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Abstract
A simplified burnmodel (SBM)was developed for use in simulating the effects of explosive detonations. The goal of SBM is to
provide a subgridmodel for detonation propagation on grids that are many times coarser than the physical width of the reaction
zone. Similar to traditional programmed burn (PB), SBM provides accurate enough initial conditions for simulating large-
scale blasts and afterburning processes resulting from the detonation. The governing equations are based on the five-equation
compressible multiphase flow model that describes reaction and post-detonation processes similar to reactive burn models.
The model uses highly simplified reactant equations of state and reaction rate laws. The reaction model is based on burning
rates from traditional PB approaches and is designed to spread the reaction zone over a small number of grid points regardless
of the mesh resolution. The detonation velocity and state are independent of the input parameters for the reactant equation of
state and reaction model, provided the inputs are physically realistic. The single input parameter for the equation of state must
be selected such that the reactant and product Hugoniot curves do not cross, otherwise unphysical weak detonations result.
Numerical experiments show that the velocity, state, and bulk structure of Chapman–Jouguet detonations can be reproduced
by the model. The resulting blast profiles, pressure–time traces, and detonation velocity for multidimensional simulations are
relatively independent on the input parameters, again, provided the inputs are physically reasonable. The simplified burnmodel
shows great potential for simulating afterburning processes with detailed reaction models or explosive particle dispersal. The
SBM is relatively straightforward to implement in compressible multiphase flow codes.

Keywords Detonation · Numerical simulation · Multiphase flow · Programmed burn · Reactive burn

1 Introduction

The use of reactive particles to enhance explosive blasts,
increase quasistatic overpressure, and produce extended
energy release through afterburning processes is an active
research topic [1–11]. The detonation of a condensed phase
explosive, which may contain energetic particles, is a pre-
cursor event to particle dispersal, turbulent mixing, and
afterburning processes [12].

In principle, afterburning processes produced by the det-
onation of an explosive charge can be simulated by fully
resolving the detailed structure of the reaction zone and
Zeldovich–von Neumann–Döring (ZND) spike of the deto-
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nation by using reactive burn approaches [13].However, such
resolution is computationally infeasible due to the large dis-
parity in length scales between the detonation structure and
the afterburning fireball. The model for the detonation phase
of the explosive material for applications where later-time
processes such as afterburning and air blast applications do
not have to be as detailed as is required for other applications,
such as detonator design [14,15]. Instead, modeling these
events requires detailedmodels for particle transport and col-
lisions, turbulent mixing, and detailed chemical kinetics to
describe the late-time dispersal and afterburning processes
[11,12]. Resolving details of the detonation structure are not
required for these applications. The detonation model for
the condensed explosive need only to provide accurate ini-
tial conditions for chemical species and particles that may
undergo later time dispersal and combustion. This paper
presents a simplified burn model (SBM) that can be consid-
ered as a subgrid model for condensed phase explosive wave
propagation, which satisfies the detonation model require-
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ments for afterburning and later-time air blast applications is
compatible with multiphase reactive flow models and codes.

The structure of a one-dimensional planar detonation
wave predicted by classical Zeldovich–von Neumann–
Döring (ZND) theory consists of a shock wave propagat-
ing into unburned energetic material followed by a chemical
reaction zone. The reactions are autoignition processes ini-
tiated by shock compression of the explosive material [16].
The chemical reactions terminate at the Chapman–Jouguet
(CJ) point where the reactants have been fully converted into
high-pressure andhigh-temperature products at local thermo-
dynamic equilibrium. The reaction zone between the leading
shock wave and the CJ point is often very thin, on the order
of 10–100µm for many explosives and is often impractical
to resolve in many large-scale blast and afterburning appli-
cations which often have fireball, and blast length scales can
be over 10m.

Reactive burn (RB) models are developed to compute the
details of the reaction zone, ZND spike, and transient pro-
cesses such as shock-to-detonation transition (SDT) [13,17].
Thus, RBmodels can accurately many transient and multidi-
mensional features, such as corner turning and the formation
of “dead-zones” of unreacted explosive material [18]. How-
ever, RB models require a calibrated set of input parameters
for the reactant equation of state (EOS), product EOS, and
reaction rate. Calibration of the reactant EOS and reac-
tion rate requires significant empirical input [19–21], which
are unavailable for many materials. RB models require full
numerical resolution of the reaction zone of the detonation,
which is undesirable and impractical for afterburning appli-
cations.

Programmed burn (PB) models forgo the fine details of
reactive burn models [15,22,23]. As a result, PB methods
can be much more efficient if the overall goal of the compu-
tation is to compute the effects of the detonation rather than
the detailed detonation structure. Programmed burn models
often approximate reaction rate through the use of a burn
table that is generated in a preprocessing step to the simu-
lation. The burn table lists the time the detonation arrives at
a grid point. The explosive material burn uses a simplified
rate law based on a detonation sweeping through a computa-
tional cell [24,25]. PB approaches offer enormous flexibility.
The burn tables can be based on the Huygens method, where
the detonation propagates normal to itself at the CJ velocity
(Dcj), or account for curvature effects using detonation shock
dynamics (DSD) [23]. However, PB approaches are sensitive
to fine implementation details. Unphysical phenomena, such
as weak detonations, can result if PB is not implemented
carefully [15]. In addition, it is not clear how to extend PB
methods to multiphase explosives where granular particles
can be mixed within the explosive charge or placed in an
annular shell surrounding the explosive [12,26].

This paper discusses the development of a simplified burn
model (SBM) for simulating blasts, afterburning, and other
post-detonation processes. The main objective of the SBM is
to provide an approximation for the condensed phase detona-
tionwithout requiring full resolutionof the reaction zone.The
SBM is designed compatible with detailed chemical reaction
and particulate multiphase models. The SBM can be thought
of as a programmed burn approach that is compatible with
multiphase and reactive flow models for afterburning.

The overall goals of the simplified burn model are:

1. Approximate detonation propagation using only the ther-
modynamic state of the reactants (density and enthalpy of
formation) and EOSmodel for the products with minimal
additional input parameters (ideally none),

2. Applicable to scenarios that involve multiphase and after-
burning processes with particle transport and detailed
chemical kinetic models,

3. Produced an approximate detonation pseudo-reaction
zone that is resolvable regardless of computational cell
spacing, and

4. The detonation can turn corners without a burn table.

To achieve these goals, we combine the formalism of RB
approaches with the simplified reaction rate used in the PB
approaches. This is possible because theCJ detonation veloc-
ity and product state are independent of the reaction model
and the reactant equation of state. Thus, RB approaches can
be used with any physically reasonable model for the reac-
tant EOS and reaction rate to produce a physically realistic
detonationwave. A similar approach has recently been devel-
oped [27], but requires several additional input parameters
and may not extend easily to multiphase blasts.

The SBM is built on the five-equation compressible multi-
phase model [28,29], which has been demonstrated in recent
reactive burn [20] and SDT simulations [17]. This paper
discusses the development of the SBM and the numerical
methods used, shows examples of its use, and then compares
it with traditional reaction models used in programmed burn.
The focus of this paper is on the model for the explosive
detonation. Discussions of additional model details for after-
burning, including detailed chemical kinetics, multiphase
particle dispersal, molecular transport, and turbulence mod-
els, will be discussed in follow-on papers. The afterburning
model used this paper is highly simplified to place emphasis
on the SBM.

2 Model

This section discusses the development of the simplified burn
model. First the governing equations are presented. Next, the
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equation of state for the products and reactants is discussed.
Finally, the reaction model is developed.

2.1 Governing equations

The starting point for the simplified programmed burnmodel
is the reactive Baer–Nunziato (BN) equations. The BN
equations are often used to simulate reactive burn and shock-
to-detonation transition [30,31]. The BN equations are:

∂αh

∂t
+ vh · ∇αh = −α̇, (1)

∂αhρh

∂t
+ ∇ · (αhρhvh) = −Ṁ, (2)

∂αgρg

∂t
+ ∇ · (αgρgvg

) = Ṁ, (3)

∂αhρhvh
∂t

+ ∇ · (αhρhvhvh) + ∇αh ph = pg∇αg − M, (4)

∂αgρgvg
∂t

+ ∇ · (αgρgvgvg
) + ∇αg pg = −pg∇αg + M, (5)

∂αhρhEh

∂t
+ ∇ · (αhρhvhHh) = pgvh · ∇αh − H, (6)

∂αgρgEg

∂t
+ ∇ · (αgρgvgHg

) = −pgvh · ∇αh + H, (7)

where subscripts h and g refer to the solid explosive and gas
phase, α is the volume fraction, ρ is the density, v is the
velocity vector, p is the pressure, E is the total energy, α̇

is the rate of change of the explosive volume fraction due
to phase change in the detonation, Ṁ is the mass rate of
phase change, and M and H are the momentum and energy
exchange between the gas and solid phases. By definition,

αh + αg = 1. (8)

The total energy is

E = e + 1

2
v · v, (9)

where e is the internal energy that includes the enthalpyof for-
mation, �h0f . The BN equations have a long history of suc-
cess in modeling reactive burn [32–34], shock-to-detonation
transition (SDT), deflagration-to-detonation transition [35],
etc. The BN equations, however, can be difficult to solve and
are computationally intensive due to the non-conservative
spatial gradient terms [33,36].

The details of the BN equations, such as separate momen-
tum and energy equations for each phase, are not necessary
for programmed burn applications. Here, wemake the ansatz
that the gas and solid explosive are in homogeneous flow con-
ditions (vh = vg) and that they are inmechanical and thermal
equilibrium. Thus, the SBM assumes

1. vh = vg = v,
2. ph = pg = p,
3. Th = Tg = T .

The mixture mass and energy are defined by:

ρ = αgρg + αhρh (10)

ρE = αgρgEg + αhρhEh. (11)

Using the mixture definitions and the above assumptions,
the BN model reduces to the five-equation multiphase flow
model [28,29]. The five-equation model has been used suc-
cessfully for reactive burn [20] and shock-to-detonation
transition [17] simulations. The resulting simplified multi-
phase governing equation, including species mass transport
with chemical reactions, is

∂αh

∂t
+ ∇ · (αhv) − αh∇ · v = −α̇, (12)

∂αhρh

∂t
+ ∇ · (αhρhv) = −Ṁ, (13)

∂αgρg

∂t
+ ∇ · (αgρgv

) = Ṁ, (14)

∂αgρgYg,i
∂t

+ ∇ · (αgρgYg,iv
) = αgω̇i + Ṁi (15)

∂ρv
∂t

+ ∇ · (ρvv) + ∇ p = 0 (16)

∂ρE

∂t
+ ∇ · [v (ρE + p)] = 0 (17)

where Yg,i , Ṁi , and ω̇i are the mass fraction of production,
homogeneous mass rate of production, and heterogeneous
rate of production for species i . Mass conservation requires:

Ṁ =
Ng∑

i=1

Ṁi , (18)

where Ng is the number of gas-phase species. Note that the
advection term in the volume fraction transport equation (12),
v · ∇αh, is written as ∇ · αhv − αh∇ · v to reflect how this
equation is solved in practice. This manipulation allows for
better synchronization of the volume fraction transport with
the bulk densities (αρ) for each phase [37,38]. This paper
is focused on the simplified model for explosive detonation,
which is a necessary component of afterburning.Thus, details
such as turbulent mixing, molecular transport models, and
particle dispersal are not included in (12)–(17).

2.2 Equations of state

2.2.1 Gas-phase equation of state

The pressure for the gas phase uses a modified Jones–
Wilkins–Lee (JWL) equation of state [10,11]
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p = A

[
1 − ωρg

R1ρ0

]
exp

(
−R1

ρ0

ρg

)

+B

[
1 − ωρg

R2ρ0

]
exp

(
−R2

ρ0

ρg

)
+ ρgRmixTg, (19)

where A, B, R1, R2, and ω are constants and

Rmix = Ru
∑ Yg,i

Mwi
, (20)

Ru is the universal gas constant, Yg,i is the mass fraction
of gas-phase species i , and Mwi is the molecular weight of
gas-phase species i . In this formulation, the mixture of JWL
model is a thermally perfect equation of state for a mixture
of ideal gases with a non-ideal barotropic correction factor to
account for the high-pressure gas near the CJ state. This JWL
model can easily accommodate multiple species and chem-
ical reactions in the gas phase. Other EOS models such as
traditional JWL [39], wide ranging (Davis) [40], andBecker–
Kistiakowsky–Wilson (BKW) [41]would be straightforward
to adopt.

The gas-phase internal energy is

eg(Tg,Yg,i ) =
∑

Yg,i ei (Tg), (21)

where ei is the internal energy for gas-phase species i [42].
The internal energy for each species includes the enthalpy of
formation, �h0f ,i . This internal energy formulation neglects
the real-gas internal energy departure function [43,44] and, as
a result, is thermodynamically inconsistent.However,wefind
that this inconsistent model performs well when predicting
realistic post-detonation temperatures. This particular vari-
ant of the JWL EOS model has a long history of success
in modeling reactive and even multiphase blasts [10–12].
Details on the gas-phase internal energy, specific heat, and
input parameters are given in Appendix 1.

The speed of sound of the gas, cg, is

c2 = c2ideal + c2n. (22)

The ideal sound speed is:

c2ideal = γ RmixTg, (23)

where

γ = Cvg + Rmix

Cvg
, (24)

andCvg is constant-volume specific heat for the gas mixture.
The non-ideal sound speed is:

c2n = A

[(
R1

ρ0

ρg
− ω

)
1

ρg
− ω

R1ρ0

]
exp

(
−R1

ρ0

ρg

)

+B

[(
R2

ρ0

ρg
− ω

)
1

ρg
− ω

R2ρ0

]
exp

(
−R2

ρ0

ρg

)
. (25)

2.2.2 Reactant equation of state

The goal of the SBM is to provide a subgrid approximation
to explosive detonation propagation that functions similar to
programmed burn, but is compatible with detailed afterburn-
ingmodels. Accurately capturing details of the ZND spike or
reaction zone are not required. Thus, EOS for the explosive
can be any model that produces any numerically resolvable
ZND spike. The reactant EOS is derived from a Taylor series
expansion of the pressure–velocity–density relation obtained
by combiningmass andmomentumRankine–Hugoniot jump
conditions across a shock [39]

ρ0S = ρhu

ρ0S
2 + p0 = ρhu

2 + p,

where ρ0 is the initial density, p0 is the initial pressure, S
is the shock velocity, and u is the particle velocity in the
post-shock state. Eliminating u gives

p − p0 = S2
(

ρ0 − ρ2
0

ρh

)

.

Performing a Taylor series expansion of ρ about ρ0 produces

p − p0 = S2
[
(ρh − ρ0) − (ρh − ρ0)

2

ρ0
+ · · ·

]
.

Taking the first term gives

p − p0 ≈ S2 (ρh − ρ0) . (26)

This is a linearized pressure–density relation that can be used
to define a EOS model if S is a constant. The character-
istic shock velocity for a detonation should scale with the
Chapman–Jouguet detonation velocity, Dcj. Thus, we choose
S = aDcj, where a is a constant. Substituting this into (26)
gives the reactant EOS used for the SBM

p − p0 = a2D2
cj (ρh − ρ0) . (27)

Other reactant equations of state could be used [27,39].
However, other reactant EOS models require several input
parameters that are not characterized for many materials.
The linearized equation of state only requires a single free
parameter a and ρ0 and Dcj, which are typically known for
an explosive. Guidelines for choosing a are discussed later.
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The internal energy of the explosive, eh, is determined
from thermodynamics of a real gas [43,44]

deh = CvhdT −
(
p − T

∂ p

∂T

∣∣∣∣
v

)
dv. (28)

Assuming constant specific heat and evaluating the integral
for the reactant EOS give

eh =�h0f ,h + Cvh (T − Tref) + a2D2
cj ln

(
ρh

ρ0

)

−
(
p0 − ρ0a

2D2
cj

) [
1

ρ
− 1

ρ0

]
,

(29)

where �h0f ,h is the enthalpy of formation of the explosive
reactants at reference temperature Tref. Specific heat, Cvh, is
added to the internal energy to avoid singular regions in the
solution space when performing pressure–temperature equi-
libration discussed below. The specific heat has no influence
on the detonation due to the density being independent of
temperature for the linearized reactant EOSmodel discussed
in Sect. 2.3.

The sound speed for explosive reactant is:

c2h = a2D2
cj. (30)

The parameter a, in principle, does not affect the CJ state
or detonation velocity. However, considering the Zeldovich–
von Neumann–Döring (ZND) structure of a detonation [16],
we require that

ρvn > ρcj > ρ0, (31)

where ρvn and ρcj are the densities of reactants in the von
Neumann spike and products at CJ state, respectively. A
Rankine–Hugoniot analysis for an inert shock propagating
into the reactants gives

ρvn = ρ0

a2
, (32)

pvn = p0 + ρ0D
2
cj

(
1 − a2

)
, (33)

where pvn is the value of pressure in the von Neumann spike.
The criterion given in (31) can be stated in terms of

Hugoniot curves for the products and shocked reactants [45].
Physically, we require that the reactant and product Hugo-
niots do not cross and

pHprod(v) > pHreact(v) ∀ v, (34)

where v = 1/ρ and pHprod and pHreact are the product and
reactant Hugoniot curves, respectively.

Fig. 1 Rayleigh line and product and reactant Hugoniot curves for
values of a = 0.75 and 1. The CJ state is indicated by the red dot. The
von Neumann point is indicated by the black dot

Figure 1 shows that high values of a produce shock
Hugoniots that intersect the product Hugoniot, which leads
to unphysical detonations. Lower values of a satisfy
(31) and (34). However, values of a that are too low pro-
duce unphysically high pressures in the von Neumann spike.

A limiting case fora iswhen the shockHugoniot intersects
the CJ point

acj = 1

Dcj

√
pcj − p0
ρcj − ρ0

, (35)

where pcj and ρcj are the pressure and density at the CJ
state, respectively. Applying a safety factor of 0.9 to acj
to compensate for numerical dissipation in the shock gives
a = 0.76−0.79 for all explosives tested. In practice, we find
selecting a = 0.75 to be effective. The effect of a on the
detonation profiles is discussed below.

2.2.3 Mixed cell treatment

The mixture temperature and pressure are required to close
the model and are necessary to compute the pressure gradi-
ents and sound speed. The usual EOS inversion procedures
are used in regions of pure fluid (ε < αh < 1 − ε, where
ε = 10−6) to compute p and T . Mixed cells where both
explosive and gas phases are present require an iterative pro-
cedure to enforce the mechanical and thermal equilibrium
assumptions.

Other simplified approaches are possible to estimate the
mixture pressure and temperature [46,47]. However, in gen-
eral, Arrhenius reaction models for afterburning processes
require accurate temperature. Thus, the empirical and less
rigorous methods to find the mixture p and T need to be
carefully assessed to ensure they do not negatively impact
the post-detonation processes.
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The pressure and temperature of themixture are computed
by enforcing that the mixture mass and energy

ρ = αgρg + αhρh, (36)

ρe = αgρgeg + αhρheh, (37)

are the same when based on the conserved variables
(αh, αhρh, and αgρg, ρe) and the EOS models

f1 = αhρh(p) + αgρg(p, T ) − ρ, (38)

f2 = αhρh(p)eh(p, T ) + αgρg(p, T )eg(p, T ) − ρe, (39)

whereρ,αh, andρe are computeddirectly from the conserved
variables and ρg(p, T ), ρh(p), eg(T ), and eh(p, T ) are com-
puted from the EOS models. (Recall that E = e + v · v/2.)
Newton’s method is used to solve for p and T such that
f1 = f2 = 0

[
P
T

](n+1)

=
[
P
T

](n)

− ξ

[
J1,1 J1,2
J2,1 J2,2

]−1 [
f1
f2

]
(40)

where n is the iteration counted. The Jacobian entries are
listed inAppendix 2. An under-relaxation factor, ξ , is applied
to stabilize the Newton–Raphson iterations

ξ = min(1, ξ0β
n−1), (41)

ξ0 is an initial under-relaxation factor and β is a growth
rate. Values of ξ0 = 0.1 and β = 1.01 work well for
most cases. The initial guess values are p = p0 and
T = Tref = 298 K. Typically 50 iterations are needed to
converge to an error tolerance of 10−9.

A simple volume fraction-weighted mixing rule is used
for the sound speed

1

c2mix

= αg

c2g
+ αh

c2h
. (42)

The sound speed is used only to compute the time-step
size and estimate wave speeds for the approximate Riemann
solver. Thus, a simple approximation was found to be suffi-
cient for this work.

2.2.4 Treatment of negative pressure at interfaces

The solid EOS admits negative pressure, which can cause
numerical problems in mixed cells where both explosive and
gas are present. For example, a solid density ofρ = 0.9999ρ0
is low enough to produce negative pressures in (27). A com-
mon scenario where this can occur is when the leading shock
of the detonation breaks out of the explosive charge. This
produces a strong expansion that is refracted into the solid
material. These problem cells are usually burned completely

into pure gas before they cause problems. However, if the
pressure for the solid EOS is negative, it is not possible for
the gas and solid to agree on a common pressure in mixed
cells. This often leads to numerical instability and eventually
halts the code.

Problematic cells are addressed in a mass conservative
manner by adjusting the volume fraction of the solid-phase,
αh (which is not a conserved quantity) inmixed cells such that

αcorr
h = αhρh

ρmin
if

αhρh

αh
< ρmin and ε < αh < 1 − ε,

(43)

where ε = 10−6 and the values for αhρh and αh are taken
directly from the conserved variable vector,

ρmin = p0
r − 1

D2
cj

+ ρ0, (44)

and r = 0.99. Equation (43) is applied to all mixed cells after
every Runge–Kutta stage of the solver.

2.3 Reactionmodels

2.3.1 Detonation reaction model

The main objective of this work is to develop a simpli-
fied model for approximating detonation propagation for the
purposes of studying afterburning, air blasts, and other appli-
cations. The detonation velocity and CJ state are dependent
only on the initial state reactants and the product equation
of state. Thus, the model for the detonation reaction rate,
Ṁ , can, in principle be any reasonable model. Ignition and
growth as well as other reaction models [17,40,48] could be
used. However, many of these reaction models require many
input parameters. In addition, using these reaction models
would require physically resolving the reaction zone of the
detonation, in which the SBM is designed to avoid.

The detonation reaction will be physically under-resolved
in the SBM. Ideally, the reaction model for Ṁ will burn all
condensed phase materials within a few grid points. Unphys-
ical time-step size-dependent detonation velocities can result
the reaction rate being too large [49]. The constraints on the
reaction model for SBM are that it is fast enough to produce
a detonation structure that is as thin as possible to minimize
the number of mixed cells, but is resolvable by the numerical
method.

Here we consider a reaction model that is motivated by
traditional programmed burn (PB) approaches [24,25]. Con-
sider a detonation wavemoving through a computational cell
at velocity Dcj. The explosive mass consumption rate of a
detonation burning through a computational cell for a PB
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method is often of the form

ṀPB ∼ ρhDcjA/V , (45)

where A is a representative surface area of the detonation
within a computational cell and V is the volume of the cell.
Motivatedby ṀPB, reaction rate for the simplifiedburnmodel
(SBM) is selected to be

Ṁ = ρhα̇, (46)

where

α̇ =
{

δDcj
b if (p ≥ pign or T ≥ Tign) and αh > 0

0 otherwise.
(47)

Here b is a parameter designed to spread the detonation reac-
tion zone over b computational cell widths, pign and Tign are
a pressure and temperature thresholds to begin burning, and
δ is a representative area–volume ratio of the detonation in a
computational cell

δ = 1

Ndim

Ndim∑

i=1

1

�xi
. (48)

Here, Ndim is the number of dimensions in the simulation
and �xi is the grid spacing in direction i . Then, gas-phase
species mass production rates are

Ṁi = Ycj,i Ṁ = Ycj,iρhα̇, (49)

whereYci,i is themass fraction of gas-phase species i at theCJ
state.Modification of (47) for usewith traditional time-based
programmed burn reaction models is discussed in Sect. 9.

Without Tign in (47), refracted release waves form that
quench the reaction in the outermost edge of the explosive
chargewhen the leading shock of the detonation breaks out of
the solid material. The resulting Khariton layer of unburned
solid material is ejected [50]. (See Fig. 2.) Even though
the Khariton layer is a physical phenomena that has been
observed [50], it is undesirable to attempt to capture it in
the proposed SBM. The reaction zone is intentionally much
thicker in the SBM approach than it is in physical reality.
Thus, the amount of unburned material in the Khariton layer
will be grossly overestimated. Tign is used to ensure that all
ejected solid materials burn when p falls below pign, but
the temperature is still high. A ignition temperature between
500 and 700K works well for most applications.

The parameter b spreads the reaction zone over several
grid points to avoid numerical instabilities. A value of b = 2
is recommended for most cases. The ignition pressure, pign,
is chosen to be high enough to minimize burning in the

t = 22.4  µs 

Initial Explosive
Charge,

Unburned 
Explosive
(Khariton layer)

Fig. 2 Unburned explosive ejected by the detonation of a 10-cm-
diameter explosive charge when Tign = ∞. The explosive is completely
consumed if Tign = 500K

numerical profile of the leading shock wave. This param-
eter must also be lower than the constant-volume explosion
pressure, pcv. Typically, a value of pign = 2.5 GPa works
well. However, this value may have to be adjusted for non-
ideal explosives. The influence of b and pign is discussed in
Sect. 4.

2.3.2 Ignition of the detonation

The detonation is initiated by defining an “igniter”, which is
a region inside the explosive that burns at an infinite rate at
time tign (constant-volume explosion limit)

α̇ = ∞ if t = tign and x in Ωign, (50)

wherex is the position vector of the computational cell center.
Ωign and tign are regions occupied by the igniter and its ini-
tiation time. The resulting shock from the constant-volume
explosion is sufficient to ignite nearby material, provided
that pign > pcv, where pcv is the adiabatic constant-volume
explosion pressure. Numerically, the igniter is implemented
by converting all of the solid material into gas at time tign
in Ωign. This detonation ignition method is flexible enough
to accommodate multiple igniters with different shapes and
different initiation times.

2.3.3 Homogeneous reactions

The proposed SBM formulation and modified JWL EOS
model [10] are flexible enough to accommodate arbitrarily
complex chemical reactions necessary to describe explosive
afterburning processes. Discussion of afterburning models
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with detailed chemical and multiphase reactions will be dis-
cussed in a follow-on paper. In this paper, the afterburning
proceeds as a single-step irreversible reaction [10]

DP + νAir → (1 + ν)AP, (51)

whereDP,AP, ν refer to the detonation products, afterburning
products, and the stoichiometric mass air–fuel ratio, respec-
tively. The reaction is assumed to proceed at an infinite rate
and is mixing limited.

3 Numerical methods and input parameters

Full details of the numerical methods used are given in
Appendix 3. The governing equations are solved using the
method of lines.AStrang-splitting approach is used to couple
the hydrodynamic and the chemical reaction terms. A high-
order accurate Godunov algorithm [51] using the fifth-order
MUSCL [52,53] scheme is used for spatial discretization. A
carbuncle-free version of the HLLC approximate Riemann
solver [54,55], HLLC-HLLCM [56], is used to compute the
fluxes at the computational cell edges. The governing equa-
tions are marched in time using second-order or third-order
strong stability preserving Runge–Kutta [57]. The time-step
size, �t , is selected based on the maximum wave speed

�t = CFL
|u|+c
�x + |v|+c

�y

, (52)

where u and v are the x- and y-velocity components, �x is
the grid spacing in the x-direction, and�y is the grid spacing
in the y-direction.

Adaptive mesh refinement using AMReX [58] is emplo-
yed to dynamically refine the computational cells near
detonations, shocks, and contact surfaces. The code and
numerical algorithm have been extensively verified in our
earlier work for many test cases including a variety of
multidimensional Riemann problems, cellular detonations,
Richtmyer–Meshkov instabilities, dust explosions, and flame
propagation [36,51,59–61].

Trinitrotoluene (TNT), pentaerythritol tetranitrate
(PETN), and tetramethylenetetranitramine (HMX)were used
as the explosives for the numerical experiments presented in
this paper. The model input parameters for the JWL EOS,
reactant EOS, and afterburning stoichiometric air–fuel ratio,
ν, are listed in Table 1. Three lumped gas-phase species
are used: detonation products (DP), air, and afterburning
products (AP). The molecular weights and coefficients for
the internal energy polynomials for these species are listed
in Appendix 1 [10]. The HMX detonation products use a
constant specific heat formulation without afterburning. The

Table 1 Input parameters and model output states for the constant vol-
ume (cv) combustion and Chapman–Jouguet (cj) conditions

TNT PETN HMXa

A (GPa) 1576 622.3 778.3

B (GPa) 43.42 20.93 7.071

R1 6.662 4.935 4.2

R2 2.158 1.452 1.2

ω 0.4216 0.2689 0.3

ρ0 (kg/m3) 1654 1600 1891

�h0f (MJ/kg) −278.3 −1703 354

Cvh (kJ/kgK) 1372 1000 1000

ν 3.35 0.482 NA

Dcj (m/s) 6658 7470 9110

pcj (GPa) 17.5 25.0 45.2

ρcj (kg/m3) 2174 2222 2656

Tcj (K) 3313 4771 9779

pcv (GPa) 7.3 10.1 16.4

Tcv (K) 2730 4128 6422

ρcv (kg/m3) 1654 1600 1891

The JWL parameters for TNT and ν are from Kuhl et al. [42]. The JWL
parameters for PETN and TNT were taken from Dobratz [62]. The
enthalpy of formation and condensed phase specific heat were obtained
from the NIST Chemistry WebBook [63]
aThe specific heat of HMX detonation products has a constant value of
1026kJ/kg

numerical experiments presented in the following sections
show results for TNT unless stated otherwise.

The model output for constant-volume explosion limit
and Chapman–Jouguet detonations are listed in Table 1.
The CJ state was found by applying the sonic condition of
the products and numerically solving the Rankine–Hugoniot
conditions [16]

ρ0Dcj = ρcjccj, (53)

ρ0D
2
cj + p0 = ρcjc

2
cj + pcj, (54)

eh(T0) + p0
ρ0

+
D2
cj

2
=

∑
Ycj,i eg,i (Tcj) + pcj

ρcj
+

c2cj
2

, (55)

where T0 is the initial temperature of the explosive, Dcj is the
CJ detonation velocity, and ccj, Ycj,i , pcj, Tcj, and ρcj are the
product sound speed, the mass fraction of gas-phase species
i , pressure, temperature, and density at the CJ state.

4 One-dimensional planar detonations

This section explores the influence of the parameters a, b,
pign, and the grid spacing on the velocity and structure of
one-dimensional planar detonations using the simplified burn

123



A simplified burn model for simulating explosive effects and afterburning 859

model. The length of the domain was 0.4m. The detonation
is initiated by placing a region of products between x = 0
and x = 2.5 cm at the constant-volume explosion limit. The
baseline case uses a = 0.75, b = 2, pign = 5GPa, and a
grid with 1024 computational cells giving �x = 391µm.
Adaptive mesh refinement was not used for these 1D numer-
ical experiments. The third-order strong stability preserving
Runge–Kutta was used with a CFL number of 0.6 to time-
march the governing equations for this 1D parametric study.

4.1 Influence of a on the ZND structure

Figure 3 shows the influence of a on the detonation structure,
shock Hugoniot, and detonation velocity as a function of
time for TNT. Analysis shows that values of acj = 0.87
give a reactant Hugoniot that intersects the CJ state of the
product Hugoniot. A critical value of acrit = 0.85 produces
a reactant Hugoniot that is tangent to the product Hugoniot.
(See Fig. 3a.)

Examination of the shockHugoniots shows that caseswith
a = 0.75 and 0.65 produce a von Neumann (VN) spike and
satisfy (34). As a result, the ZNDstructure for these two cases
is the classical anvil-shaped pressure profile. The magnitude
of the VN pressure is sensitive to the selected value of a,
but the bulk structure of the detonation and the Taylor wave
following it are insensitive to a, which is the primary goal of
the SBM. The details of the reactant EOS do not have any
influence on the CJ state and velocity, provided that (34) is
satisfied. Thus, the detonation velocity quickly relaxes to Dcj

for all cases that are able to produce a VN spike.
Cases where a > acj = 0.87 produce unphysical weak

detonations. It is impossible for the detonation to have a ZND
structure because the shock and product Hugoniots intersect
prior to the CJ state. These detonations produce a broad flat
region of supersonic flow between the leading pressure front
and the following Taylor wave. For these cases, the pressure
front and Taylor wave separate further and further apart as
detonation continues to propagate.

Cases where acrit < a < acj could potentially produce
CJ detonations. However, the shock and product Hugoniots
intersect between the CJ and VN states. As a result, the
burning could only be in the weak-burning mechanism dis-
cussed above. In fact, we see in Fig. 3b) that the case where
a = acj = 0.87 produced a narrow weak-burning region
where the pressure profile is flat. The case where a = acrit
produced aCJ detonationwithout theVNspike, but this value
of a causes problems in multidimensional rate-stick simula-
tions discussed in Sect. 5.

4.2 Influence of b on the ZND structure

The influence of the reaction zone spreading parameter, b,
on the ZND structure and detonation velocity is shown in

Fig. 3 Influence of a on a shock Hugoniot curves, b detonation struc-
ture, and c detonation velocity, Dn for TNT. The Rayleigh line in (a)
is the green dash-dot line. The red and black dots are the CJ and von
Neumann states, respectively. The CJ detonation velocity is indicated
by the black line in (c). The values of b and pign were 2 and 5GPa,
respectively

Fig. 4. Here we choose a = 0.75 and a = 1 to examine the
influence of reaction model parameters on the velocity and
structure of CJ and weak-burning detonations.

The selection of b does not have an influence on the deto-
nation velocity or the overall ZND structure of the detonation
and Taylor wave. The only relatively minor influence is that
the peak numerical shock pressure asymptotes towards the
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Fig. 4 Influence of b on a detonation structure and b detonation veloc-
ity, Dn for TNT. The CJ detonation velocity is indicated by the black
line in (b). The value of pign is 5GPa

VN state as b increases. Low values of b burn more material
within the numerically diffused shock profile, which, in turn,
expands the flow inside the shock and lowers the peak shock
pressure. However, all other detonation output parameters
are unaffected by the choice of b. This is expected behavior
because the CJ state and Dcj are independent of the reaction
model.

4.3 Influence of pign on the ZND structure

The influence of the reaction initiation pressure, pign, on the
ZND structure and CJ velocity is shown in Fig. 5. In all cases,
the detonation velocity propagates at Dcj. The influence of
pign is similar to the influence of b as only the peak shock
pressure is influenced. Decreasing pign increases the amount
of burning within the leading shock, which, as stated above,
lowers the peak shock pressure.

4.4 Influence of grid refinement on the ZND
structure

Figure 6 shows the influence of grid refinement on the struc-
ture and the detonation velocity as a function of time.Overall,

Fig. 5 Influence of pign on a detonation structure and b detonation
velocity, Dn for TNT. The CJ detonation velocity is indicated by the
black line in (b). The values of a and b were 0.75 and 2, respectively

the structure of the detonation and Taylor waves are not sig-
nificantly influenced by grid refinement. However, the width
of the ZND spike does change with grid resolution. The
parameter b is designed to spread the reaction zone over b
cell-widths regardless of the grid. Thus, thewidth of the reac-
tion zone is directly proportional to computational cell size,
�x , which is shown in Fig. 6. The peak shock pressure is
nearly identical for all grids. The grid spacing also has a
slight impact on how quickly the detonation relaxes toward
Dcj. The detonation has to propagate for a longer amount of
time for it to become completely independent of the initial
conditions as the grid becomes coarser.

5 Multidimensional rate-stick detonations

The performance of the simplified burn model (SBM) on an
uncased rate-stick is examined. The diameter and length of
the cylindrical charge (rate-stick) are 10cm and 1m, respec-
tively. The governing equations are solved two-dimensional
axisymmetric (x–r ) coordinates. The domain is 1m in length
and has an outer radius of 50cm. Adaptive mesh refinement
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Fig. 6 Influence of the number of grid refinement on a detonation struc-
ture, and b detonation velocity, Dn for TNT. The CJ detonation velocity
is indicated by the black line in (b). The values of a, b, and pign where
0.75, 2, and 5GPa, respectively

is used with 4 levels of refinement on a base grid of 128 and
64 cells in the axial (x) and radial (r ) directions, respectively.
This gives an effective resolution of 1024 by 512 computa-
tional cells with �x = 977µm. The baseline parameters are
a = 0.75, b = 2, and pign = 2.5GPa. The charge is initi-
ated by placing an ignition region with a diameter of 10cm
(the charge diameter) between x = 0 and x = 2.5 cm. The
second-order Runge–Kutta scheme is used to time-march
the governing equations with CFL = 0.8 to a final time of
t = 125µs.

5.1 Influence of a on rate-stick detonations

Figures 7 and 8 show the influence of a on the detonation
structure velocity, respectively, on the rate-stick. The overall
structure of the detonation and air shock fairly typical of a
rate-stick [13]. The high-pressure products produced by the
detonation drive an oblique shock that propagates into the
air. A reactive shear layer forms at the interface between the
detonation products and shock-heated air.

Fig. 7 Influence of a on the detonation and air shock produced by the
detonation of a cylindrical charge. The values of b and pign are 2 and
2.5GPa, respectively

The detonation profiles are slightly curved in Fig. 7. The
influence of the curved detonations and different VN states
as a function of a produce slightly different air shock pro-
files very close to the explosive. The propagation velocity
of the detonation asymptotes to values less than Dcj when
a < acrit. It is well known from detonation shock dynamics
(DSD) theory [23] that the velocity of a curved detonation
is a function of curvature through a Dn-κ relation (κ is the
detonation curvature). Thus, the dependence of Dn on a and
other parameters is expected due to the influence of the reac-
tion zone on detonation curvature. However, the effect of this
curvature is slight and Dn is around 3% lower than Dcj when
a = 0.65 and 1% lower when a = 0.75.
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Fig. 8 Influence of, a, on the detonation velocity of a cylindrical charge.
The values of b and pign are 2 and 2.5GPa, respectively

The case where a = acrit = 0.85 was a limiting case
that produced a CJ detonation without a von Neumann spike
in the 1D configuration. However, a = 0.85 case produces
unphysical results for the rate-stick configuration. This det-
onation has negative curvature shown in Fig. 7. This causes
the Dn to increase from Dcj. This is a completely unphysical
result for an uncased explosive charge.

5.2 Influence of b on rate-stick detonations

Figure 9 shows the influence of the reaction zone spreading
parameter, b, on the structure of the detonation and air shock.
Figure 10 shows the influence of b on the detonation velocity,
Dn, for the rate stick.

The results show that the curvature of the detonation
increases slightly with increasing b. The case where b = 2
has slight curvature, while the case where b = 8 has
much more curvature. Cases with wider reaction zones allow
expansion waves generated at the explosive-air interface
from thedetonation interaction to have a greater impact on the
detonation curvature. As a result, the influence of increased
curvature has an impact on Dn.

A case where b = 1 was also performed, but not shown.
This case produced unphysical results where Dn was sig-
nificantly greater than Dcj. The reaction zone is only one
computational cell wide. This is well known to produce
unphysical results that are dependent on the time-step size
and numerical implementation details [49]. Setting b ≥ 2
solves this issue. Selecting b ≤ 1 cannot be recommended.

5.3 Influence of grid refinement on rate-stick
detonations

Figures 9 and 12 show the impact of grid refinement on
the detonation structure and velocity for the rate-stick sce-
nario. Grid refinementwas altered by changing themaximum

Fig. 9 Influence of the reaction zone spreading parameter, b, on the
detonation and air shock produced by a cylindrical charge. The values
of a and pign are 0.75 and 2.5GPa, respectively

refinement level of the adaptive grid. The coarse, baseline,
and fine grids used 3, 4, and 5 levels of refinement respec-
tively. The effective resolution was �x = 1.95, 0.977, and
0.488 mm, for the coarse, medium, and fine grids.

The results in Fig. 11 show that the overall structure of
the detonation and air shock are very close for all three grid
resolutions. There are some slight differences related to the
influence of detonation curvature caused by the changing
reaction zone thickness with the computational grid size. As
a result of the changing curvature, the detonation velocity is
slightly influenced by grid resolution. However, the differ-
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Fig. 10 Influence of, b, on the detonation velocity of a cylindrical
charge. The values of a and pign are 0.75 and 2.5GPa, respectively

ence between Dcj and Dn is only around 2.2% for the coarse
grid, which is sufficient for most applications (Fig. 12).

The parameters b and �x have similar influences on Dn.
This is observed by carefully examining Figs. 10 and 12.
Doubling b or �x doubles the difference between Dn and
Dcj. This can be explained by reaction rate, (47), which
is proportional to δ/b ∼ 1/(b�x). Thus, forcing b�x to
be constant under grid refinement should, in principle, pro-
duce grid independent Dn. However, recall that the SBM
is designed to produce a detonation that is b computational
cellswide regardless of resolution.This is to avoid unphysical
numerical issues when the reaction zone is too thin as dis-
cussed above. The differences between Dn and Dcj are fairly
small even on coarse grids, which is likely sufficient for most
air blast and afterburning scenarios,which the proposedSBM
is developed to address. In scenarios where the propagation
velocity of the detonation must exactly be Dcj time-based
ignition criterion can be used rather than the pressure-based
ignition criterion in (47). This modification to the reaction
models is discussed in Sect. 9.

6 Spherical air blast

The influence of a on the blast produced by a spherical
20 cm-diameter explosive charge is explored. The charge is
center-initiated by placing a 2cm-diameter ignition region of
detonation products at the constant-volume explosion limit.
The governing equations are solved in 2D axisymmetric
(r–y) coordinates. The domain measures 1m by 1m. Five
levels of adaptive mesh refinement are used, providing an
effective resolution of �x = 488µm. The solution is time-
marched to 300 µs using second-order Runge–Kutta with
CFL= 0.8. Values of 2 and 2.5GPa are used for b and pign,
respectively.

Fig. 11 Influence of grid refinement on the detonation and air shock
produced by a cylindrical charge. The grids used �x = 1.95mm
(coarse), 0.977mm (baseline), and 0.488mm (fine). The values of
a, b, and pign are 0.75, 2, and 2.5GPa, respectively

Figure 13 shows the density field produced by the deto-
nation of spherical charge at 300 µs. The detonation of the
charge produces an expanding blast, a left-running secondary
shock, and a reactive contact surface between the shock-
heated air and the fuel-rich detonation products. All three
values of a that were considered produce very similar results
on the blast. The positions of the air and secondary shocks are
nearly identical for all three cases. There are some subtle dif-
ferences in the details of the fireball surface that likely caused
by differences in the magnitude of the von Neumann spike.
Differences in pressure magnitude and shock strength in the
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Fig. 12 Influence of grid refinement the detonation velocity of a
cylindrical charge. he grids used �x = 1.95mm (coarse), 0.977mm
(baseline), and 0.488mm (fine). The values of a, b, and pign are
0.75, 2, and 2.5GPa, respectively

explosive material can have an impact on the development of
Rayleigh–Taylor and Richtmyer–Meshkov instabilities that
form on the surface of the fireball [64]. Nevertheless, these
differences are small and do not affect the overall dynamics
of the blast or afterburning processes.

Figure 14 shows the pressure-time traces measured at
radial locations of 0.14, 0.35, and 0.71m along 45◦ ray
measured from the y-axis. The timing and magnitude of
pressure-time traces for all three cases are close.

7 Corner turning

In this section, the simplified burn model is used on a
complex-shaped explosive to demonstrate corner turning and
the resulting complex blast structure.Any reactionmodel that
is based on a pressure or temperature sensitive reactionmodel
with a physically reasonable condensed phase EOS, such as

the SBM, will have the ability to turn corners. Programmed
burn or similar time-based reaction models will require a
burn table to turn corners. The SBM is an approximation that
can allow the detonation to turn corners without the use of
a burn table. Nevertheless, the SBM, due to its design and
intended applications, cannot accurately capture the detona-
tion curvature effects or the formation of dead zones. More
rigorous reactive burn models (or burn tables based on DSD
theory) are recommended for simulating chargerswith severe
corner turning. Thus, the results presented in this section are
an extreme and qualitative demonstration showing that the
SBM can turn corners.

An asterisk-shaped TNT charge is created with three rect-
angles 5cm in width and 25cm in length centered at the
origin. The rectangles are rotated by angle θi = 60◦(i − 1)
from the x-axis, where i is the rectangle number. The charge
is initiated byplacing a 2cm-diameter igniter region at the left
side of the charge. The shape of the charge, rectangle number,
and igniter location are shown in Fig. 15 at t = 0µs.

Fig. 14 Pressure-time traces recorded at r = 0.14, 0.35, and, 0.71m at
a 45◦ angle measured from the y-axis

Fig. 13 Influence of a on the blast at 300µs produced by a hemispherical 20cm-diameter explosive charge
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Fig. 15 Time sequence of the mixture density of a detonation propa-
gating through a complex-shaped TNT charge. The time of each image
is displayed on the upper-right corner. The propagation direction of the
detonation at each time is indicated by the yellow arrows. The numbers
on the uppermost image indicate the rectangle number

Fig. 16 Pressurefield producedby the detonation of the complex charge
at 266µs

The governing equations are solved in 2D axisymmet-
ric (x–r ) coordinates. The domain measures 2.4m by 2.4m.
Five levels of refinement are used with an effective resolu-
tion of �x = 596µm, which correspond to a 4096 by 4096
grid at maximum refinement. The solution is time-marched
using second-order Runge–Kutta with CFL = 0.8. Values of
0.75, 2, and 2.5GPa are used for a, b, and pign, respectively.

Figure 15 shows a time sequence of the mixture density.
Initially a detonation propagates to the right from the igniter
region in rectangle 1. This produces a blast and detonation
structure is similar to the rate-stick problem discussed above.
At 15.6 µs, the detonation spreads out into rectangle 3 of the
charge as it continues propagating. At 22.4 µs, the detona-
tion continues propagating through rectangles 1 and 3 and
begins propagating into rectangle 2. As time increases, the
detonation continues propagating into the remainder of the
charge. The interaction of the blasts produced by the deto-
nation propagating through the nearby rectangles produces
strong jets. This results in a complex blast structure at later
times shown in Fig. 16.

Figure 15 shows that a shock-explosive interaction occurs
at 15.6 µs where the blast from rectangle 1 impacts rectan-
gle 3. The numerical method and model are robust enough
to handle this challenging interaction of a strong shock with
a large jump in density at an interface between the gas and
explosive. However, this shock-explosive interaction initi-
ated a second detonation that is shown by kinked detonation
profile at 22.6µs. The second detonation ignites due to shock
compression increasing the temperature above Tign (500K)
in (47) in the mixed air and explosive cells near rectangle 3.
Increasing Tign to 700 K avoids this second ignition as shown
in Fig. 17, but is still low enough to burn the ejected material
in the Khariton layer. Accurate simulation of shock-induced
reactions in an explosive charge is well beyond the scope of
the SBM and requires the use of more complex reactive burn
models. Thus, the second ignition is undesirable behavior for
the SBM.Nevertheless, this interaction demonstrates that the
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Fig. 17 Mixture density field showing in the influence of Tign on the
initiation of secondary detonations from shock-explosive interactions
on charges with non-convex geometry at 22.4µs

SBM and P-T equilibration procedure are robust enough to
handle such interactions.

8 Influence of explosive material on the ZND
structure

The previous sections presented results using TNT as the
explosive material. This section presents results using PETN
and HMX as the explosive compound and compares them.

Figures 18 and 19 show the Hugoniot curves, ZND struc-
ture, and the ratio of Dn to Dcj for HMX, PETN, and TNT. A
value of a = 0.75 was used for all cases. The value of 0.75
for a is capable of producing a valid von Neumann spike and
a physically realistic ZND wave structure that propagates
at the correct CJ detonation velocity for all three explosive
materials.

Figure 20 shows cylindrical air shock structure produced
by PETN, HMX, and TNT. The results show that the SBM
is robust for multidimensional configurations for all three
explosives considered.

9 Comparison of SBM to traditional
programmed burn

The simplified burn model was developed to be used as a
substitute for programmed burn (PB) models that are com-
patible with multiphase reactive flow solvers. The previous
results show that the SBM works effectively as a PB model
for applications where the detailed structure of the reaction
zone is not a primary concern. However, there are slight cur-

Fig. 18 Shock and product Hugoniot curves for a PETN and b HMX
using a = 0.75

vature effects that can change the normal detonation velocity
(Dn) in the rate-stick configuration. Dn reduced by 1% to
4% for various combinations of a, b, and pign. Even though
this reduction in Dn is small, it may be undesirable in some
applications.

The SBM can be transformed to function very similarly
to a traditional PB model by changing the pressure-based
ignition criterion in (47) to a time-based ignition criterion

α̇ =
{

δDcj
b if t ≥ tign and αh > 0

0 otherwise,
(56)

where t is the solution time and tign is the time of arrival of the
detonation. The time of arrivals can be determined using for-
mal burn tables based on detonation shock dynamics (DSD)
[22], or simple Huygens propagation rules. For example, the
time of arrival for point initiation using the Huygens rule
would be

tign = |x − xign|
Dcj

, (57)

where x and xign are the position vectors of the cell center
and the initiation point, respectively. Details of the integra-
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Fig. 19 The a ZND structure and b Dn/Dcj for TNT, HMX, and PETN
using a = 0.75, b = 2, and pign = 2.5GPa

tion procedure of the time-based reaction are discussed in
Appendix 3.

Figure 21a shows computed results of the ZND struc-
ture of a PETN detonation using both the SBM and
PB approaches. The detonation for the programmed burn
approach was ignited by a plane defined by x = 0, which
gives tign = x/Dcj. The computed results show that the ZND
structure of the SBM and PB approaches is nearly identical.
There are only small differences between the peak pressure
in the ZND spike.

Figure 21b shows the shock and detonation structure for a
PETN detonation propagating through a cylindrical charge.
The PB approach, by design for this numerical experiment,
forces the detonation to be perfectly planar. This produces
small changes in the shock and expansion structure relative
to the reaction model for SBM. Nevertheless, either reaction
ignition criterion produces results that are likely acceptable
for studying afterburning processes and mid- to far-field air
blasts.

Fig. 20 Effect of explosive material on the detonation and air shock
produced by a cylindrical charge for PETN, HMX, and TNT after the
detonation propagated a distance of 90cm. The input parameters to the
SBM are a = 0.75, b = 2, and pign = 2.5GPa

10 Summary and conclusions

This paper presented a simplified burn model (SBM) for
approximating explosive detonation. Similar to programmed
burn approaches, SBM forgoes the accuracy and resolu-
tion requirements of traditional reactive burn approaches
that can propagate a detonation at the correct wave speed
on grid much coarser than the physical width of the reac-
tion zone. The SBM is, instead, focused on scenarios where
traditional programmed burn approaches would be of suffi-
cient accuracy. The model is designed to be compatible with
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Fig. 21 Computed results of PETN detonations showing a a com-
parison of the ZND structure computed using pressure-based ignition
criterion (47) and time-based ignition criterion (57) and b shock and
detonation structure of a cylindrical charge using the PB model

multiphase reactive flow codes. The SBM is suitable for sim-
ulating air blasts, afterburning processes, particle dispersal,
and other explosive effects where the fine details of the det-
onation profile are not important. The model is based on
the five-equation multiphase flow equations where homoge-
neous flow,mechanical equilibrium, and thermal equilibrium
are assumed. The governing equations are solved using high-
order Godunov shock-capturing techniques.

The SBM uses a simplified reactant equation of state,
p = p0 + a2D2

cj(ρ − ρ0), where a is a free parameter. This
simplified equation of state is based on a linearized pressure–
velocity–density relation from the Rankine–Hugoniot jump
conditions across an inert shock. The reaction model for
the explosive is based on the time it takes a detonation to
sweep across a computational cell. This is motivated by det-
onation burning rules used in traditional programmed burn
methods. The reaction model uses a pressure switch to ini-
tiate the reaction if the pressure increases above a threshold
value. A reaction zone spreading parameter is used in the
reaction model to spread the reaction zone over a small num-
ber of computational cells, regardless of how coarse the grid

is. This spreading parameter prevents unphysical numerical
phenomena and instability when the reaction zone is one
computational cell or less in width.

The influence of model input parameters on one-
dimensional detonations was explored for TNT , PETN, and
HMX. Physically realistic CJ detonations with a von Neu-
mann spike are produced if the a is chosen such that the
reactant and product Hugoniots do not intersect. Numerical
experiments show that selecting a = 0.75 is an effective
choice that meets this criterion for the explosives explored
in this manuscript. The velocity of the detonation was also
found to be independent on the pressure threshold and reac-
tion zone spreading parameters for the reaction model. Only
the fine details of the detonation structure including the peak
pressure in the ZND spike and reaction zone width are influ-
enced by these input parameters. Choosing high values for a
produces unphysical weak detonations where the reactant
Hugoniot intersects the product Hugoniot prior to the CJ
point.

Results on detonations propagating through rate sticks
produced similar shock profiles, provided that the input
parameters to the reactant EOS and reaction models are in a
physically realistic regime. The detonation velocity and fine
details of the blast, however, are somewhat dependent on the
reaction input parameters. This reaction rate dependence is
due to the curvature of multidimensional detonations, which,
in turn, is dependent on width of the reaction zone, reac-
tion rate, etc. The pressure-based ignition criterion can be
replaced with a time-based ignition criterion using either a
burn table from DSD theory or Huygens principle in appli-
cations where the curvature effect is undesirable.

Multidimensional numerical experiments show that the
blast structure, fireball, and pressure–time traces are rela-
tively independent of the equation of state and reactionmodel
input parameters. The model was also demonstrated to turn
corners in complex-shaped explosive charges.

The simplified burn model is effective for simulating the
post-detonation processes of explosive detonations. Recom-
mended values for the input parameters a, b, and pign are
0.75, 2, and 2.5GPa, respectively. The SBM is relatively
straightforward to implement into existing numerical frame-
works based on the five-equation multiphase flow model.
TheSBMalso extends straightforwardly to three dimensions.
Extensions of this model to incorporate detailed chemical
reaction models for afterburning processes and multiphase
blasts will be presented in a follow-on paper.
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Appendix 1 Gas-phase internal energy
polynomials

Following Kuhl et al. [10,42], the internal energy for each
species is computed using piece-wise second-order polyno-
mials. The internal energy for gas-phase species i is:

ei (T ) = ai,mT
2
g + bi,mTg + ci,m, (58)

wherem is an index that corresponds to the temperature inter-
val of the polynomial. The specific heat for gas-phase species
i is

Cvi (T ) = 2ai,mTg + bi,m . (59)

The thermodynamic data involve five polynomials for
each species. The upper and lower temperature boundaries
of each polynomial are listed in Table 2. These polynomials
are formed based on fits to the Cheetah chemical equilibrium
code where the internal energy for each species is computed
assuming chemical equilibrium if the temperature is greater
than 1800 K and chemically frozen below that value [11].
The polynomial coefficients for each species (DP, AP, and
air) are given below.

Temperature is computed from a known eg using the pos-
itive root of the quadratic formula

T =
−bmix +

√
b2mix − 4amix

(
cmix − eg

)

2amix
, (60)

where

amix =
∑

Yiai,m,

bmix =
∑

Yibi,m,

cmix =
∑

Yici,m .

(61)

The polynomial interval m is found based on the internal
energy of the mixture at the lower and upper temperature

Table 2 Boundary temperatures for the polynomials

m 1 2 3 4 5

T low
m 300 2340 3700 4150 4530

T high
m 2340 3700 4150 4530 6000

bounds of the polynomials. First, we define the internal
energy of all species at the boundaries of each polynomial

elowi,m = ei (T
low
m ), ehighi,m = ei (T

high
m ). (62)

The polynomial interval, m, is computed from

m = j if
∑

Yi e
low
i, j ≤ eg <

∑
Yie

hign
i, j , (63)

where elowi, j and ehigni, j are the internal energy for species i
evaluated at the lower and upper temperature boundaries for
polynomial j .

Appendix 1.1 Detonation products, DP

The molecular weight of the detonation products is
Mw = 26.9 kg/kmol. The polynomial coefficients for the
internal energy polynomials are listed in Tables 3 and 4 for
TNT and PETN, respectively.

Appendix 1.2 Afterburning products, AP

The molecular weight of the afterburning products is:
Mw = 26.65 kg/kmol. The internal energy polynomial coef-
ficients for TNT and PETN are listed in Tables 5 and 6,
respectively.

Appendix 1.3 Air

The molecular weight of air is Mw = 28.85 kg/kmol. The
internal energy polynomial coefficients are listed in Table 7.

Table 3 Polynomial coefficients for TNT detonation products in units
of cal/g [42]

m a b c

1 5.3244e−5 0.17393 −941.33

2 7.9903e−5 0.035886 −760.12

3 0.0000 1.80555 −6211.8

4 4.5108e−4 −2.7713 5014.0

5 2.578e−3 −22.917 52697.0

Table 4 Polynomial coefficients for PETN detonation products in units
of cal/g [42]

m a b c

1 3.31674e−5 0.20867 −1890.164

2 5.97088e−5 0.03770 −1634.868

3 1.9052e−4 − 0.89226 20.04935

4 2.28177e−4 − 1.20053 651.0422

5 1.78281e−4 − 0.774255 −248.616

123



870 R. W. Houim

Table 5 Polynomial coefficients for TNT-air afterburning products in
units of cal/g [42]

m a b c

1 3.5282e−6 0.25361 −949.3

2 2.5302e−4 −0.80169 168.08

3 −6.1238e−5 1.5345 −4178

4 −3.9217e−4 4.2413 −9713.6

5 2.7654e−5 0.2432 −195.0

Table 6 Polynomial coefficients for PETN-air afterburning products in
units of cal/g [42]

m a b c

1 4.745e−5 0.1549 −1555.6

2 4.6038e−4 −1.7722 711.74

3 4.9083e−4 −1.841 558.87

4 −6.1549e−4 7.3463 −18515.0

5 −2.8216e−4 3.8022 −9254.5

Table 7 Polynomial coefficients for air in units of cal/g [42]

m a b c

1 2.02768e−5 0.16498 −71.9172

2 1.34322e−4 −0.41045 658.24424

3 7.01281e−5 0.11507 −403.36139

4 −1.02084e−4 1.53731 −3340.674

5 4.04923e−5 0.11381 148.38643

Appendix 2 Jacobian entries for mixed cell
P–T equilibration

The Jacobian entries for pressure–temperature equilibration
in (40) are

J1,1 = αg
∂ρg

∂ p
+ αh

∂ρh

∂ p
(64)

J1,2 = αg
∂ρg

∂T
(65)

J2,1 = αg

(
eg

∂ρg

∂ p
+ ρg

∂eg
∂ p

)
+ αh

(
eh

∂ρh

∂ p
+ ρh

∂eh
∂ p

)

(66)

J2,2 = αg

(
eg

∂ρg

∂T
+ ρg

∂eh
∂T

)
+ αh

(
eh

∂ρh

∂T
+ ρh

∂eh
∂T

)
.

(67)

The thermodynamic derivatives needed for the Jacobian are

∂ρg

∂ p

∣
∣∣∣
T

= 1

c2n + RmixT
(68)

∂ρg

∂T

∣∣∣∣
p

= − Rmixρg

c2n + RmixT
(69)

∂eg
∂T

∣
∣∣∣
p

= Cvg (70)

∂eg
∂ p

∣∣∣∣
T

= 0 (71)

for the gas-phase JWL EOS and

∂ρh

∂ p

∣∣∣∣
T

= 1
(
aDcj

)2 (72)

∂eh
∂T

∣∣∣∣
p

= Cvh (73)

∂eh
∂ p

∣
∣∣∣
T

= ∂eh
∂ρh

∣
∣∣∣
T

∂ρh

∂ p

∣
∣∣∣
T

= p
(
ρhaDcj

)2 (74)

for the solid-phase EOS.

Appendix 3 Numerical methods

The governing equations can be written as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂ y

+ η
F
x

+ I = S, (75)

where

U =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

αh

αhρh
αgρgYg,1

...

αgρgYg,N
ρu
ρv

ρE

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, S =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

−Ṁ/ρh
−Ṁ

Ycj,1Ṁ + ω̇g,1
...

Ycj,N Ṁ + ω̇g,N

0
0
0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, (76)

F =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

αhu
αhρhu

αgρguYg,1
...

αgρguYg,N
ρuu
ρvu
ρHu

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, G =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

αhv

αhρhv

αgρgvYg,1
...

αgρgvYg,N
ρuv

ρvv

ρHv

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, (77)
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I =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

−αh

(
∂ û
∂x + ∂v̂

∂ y + η u
x

)

0
0
...

0
∂ p
∂x
∂ p
∂ y
0

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (78)

and η is an axisymmetric coordinate system selector in two
dimensions. (η = 0 for Cartesian coordinates and η = 1 for
axisymmetric coordinates.)

Anoperator splittingmethod is used to solve the governing
equations [65]. The conserved variable vector,U, is advanced
from time t to t + 2�t by

Ut+2�t = H�t (S2�t (H�t (Ut ))) (79)

whereH�t represents integration of the hyperbolic terms for
a time step of�t and S2�t represent integration of the chem-
ical source terms for a time-step size of 2�t . The solution
procedure for the hyperbolic and source term operators is
discussed in turn.

Appendix 3.1 Hyperbolic operator,H1t

The method of lines is used to advance the hyperbolic oper-
ator, H�t . A high-order Godunov approach [51] is used to
approximate the spatial derivatives

∂ψ

∂x
≈

ψi+ 1
2 , j − ψi− 1

2 , j

�x
,
∂ψ

∂ y
≈

ψi, j+ 1
2

− ψi, j− 1
2

�y
, (80)

where the values of fluxes at the computational cell edges are
computed using an approximate Riemann solver
[54–56]. The resulting ordinary differential equations at each
computational cell are time-marched using strong stability
preserving Runge–Kutta [57].

The primitive variable (αh, p, T , u, v,Yi ) are recon-
structed to each cell edge using a fifth-order MUSCL
approach [51,52]

ψ̃L
i+ 1

2 , j
= 1

60
[2ψi−2, j − 13ψi−1, j

+ 47ψi, j + 27ψi+1, j − 3ψi+2, j ]
(81)

A TVD limiter is used to enforce monotonicity of ψL
i+ 1

2 , j

[52,53]

ψL
i+ 1

2 , j
= ψi, j + 1

2
φ

(
ψi, j − ψi−1, j

)
, (82)

where

φ=max

⎡

⎣0,min

⎛

⎝2, 2
ψi+1, j − ψi, j

ψi, j − ψi−1, j
, 2

ψ̃L
i+ 1

2 , j
− ψi, j

ψi, j − ψi−1, j

⎞

⎠

⎤

⎦ .

(83)

Stencil symmetry is used to compute the right-biased inter-
polation ψR

i+ 1
2 , j

.

TheHLLCMapproximate Riemann solver is used to com-
pute the numerical fluxes from the edge values [56]. The
HLLCM flux completely avoids carbuncle instabilities and
other numerical shock anomalies. The left and right interpo-
lated variables are used to compute the flux vector (F andG),
pressure, and advection velocity (û and v̂) at computational
cell edges by:

Fi+ 1
2 , j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FL if 0 ≤ SL

FL∗ if SL ≤ 0 ≤ S∗

FR∗ if S∗ ≤ 0 ≤ SR

FR if SR ≤ 0,

(84)

where

FK =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

αK
h u

K

αK
h ρK

h u
K

αK
g ρK

g u
K

αK
g ρK

g u
KYK

g,i

ρKuKuK

ρKuKvK

ρKuKHK

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (85)

FK∗ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

αK∗
h S∗

αK
h ρK∗

h S∗

αK
g ρK∗

g S∗

αK
g ρK∗

g S∗Yg,i
ρK∗S∗S∗

ρK∗S∗vK∗ + (1 − f )O∗
HLL

ρK∗S∗EK∗ + p∗S∗ + 1
2 (1 − f )QK∗

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

, (86)

the superscript K refers to either the L or R states based on
the interpolated variables. The pressure used to compute the
pressure gradient is given by:

pi+1/2, j =

⎧
⎪⎨

⎪⎩

pL if 0 ≤ SL

pR if SR ≤ 0,

p∗ otherwise.

(87)
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The density, volume fraction, and total energy in the mid-
dle states are:

ρK∗
h = ρK

h
SK − uK

SK − S∗ , (88)

ρK∗
g = ρK

g
SK − uK

SK − S∗ , (89)

ρK∗ = ρK SK − uK

SK − S∗ , (90)

αK∗
h = αK

h
SK − uK

SK − S∗ . (91)

The wave speeds, SL and SR, are estimated using Davis’s
method [65]

SL = min(uL − cL, uR − cR)

SR = min(uR + cR, uR + cR).
(92)

Then, the velocity of the contact surface (S∗) is

S∗ = pRg − pLg + βLuL − βRuR

βL − βR , (93)

and the pressure in the middle state is

p∗ = pL + ρL(SL − uL)(S∗ − uL), (94)

where

βL = ρL
(
SL − uL

)
,

βR = ρR
(
SR − uR

)
.

(95)

The middle-state total energies are:

EK∗ = EK +
(
S∗ − uK

)(
S∗ + pK

βK

)
(96)

The parameters vK∗, O∗
HLL, and QK∗ add dissipation in

the shear wave near shocks to avoid the carbuncle instability
near strong grid-aligned shocks

vK∗ = f vK + (1 − f )
βRvR − βLvL

βR − βL , (97)

O∗
HLL = −βLβR(vL − vR)

βR − βL , (98)

QK∗ = ρK∗S∗
[
βR(vR)2 − βL(vL)2

βR − βL − (vK)2
]

+βLβR
[
(vR)2 − (vL)2

]

βR − βL , (99)

where f is a shock sensor [56]

f =
{
1, if max

(
�pi−1:i+2, j

)
> pr

0, else
(100)

and

�pi, j = max
(
|pi+1, j − pi, j |, |pi−1, j − pi, j |,

|pi, j+1 − pi, j |, |pi, j−1 − pi, j |
)
/pi, j .

(101)

The fractional pressure rise for the shock sensor is pr = 0.1.
The non-conservative term in the volume fraction advec-

tion equation, αh∇ · v, is approximated by [37,38]

αh∇ · v ≈ αh,i, j

[ ûi+ 1
2 , j − ûi+ 1

2 , j

�x

+
v̂i, j+ 1

2
− v̂i, j+ 1

2

�y
+ η

ui, j
x

]
,

(102)

where

ûi+ 1
2 , j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uL if 0 ≤ SL

S∗ SL−uL

SL−S∗ if SL ≤ 0 ≤ S∗

S∗ SR−uR

SR−S∗ if S∗ ≤ 0 ≤ SR

uR if SR ≤ 0.

(103)

The edge values of the flux vector, pressure, and volume
fraction advection velocity on the y- (and z-) directions of the
computational cells are computed on a directional basis. The
governing equations and solution method extend to straight-
forwardly to three dimensions.

Appendix 3.2 Source term operator,S21t

The reaction term for the detonation mass rate of consump-
tion, Ṁ , and gas-phase homogeneous reactions, ω̇g,i , are
computed sequentially. First, the detonation reaction is inte-
grated. Then, the homogeneous afterburning reactions are
integrated in a separate step.

Appendix 3.2.1 Integration of the detonation reaction

The differential equations for the detonation reaction source
terms are:

dαh

dt
= −α̇ (104)

dαhρh

dt
= −α̇ρh (105)

dαgρgYg,i
dt

= Ycj,i α̇ρh. (106)
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The change in explosive volume δαh can be defined by inte-
grating the volume fraction equation and using the definition
that α̇ is constant

δα = min
(
αt
h, δt α̇

)
, (107)

where

δt =
{
2�t SBM

max(0,min(t + 2�t − tign,�t)) PB model
(108)

Then,

(αh)
t+2�t = (αh)

t − δα (109)

(αhρh)
t+2�t = (αhρh)

t − ρhδα (110)

(αgρgYg,i )
t+2�t = (αgρgYg,i )

t + Ycj,iρhδα. (111)

During numerical integration, it is possible that explosive
mass and volume fraction can become slightly desynchro-
nized. If αh = 0, but αhρh > 0, the extra explosive mass is
converted to gas-phase products. If αhρh = 0, but αh > 0
the explosive volume fraction is set to zero without any mass
exchange.

Appendix 3.3 Integration of homogeneous
reactions

The differential equations describing the homogeneous reac-
tion process are:

dαgρgYg,i
dt

= αhω̇i . (112)

This formulation is applicable to reactions with arbitrary
complexity. However, the afterburning of fuel-rich detona-
tion products is assumed to be infinite rate and mixing-
limited. The global reaction proceeds in a single-step irre-
versible reaction on a mass basis:

DP + νAir → (1 + ν)AP, (113)

where ν is the stoichiometric fuel–air ratio between the det-
onation products (DP) and air. The afterburning reaction is
assumed to proceed at an infinite reaction rate.

The gas-phase afterburning step is implemented as:

αgρg
dYg,i
dt

= αgω̇i , (114)

where ω̇i is the mass rate of production for species i . The
afterburning reaction is assumed to progress infinitely fast.
Thus, any fuel and air in a computational cell is burned
instantly to produce products and leftover fuel or air. These

infinite rate reactions are integrated by defining the change
of product mass fraction based on the deficient reactant

δYAP = min

[
Y t
DP (1 + ν) ,Y t

Air
1 + ν

ν

]
. (115)

Then, the updated mass fractions are:

Y t+2�t
DP = Y t

DP − δYAP
1

1 + ν
, (116)

Y t+2�t
Air = Y t

Air − δYAP
ν

1 + ν
, (117)

Y t+2�t
AP = Y t

AP + δYAP, (118)

where Y t
DP, Y

t
Air, Y

t
AP are the initial values of the gas-phase

detonation product, air, and afterburning product mass frac-
tions, respectively, at time t . Finally, the gas-phase species
mass is updated as:

(
αgρgYg,i

)t+2δt = (
αgρg

)t
Y t+2�t
g,i . (119)
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