:

Φ1 = −p∂m1

∂x
+
∫

ms
(v1 − v2)

τ
fdV ,

Φ2 = −p∂m1

∂y
+
∫

ms
(w1 − w2)

τ
fdV .

(12)

The fourth component A2 determines the energy exchange
between the gas and particles:

A2 = v1Φ1 + w1Φ2+

p

(
∂m1

∂t
+ v1

∂m1

∂x
+ w1

∂m1

∂y

)
− ρ1Φ3,

(13)

where

Φ3 =
1
ρ1

∫
ms

(
(v1 − v2)2

τ
+

(w1 − w2)2

τ
− csq

)
fdV.

(14)

The equations of state for the perfect gas have the form

p = (γ − 1)ρ11E1. (15)

The condition of incompressibility is assumed valid for the
particles: ρ22 = const.

The system of Eqs. (2–15) is used below for computing
subsonic and supersonic flows of gas and particles. This model
gives no way of computing the shock on each particle but
the Mach SW is taken into account in the function Cd(M12).
This provides a possibility to correctly describe the averaged
supersonic motion of the cloud of particles in the gas.
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3.2 Computational algorithm

The system of Eqs. (2–15) is numerically solved with the fol-
lowing algorithm. An Euler rectangular grid is built on the
(x, y) plane with the steps in x, y directions equal to 2hx, 2hy ,
respectively. Equations for gas are written according to the
explicit finite-difference scheme of third order accuracy (Ru-
sanov 1968; Gridnev et al. 1984).

The collisionless kinetic equation is solved in Lagrangian
variables. Take an individual volume in the phase space of
particles θ(t). The condition of the constant total number of
particles N in the individual volume is

N =
∫
θ(t)

fdV0dV = const, (16)

where θ(t) is formed by the same particles whose trajectories
are found from

dx

dt
= v2,

dy

dt
= w2,

dv2

dt
= ax,

dw2

dt
= ay,

dT2

dt
= q,

drs
dt

= 0.
(17)

Equations (17) coincide with the characteristics of the ki-
netic equation (Eq. (2)), the last equation reflects the absence
of particle splitting and coagulation. Differentiating (16) with
respect to time, with account of the Ostrogradskii-Gauss the-
orem and system (17) one can easily obtain the collisionless
kinetic Eq. (2). The individual volume θ(t) coincides with the
volume of a moving cell, hence, the number of particles in the
i-th cell is constant. The region occupied by particles is split at
the moment t = 0 into rectangular Lagrangian cells of the size
2hx, 2hy so that inside every i-th cell all particles have equal
velocity v0

2i, w
0
2i, temperature T 0

2i and radius ri. Therefore, the
distribution function in the i-th cell at t = 0 is

fi =
Ni

V 0
i

δ(v2 − v0
2i)δ(w2 − w0

2i)δ(rs − ri)δ(T2 − T 0
2i),

V 0
i = 4hxhy,

whereV 0
i is the volume of the cell,Ni is the number of particles

in the i-th cell and δ is the delta function. The number of
particles in the i-th cell is constant, therefore the distribution
function in the i-th cell at the moment n is determined by

fni =
Ni

V n
i

δ(v2 − vn2i)δ(w2 − wn
2i)

× δ(rs − ri)δ(T2 − Tn
2i),

V n
i = 4hxhy.

(18)

The particle parameters at the instant tn are determined from
the difference equations which provide the first-order approxi-
mation in time of the system of ordinary differential Eqs. (17).
For the particle velocities and temperature we have

vn2i = vn−1
2i + τan−1

xi , wn
2i = wn−1

2i + τan−1
yi ,

Tn
2i = Tn−1

2i + τqni ,
(19a)

where τ = tn − tn−1 is the time step. Having differentiated
the first two equations in (17) with respect to time and taking

into account the third and fourth equations in (17), we obtain
the corresponding difference equations

xn2i = xn−1
2i + τvn−1

2i + τ 2an−1
xi /2,

yn2i = yn−1
2i + τwn−1

2i + τ 2an−1
yi /2.

(19b)

As it follows from (19), the Lagrangian cells move with respect
to the Euler grid with the velocities vn2i, w

n
2i. The distribution

function fnj in the j - Euler cell is

fnj =
m∑
i

δni Ni

V n
i

δ(v2 − vn2i)δ(w2 − wn
2i)

× δ(rs − ri)δ(T2 − Tn
2i),

(20)

where δni is the volume fraction occupied by the i-th cell in
the j-th Euler cell. The summation in (20) is performed over
m cells crossing the j-th Euler cell. Equations (20) are used
to find the mean value of 〈Q 〉:

〈Q 〉 =
1
n

∫
Q fdV . (21)

Substituting (20) into (21) yields 〈Q 〉nj in the j-th Euler cell

〈Q 〉 =

∑m
i Q n

i δ
n
i Ni/V

n
i∑m

i δni Ni/V n
i

. (22)

Formula (22) allows one to find the mean parameters of
the particles in a random Euler cell. The gas parameters in the
cell were found by the linear interpolation method. Methodi-
cally this technique of solving numerically the kinetic equation
is close to the particles method in rarefied plasma dynamics
(Berezin and Fedoruk 1993). However, there are some essen-
tial differences. In this paper the dusty gas equations are solved
together with the kinetic equation while in (Berezin and Fe-
doruk 1993) Maxwell equations are solved. In the steady state
a similar method for computing gas/particles flows was sug-
gested by Crow (1982).

3.3 One-dimensional calculation of SW/cloud interaction

Let us compute the two-phase flow and study the dynamics of
the leading edge of a cloud of spherical particles behind the
SW. A homogeneous cloud covers the cross section of a flat
channel (see Fig. 8).

In the region Ω1 (without particles) the gas parameters are
computed from the Euler equations (perfect gas) with third-
order accuracy. In the region Ω2 the system of Eqs. (2–15)
was solved using the numerical technique described in 3.2,
under the assumption that dD/dt = 0 (laboratory frame of
reference).

Ahead of the shock wave x > x+ the gas is at rest, there-
fore,

ρ11 = ρ0
11, p = p0, v1 = w1 = 0. (23)
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Fig. 8. Computational domain (one-dimensional case); Ω1 is the re-
gion occupied by the gas; Ω2 is the gas/particles mixture; x+ is the
SW front coordinate; x1 is the front boundary of the cloud; x2 is the
rear boundary of the cloud; γ1 ÷ γ4 are the computational domain
boundaries

The gas parameters behind the shock wave x < x+ are found
from the Hugoniot condition

ρ11 =
ρ0

11M
2
0

1− h + hM 2
0

, p = p0
(
(1 + h)M 2

0 − h
)
,

v1 = (1− h)c0(M0 − 1/M0), w1 = 0,

(24)

where h = (γ − 1)/(γ + 1),M0 = D0/c0 is the shock wave
Mach number. It is assumed that the particles in the cloud are
at rest and have the same radius ds/2 and temperature T0, thus
in Ω2

f 0 =
6m0

2

πd3
s

δ(rs − ds/2)δ(w2)δ(v2)δ(T2 − T 0
2 ). (25)

The boundary conditions for γ1, γ3 were w1 = 0, for γ2, γ4 −
∂φ/∂x = 0 (see Fig. 8). For γ1, γ3 the mirror reflection of par-
ticles was assumed, for γ2, γ4 the no-slip condition was taken.
The parameter values of gas and particles for the computations
were selected the same as in the experiments described in 2.2.
The computed trajectories of the left boundary x(t) of a cloud
of monodisperse particles of acrylic plastic (ds = 300µm)
are presented in Fig. 5 (1, 2). The computed and experimental
results are in a good agreement.

Figures 9, 10 show the plots of pressure p and the Mach
numberM1(x) for a dense cloud. A reflected (collective) SW is
seen to form in front of the cloud. Inside the cloud an expansion
wave is formed where the gas accelerates and the flow becomes
supersonic near the right boundary of the cloud. The amplitude
of the travelling SW decreases as compared with the incident
SW because some part of the gas energy is spent for the cloud
acceleration.

Figure 11 gives the dependence of M1(x) for the SW in-
teraction with the rarefied cloud of acrylic plastic particles
with a small volume concentration of the particles. The flow
in the cloud is supersonic and no reflected collective SW ap-
pears. The appearance of small disturbances in front of the left
boundary is related to the scheme viscosity.

Fig. 9. Pressure profiles p(x) in the cloud of acrylic plastic particles
in the time moments 50, 100, 150µs (1, 2, 3),m2 = 3 · 10−2. The
vertical lines denote the cloud boundaries (the same in Figs. 10, 11)

Fig. 10. The flow Mach number profiles M1(x) under the conditions
shown in Fig. 9

The plot x(t) for acceleration of the bronze particles cloud
is shown in Fig. 4 (1, 2).

3.4 Two-dimensional computation of SW/cloud interaction

Let a SW be incident to a cloud of spherical particles of acrylic
plastic in the region Ω2 bounded in x and y directions (see
Fig. 12). Consider a 2D case: the motion of the gas and par-
ticles is described by Eqs. (2). At the time moment t = 0
the cloud has a rectangular shape. The particles are monodis-
perse d = 100µm, ρ22 = 1.2 g/cm3

, T 0
2 = 300 K, v2 = w2 =

0,m0
2 = 10−2. The SW Mach number is M0 = 3 and the

gas parameters in front of the shock wave are found from the
Hugoniot conditions at ρ0

11 = 1.3 kg/m3
, T 0

1 = 300 K. At the
boundary γ1, we assumed w1 = 0, at γ2, γ4 − ∂φ/∂x = 0, at
γ3 − ∂φ/∂y = 0. The mirror reflection was assumed for the
particles on γ1 and no-slip condition on γ2, γ3, γ4.
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Fig. 11. The flow Mach number profilesM1(x) in the cloud of acrylic
plastic particles at m2 = 10−3

Fig. 12. Computational domain (two-dimensional case). Notations
are the same as in Fig. 8

Figures 13a,b show the isobars p(x, y) for the time mo-
ments 80 and 160µs. A reflected shock wave is seen to
be formed in front of the cloud. Inside the cloud a con-
stant negative pressure gradient (expansion wave) develops.
The gas/particle interaction force decreases in time f12 ∼
Cd(v1−v2) as a result of the particle cloud acceleration. There-
fore, an expansion wave starts to propagate upstream from the
cloud, which attenuates the reflected SW. The pressure be-
hind the SW is determined from the discontinuity appearing
at the moment the expansion wave reaches the reflected SW
front. This process is a nonsteady one. The time of the expan-
sion wave coming to a certain point of the SW depends on
its location, namely, it increases with the transverse coordi-
nate growth. Thus, the pressure behind the SW and, hence, the
SW propagation velocity on the periphery is greater than near
the axis (semispace boundary). The reflected SW front starts
to straighten, while the shock wave itself separates from the
cloud, which is well seen in Fig. 13.

Figure 14 presents the isolines of the volume particle con-
centration m2(x, y). Since the gas velocity is not uniform be-
hind the SW, the cloud is seen to expand upwards and to extend

Fig. 13. Isobars p(x, y) (atm) for the time moment 80µs a and 160µs
b. The dashed line is the cloud boundary (laboratory frame of refer-
ence)

Fig. 14. Isolines of the volume concentration m2(x, y) with the step
∆m2 = ·10−3 for the time moment 160µs (laboratory frame of
reference).

downstream. The region of higher concentration is formed at
the windward side of the cloud. Figure 15 shows the velocity
field of the particles in the system of the cloud center of mass.
The particle trajectories are seen to gather near the front cloud
boundary, i.e. the edge caustic shown in Fig. 16 develop.
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Fig. 15. Velocity field of acrylic plastic particles in the center of mass
system

Fig. 16. Trajectories of particles

4 Discussion

Two mechanisms of a “collective” SW formation in front
of a cloud of particles are known at present. According to
Blagosklonov et al. (1979) a collective bow shock wave is
formed when transonic regions merge behind the shocks on
separate particles. In this case the condition of its appearance
is determined by the relation l/d ≤ l∗/dwhere l∗ is the charac-
teristic size of the transonic region. The ratio l∗/d grows with

M1 decreasing but does not exceed l∗/d ∼ 5 according to
the estimates of Blagosklonov et al. (1979) because the shock
intensity is reduced. Therefore, the formation of the “collec-
tive” bow SW should be expected if l∗/d ≤ 5, the volume
concentration being m2 ∼ (l∗/d)−3 > 0.01.

If m2 ≤ 0.01 another mechanism of the “collective” bow
shock wave is established, which allows one to consider it as a
reflected SW. The supersonic flow penetrates into the cloud of
the gas/particles mixture to some depth l. As a result of gradual
gas deceleration on the section l a compression wave appears
which transforms in time into a reflected SW. Then the time of
the reflected SW formation t∗ must be of the order of the gas
deceleration time τv . Let us evaluate τv from the gas motion
equation

dv1

dt
= − 1

ρ11

∂p

∂x
− 3

4
Cd

m2

m1
|v1 − v2|(v1 − v2)/d (26)

At the stage of the collective SW formation the velocity
v2 of the particles is essentially smaller than the gas velocity
v1(v2 � v1), hence, the second term in the right-hand part
may be presented as −v1/τv , where

τv =
4
3

m1

Cdm2

d

v1
.

Herefrom atv1 ≈ 7·102 m/s, ds = 300µm,m2 = 3·10−2, Cd ∼
1−0.5, we have τv ∼ 20−40µs, which is close to t∗ ∼ 50µs
according to Figs. 3d, 9, 10.

The analysis of the gas flow makes it possible to under-
stand the reason for higher acceleration of the rarefied cloud
of particles. In this case for the acrylic plastic particles the gas
velocity in the rarefied cloud (m0

2 ≈ 10−3) is approximately
twice as high as in a dense cloud (m0

2 ≈ 10−2) (see Figs. 10,
11). Another factor affecting the particle acceleration is the
dependenceCd = Cd(M12). As was noted above (section 2.2),
this is connected with the change of the flow about the particles
from supersonic to subsonic in dense clouds.

The force acting on a particle is f12 ∼ Cdρ11(v1 − v2)2/d.
The particle velocity v1 � v2 may be neglected at the ini-
tial stage of acceleration for t ≤ 100µs, therefore, f12 ∼
Cdρ11v

2
1/d. The value of j = ρ11v1 is approximately the same

for dense and rarefied clouds. Thus, the difference in the f12

dependence on the dynamic pressure for dense and rarefied
clouds is reduced to f12 ∼ Cdv1.

The computations showed that at the time moment t ≈
50µs Cd ≈ 0.44 at m0

2 = 3 · 10−2 and Cd = 0.72 at
m0

2 = 10−3 , hence, neglecting in the first approximation the
dependence j on m0

2 we get the estimate

xd1
xr1

≈ fd12

fr12
≈ Cd

d

Cr
d

vd1
vr1

≈ 0.3

where the superscript ”d” means the values for m0
2 = 3 · 10−2

and ”r” denotes the values form0
2 = 10−3. This estimate holds

also for later time when v2 cannot be neglected. The analysis of
the flow of gas and acrylic plastic particles taken in the middle
of the cloud at t = 150µs yields

fd12

fr12
≈ Cd

d (v1 − v2)d

Cr
d(v1 − v2)r

≈ 0.42.
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Note that for the acceleration of the bronze particles the dif-
ference in fd12 and fr12 is mostly related to the Cd(M12) depen-
dence. For the moment t = 150µs (v1 − v2)d/(v1 − v2)r ∼
0.75, Cd

d/C
r
d ∼ 0.55, fd12/f

r
12 ∼ 0.4.

5 Conclusion

The results of an experimental and theoretical study of the
shock wave interaction with a cloud of solid particles are pre-
sented in the paper. It is shown experimentally that a reflected
shock wave is formed ahead of the cloud of particles at volume
concentration of particles about 1-3%. Numerical simulation
of the problem carried out on a PC allowed one to reveal the
formation mechanism of the reflected shock wave. A compres-
sion wave arises in the cloud due to deceleration of gas by the
particles. Because of nonlinear effects the compression wave
is transformed into a shock wave which moves towards the gas
flow. In the course of time the shock wave leaves the cloud, and
a rarefaction wave is formed in the cloud of particles, where
the gas flow is accelerated. The final state of the gas behind the
cloud of particles is determined by irreversible losses of the
gas flow in the shock wave and in the cloud of particles due
to friction and heat exchange with the particles. The described
mechanism of formation of a shock wave reflected on a cloud
of particles is universal and valid for volume concentrations
of particles of the order of several percent.
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