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Abstract
A brief introduction of the time-filtered Navier–Stokes (TFNS) equations for very large eddy simulation (VLES) and its 
distinct features is presented. A set of nonlinear subscale models and their advantages over the linear subscale eddy viscos-
ity models are described. A guideline for conducting a TFNS/VLES simulation is also provided. In this paper, we present 
simulations for three turbulent flows. The first one is the turbulent pipe flow at both low and high Reynolds numbers to 
illustrate the basic features of TFNS/VLES; the second one is the swirling turbulent flow in an LM6000 single injector to 
further demonstrate the differences between the results from nonlinear models versus linear viscosity models; the third one 
is a more complex turbulent flow generated in a single-element lean direct injection combustor, which demonstrates that 
the current TFNS/VLES approach is capable of predicting dynamically important, unsteady turbulent structures even with 
a relatively coarse mesh grid.

Keywords  Turbulence · Very large eddy simulations · Time-filtered

1  Introduction

Many engineering applications of computational fluid 
dynamics (CFD) for turbulent flows need to capture rela-
tively large scales of unsteady turbulent structures at both 
low and high Reynolds numbers to facilitate a higher-fidelity 
analysis of the design. The conventional Reynolds-averaged 
Navier–Stokes (RANS) approach is known to be limited for 
this kind of task, because the RANS solution does not con-
tain the above-mentioned flow information. Recently, an 
approach called TFNS [1, 2] has been developed for simu-
lations of very large-scale turbulence, which only requires 
a relatively coarse mesh grid that is often used in a RANS 
simulation. Although TFNS is mainly aimed at very large 

eddy simulations, hence named as TFNS/VLES, it can easily 
be extended to perform large eddy simulation (LES) when 
the grid spacing reaches the resolution of traditional LES. 
The approach of TFNS/VLES is based on the concept of 
time-filtering to avoid the frequently overlooked issues that 
the traditional LES approach (based on the spatial filter 
of mesh grid) suffers from when a nonuniform mesh grid 
is used in the simulation. In TFNS/VLES, the larger time 
scales (or lower frequencies) of the turbulence are directly 
calculated and the effects of the unresolved time scales of 
the turbulence are modeled by nonlinear subscale models. 
The contents of both resolved and unresolved turbulence are 
regulated by a resolution control parameter (RCP), which 
is related to the width of the time-filter. In the development 
of the TFNS/VLES approach, it was named as the partially 
resolved numerical simulation (PRNS) and this name will 
appear on many figures in this paper.

The basic equations of TFNS/VLES and subscale models 
are grid invariant, i.e., they are totally independent of the mesh 
grid. Therefore, it is possible to achieve a grid-independent 
numerical solution, and this is one of the major differences 
from the traditional LES approach. (Note that the exact equa-
tions of traditional LES and their subscale models are depend-
ent on the grid spacing.) Another distinction is that TFNS/
VLES enables us to perform unsteady RANS (URANS), 
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VLES, LES, and even DNS in a unified way through a judi-
cious selection of the value of the RCP, in conjunction with 
the employment of a grid spacing whose numerical resolution 
can consistently support the scale contents stipulated by the 
selected RCP.

It should be noted that the TFNS/VLES approach is not 
a variant of the popular hybrid RANS/LES [3–6]. There is 
no enforced transition between the perceived RANS and LES 
domains.

The subscale model is always one of the key issues in all 
turbulent numerical simulations. Some less-than-satisfactory 
simulations using the Smagorinsky eddy viscosity and its vari-
ants have been reported in the past [7, 8]. Recently, we have 
also noticed that using a linear model, the TFNS/VLES was 
unable to successfully simulate the turbulent pipe flow at a 
low Reynolds number Reτ = 180 (based on the pipe radius and 
the skin friction velocity). During the calculation, the turbu-
lent fluctuations were not sustainable over a long period of 
time and were eventually suppressed. This is attributable to 
the attempt of just using the eddy viscosity to account for all 
the subscale effects, even though the eddy viscosity is con-
structed from a k–ε dynamic equation system. It is known that, 
in addition to the dissipative and diffusive effects accounted for 
through the eddy viscosity, the effects of anisotropy and rota-
tion should also be included in the subscale model, especially 
when the simulation is for very large scales of turbulence. To 
construct a more general relationship between the unresolved 
turbulent stresses and the resolved turbulent flow field, we have 
followed the analysis of the rational mechanics and obtained 
a general constitutive relationship [9, 10]. This relationship 
indeed shows that, in addition to an eddy viscosity term, there 
are several other terms representing the anisotropy and the 
rotation effects due to the interactions between the resolved 
and unresolved turbulence. They then introduce source terms 
in the momentum equations to sustain the turbulent fluctua-
tions in the calculated flow field. The simulations presented in 
this paper will demonstrate this unique feature of the nonlinear 
subscale models.

In the following, a brief description of the TFNS/VLES 
equations and the nonlinear subscale models will first be 
presented, followed by an outline for the concurrent selec-
tions of RCP and the numerical mesh grid. The results of 
simulations from three turbulent flows are then presented: 
the turbulent pipe flow, the turbulent swirling flow issued 
from an LM6000 single injector, and the flow generated in 
a single-element LDI combustor.

2 � Time‑filter‑based TFNS/VLES approach

Using a homogeneous time-filter G(t − t�) , the large time-
scale turbulent variable denoted as � and its density-
weighted variable �̃  can be defined as

where the integral is over the entire time domain and 
the time-filter G satisfies the normalization condition: 
∫ G(t − t�) dt� = 1 . There are several such time-filters avail-
able; the simplest one is the top-hat filter:

where ΔT is the width of the top-hat filter. For a homoge-
neous time-filter, ΔT is a constant and independent of the 
space. Using this filter, the left part of (1) becomes

Equation (3) reveals a unified feature of 𝜙̄ and 𝜙̃ , because 
they will become the exact Reynolds-averaged quantity and 
Favre-averaged quantity when ΔT → ∞ . On the other hand, 
they will become the instantaneous turbulent quantity as 
ΔT → 0. For a finite ΔT, they represent the quantities of large 
time-scale turbulence.

2.1 � Basic equations

Performing the filtering operation defined by (1) on the 
Navier–Stokes equations, we obtain a set of exact, basic 
equations for the resolved, large time-scale turbulence ( 𝜙̄ 
and 𝜙̃):

where sij =
(
ui,j + uj,i

)/
2 . The symbols ( ),t and ( ),i rep-

resent the temporal and spatial derivatives, respectively. 
ρ, ui, T, p, e, and Q are the density, velocity, temperature, 
pressure, internal energy per unit mass, and the radiation 
rate. μ and κ are the viscosity and heat conductivity of the 
fluid. R is the universal gas constant. τij and qi are the extra 
unknown terms that were created by processing the time-
filtered Navier–Stokes equations. They represent the effects 

(1)

𝜙̄(t, xi) = ∫ 𝜙(t�, xi)G(t − t�) dt�,

�𝜙 =
𝜌𝜙

𝜌̄
=

1

𝜌̄ ∫ 𝜌(t�, xi)𝜙(t
�, xi)G(t − t�) dt�,

(2)G(t − t�) =

{
1∕ΔT, if |t − t�| ≤ ΔT∕2

0, otherwise
,

(3)𝜙̄(t, xi) =
1

ΔT

t+ΔT∕2

∫
t−ΔT∕2

𝜙(t�, xi) dt
�.

(4)
(
𝜌̄ũi

)
,t
+
(
𝜌̄ũiũj

)
,j
= −p̄,i − 𝜏ij,j +

(
2𝜇̄s̃ij −

2

3
𝛿ij𝜇̄s̃kk

)

,j
,

(5)

(
𝜌̄�e
)
,t
+
(
𝜌̄ũiẽ

)
,i
=
(
𝜅̄T̃,i

)
,i
+ pskk − qi, i +

(
2𝜇̄�sijsij −

2

3
𝜇̄�skksii

)
+ Q,

(6)𝜌̄,t +
(
𝜌̄ũi

)
,i
= 0, p̄ = 𝜌̄RT̃ ,

(7)𝜏ij ≡ 𝜌̄(�uiuj − ũiũj), qi ≡ 𝜌̄(�uie − ũiẽ),
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of unresolved time-scale turbulence. They are not in closed 
forms and must be modeled. We call them the unresolved 
(or subscale) turbulent stresses and heat fluxes.

It is clear that the basic equations (4)–(7), which govern 
the large time-scale turbulence, are not associated with the 
mesh grid; hence, they are grid invariant. This feature should 
be maintained in the development of subscale models.

It is important to note that in the time-filtered turbulent 
field, the time-filter width ΔT (considered as a resolvable 
smallest time scale) is not the only factor in determining the 
smallest resolvable length scale of the simulated turbulence, 
and this leaves room for arranging the grid spacing to carry 
out a physically meaningful numerical simulation.

2.2 � Nonlinear subscale models

In order to obtain the solution for the large time-scale turbu-
lence using TFNS/VLES (4)–(6), we must model the unclosed 
terms defined in (7): 𝜏ij ≡ 𝜌̄(uiuj − ũiũj), qi ≡ 𝜌̄(uie − ũiẽ) . 
There are several ways to model these terms. The more 
sophisticated method is to directly solve the transport equa-
tions for the subscale turbulent stresses and heat fluxes, 
which can be derived from the Navier–Stokes equations (see 
[1]). This method will require models for some higher-order 
unclosed terms (for example, the pressure–strain correlations, 
etc.) that appeared in the transport equations of τij and qi. A 
less complicated way is based on the rational mechanics to 
establish some general constitutive relationships between the 
unresolved turbulent quantities (τij, qi) and the resolved large 
time-scale turbulent quantities s̃ij, 𝜔̃ij , and ẽ,i . These general 
constitutive relationships are then simplified according to 
the flow complexity by truncating the higher-order nonlinear 
terms of s̃ij, 𝜔̃ij , and ẽ,i . For example, the simplest form is just 
a linear relationship, which is the widely used conventional 
subscale eddy viscosity model. Even at this level, there are 
several ways to formulate the subscale eddy viscosity. The 
most popular one used in the traditional LES is the Smagor-
insky model [11] and its variations, which explicitly uses 
the local grid spacing Δ as the filtering length scale. A more 
sophisticated one is the one-equation model, such as the one 
proposed by Kim and Menon [12], which solves the transport 
equation of the unresolved turbulent kinetic energy k, and 
uses 

√
k as the velocity scale of unresolved turbulence, and 

at the same time keeps the local grid spacing as the filtering 
length scale.

In the context of TFNS/VLES, the subscale model is 
required to be a function of the width of the time-filter ΔT, 
but independent of the local grid spacing. The constitutive 
relationship for the subscale turbulent stresses is derived 
from a general constitutive relationship [13] by invoking 
the realizability condition and the rapid distortion theory 
limit. The current nonlinear subscale model contains linear, 

quadratic, and cubic terms, while the time-filter width ΔT 
appears via the resolution control parameter (RCP), see (14).

2.2.1 � Modeling of subscale turbulent stresses τij

The model proposed for TFNS/VLES is the following:

w h e r e  s̃ij =
(
ũi,j + ũj,i

)/
2, 𝜔̃ij =

(
ũi,j − ũj,i

)/
2

IIs=
(
s̃kks̃mm − s̃kls̃lk

)/
2 . The model coefficients Cμ, A3, and 

A5 are constrained by the realizability condition and the rapid 
distortion theory limit. They are formulated as (see [13]):

in which

The coefficients f1, f3, and f5 are functions of ΔT/T, i.e., the 
ratio of the time-filter width to the global time scale of the 
turbulent flow of interest, where the global time scale T can 
be considered as the maximum integral time scale in the 
entire domain. These functions should have the following 
property:

This is because the subscale turbulent stresses τij must van-
ish when the filter width ΔT vanishes, and τij must approach 
the Reynolds stresses Rij as ΔT increases toward the global 
time scale T. In TFNS/VLES, ΔT/T < 1, so we may take the 
following general expansion:

(8)

𝜏ij = −2f1C𝜇𝜌̄
k2

𝜀

(
s̃ij − 𝛿ijs̃kk

/
3
)
+

2

3
f1𝜌̄k𝛿ij

− A3f3𝜌̄
k3

𝜀2

(
s̃ik𝜔̃kj − 𝜔̃iks̃kj

)

+ 2A5f5𝜌̄
k4

𝜀3

[
𝜔̃iks̃

2

kj
− s̃2

ik
𝜔̃kj + 𝜔̃iks̃km𝜔̃mj

−𝜔̃kls̃lm𝜔̃mk𝛿ij∕3 + IIs(s̃ij − 𝛿ijs̃kk
/
3)

]
,

(9)
C𝜇 =

1

4.0 + As
k

𝜀
U∗

, A3 =

√
1.0 − A2

s
C2
𝜇

(
k

𝜀
S∗
)2

0.5 + 1.5
k2

𝜀2
𝛺∗S∗

,

A5 =
1.6C𝜇𝜌̄

k2

𝜀

𝜌̄ k4

𝜀3
7S∗S∗+𝛺∗𝛺∗

4

,

(10)

As =
√
6 cos�, � =

1

3
arccos

�√
6W∗

�
, W∗ =

S∗
ij
S∗
jk
S∗
ki

(S∗)3
,

(11)

U∗ =
√
(S∗)2 + (𝛺∗)2, S∗ =

�
S∗
ij
S∗
ij
, 𝛺∗ =

√
𝜔ij𝜔ij,

S∗
ij
= s̃ij −

1

3
𝛿ijs̃kk.

(12)fi

(
ΔT

T

)
=

{
0 if

ΔT

T
→ 0,

1 if
ΔT

T
→ 1.
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All Ci
0
 must be zero, because fi must be zero as ΔT goes 

to zero. If we retain the two leading terms as an approxi-
mation and assume the first-order derivative of fi is zero at 
ΔT∕T = 1 to reflect that fi reaches its maximum value of 1.0 
at ΔT∕T = 1 , then all fi will have the same form:

We call the ratio ΔT∕T  the resolution control parameter 
(RCP). It controls, at the governing equation level, the con-
tent of resolved large time-scale turbulence in the resolved 
field, which may, in theory, contain all length scales that 
have not been physically filtered. However, at the numeri-
cal solution level, the grid spacing will be imposed, and the 
solution (say, the subscale eddy viscosity �T ) together with 
the RCP will determine the content of resolved large-length 
scale turbulence. We will further discuss this parameter in 
Sect. 2.3.

2.2.2 � Physics of nonlinear interaction between resolved 
and unresolved turbulence

It is important to identify the various physical interactions 
between the resolved and unresolved turbulent scales and to 
understand how these interactions are mimicked in the numeri-
cal simulation. In the momentum equation (4), these interac-
tions are represented by the term �ij,j , which is unclosed and 
must be modeled. In the traditional LES, this term is modeled 
via the isotropic eddy viscosity. Therefore, the effect of the 
interactions is accounted for only by a modification to the vis-
cosity of the fluid. However, the real physical interactions are 
much more complex than this. In fact, according to the gen-
eral constitutive relationship τij contains many more terms, in 
addition to a leading term that is related to an eddy viscosity. 
For example, the model of τij in (8) has two parts: the linear 
term and the nonlinear (quadratic and cubic) terms. Each part 
plays a different role in the momentum equations. The linear 
part leads to a term acting like an additional viscosity called 
subscale eddy viscosity, and the nonlinear part leads to terms 
acting like additional sources promoting the resolved large-
scale turbulence. This can be clearly demonstrated by plugging 
the τij model into (4), which yields

(13)

fi

(
ΔT

T

)
= Ci

0
+ Ci

1

(
ΔT

T

)
+ Ci

2

(
ΔT

T

)2

+⋯ i = 1, 3, 5.

(14)fi

(
ΔT

T

)
≈ 2

(
ΔT

T

)
−

(
ΔT

T

)2

i = 1, 3, 5

(15)

(
𝜌̄ũi

)
,t
+
(
𝜌̄ũiũj

)
,j
= −p̄,i +

(
2
(
𝜇̄ + 𝜇T

)
s̃ij −

2

3
𝛿ij
(
𝜇̄ + 𝜇T

)
s̃kk

)

,j
+ ST

i
,

where

Apparently, the linear part of the model adds an additional 
subscale eddy viscosity μT (which is isotropic) to the viscos-
ity of the fluid 𝜇̄ ; and the nonlinear part provides a complex 
source term ST

i
 that accounts for the effects of anisotropy 

and rotation.
We have noticed that, although different subscale 

eddy viscosity models have been used in different LES 
approaches, most of them have neglected or missed the 
source term ST

i
 . Our study shows that this source term could 

become critically important for some flow simulations, 
especially for those at relatively low Reynolds numbers or 
flows with strong rotation, and this will be demonstrated in 
Sects. 3.1.1.2 and 3.2.2.

2.2.3 � Transport equations for subscale k and ε

To complete the proposed model for τij, we need k and ε, 
the unresolved (or subscale) turbulent kinetic energy and 
its dissipation rate. Their exact transport equations can be 
derived from the Navier–Stokes equations and contain sev-
eral higher-order unclosed terms due to the time-filtering 
operation. Here, we briefly describe the procedure of the 
derivation. The first step is to establish the transport equa-
tion for τij, followed by a tracing operation to establish the 
equation for τii (which is 2𝜌̄ k ), and this leads to the transport 
equation for k.

The exact transport equation for the subscale turbulent 
stresses τij (i.e., 𝜌̄�uiuj − 𝜌̄ũiũj ) is

where Dij, Φij, Pij, and 𝜌̄𝜀ij are the diffusion term, the pres-
sure–strain correlation term, the production term, and the 
dissipation term, respectively. The following expressions 
indicate that all terms on the right-hand side of the equa-
tion, except for the production term Pij, are unclosed and 
must be modeled.

(16)𝜇T ≡ f1C𝜇𝜌̄
k2

𝜀

(17)

ST
i
= −

2

3

(
f1𝜌̄k

)
,i
+

{
A3f3𝜌̄

k3

𝜀2

(
s̃ik𝜔̃kj − 𝜔̃iks̃kj

)}

,j

−

{
2A5f5𝜌̄

k4

𝜀3

[
𝜔̃iks̃

2

kj
− s̃2

ik
𝜔̃kj + 𝜔̃iks̃km𝜔̃mj

− 𝜔̃kls̃lm𝜔̃mk𝛿ij∕3 + IIs(s̃ij − 𝛿ijs̃kk
/
3)

]}

,j

.

(18)𝜏ij,t +
(
ũk𝜏ij

)
,k
= Dij + Φij + Pij − 𝜌̄𝜀ij,
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Now, if the diffusion term Dij is modeled by a gradient-type 
diffusion of τij with the effective viscosity 𝜇̄ + 𝜇T , then the 
trace of (18) becomes the following equation of subscale 
turbulent kinetic energy k:

in which Φii has been neglected by ignoring the effect of 
compressibility on τii. The term of subscale dissipation rate 
𝜌̄ 𝜀 is defined by 𝜌̄ 𝜀ii∕2 , i.e.,

A model transport equation for the dissipation rate ε can be 
constructed by the analogy to (19) as

where C�1 and C�2 are the model coefficients. We have 
adopted the commonly used values of C�1 = 1.45 and 
C�2 = 1.92 in the present work, while keeping in mind that 
they can be further constructed as functions of the local sub-
scale turbulence quantities [14].

2.2.4 � Modeling of subscale turbulent heat fluxes qi

A common practice in modeling the unresolved turbulent heat 
fluxes qi ≡ 𝜌̄(�uie − ũiẽ) is to employ the following isotropic 
model:

where �T is the eddy diffusivity for the heat, which is often 
modeled as �T = �T∕PrT , where PrT (about 0.9) is the tur-
bulent Prandtl number. However, based on the analysis of 
the constitutive relationship (see [9, 10]), the simplest form 
that considers the effects of strain and rotation should be

Dij = −
(
𝜌̄�uiujuk − 𝜌̄�uiuj ũk

)

+
{
2𝜇̄�ujsik −

2

3
𝛿ik𝜇̄�ujsmm −

[
�uj

(
2𝜇̄s̃ik −

2

3
𝛿ik𝜇̄s̃mm

)]}

,k

+
(
𝜏ikũj + 𝜏jkũi

)
,k
−
(
puj𝛿ik + pui𝛿jk − p̄ũj𝛿ik − p̄ũi𝛿jk

)
,k

+
{
2𝜇̄�uisjk −

2

3
𝛿jk𝜇̄�uismm −

[
ũi

(
2𝜇̄s̃jk −

2

3
𝛿jk𝜇̄s̃mm

)]}

,k

Φij = 2psij − 2p̄s̃ij

Pij = −𝜏ikũj,k − 𝜏jkũi,k

𝜌̄𝜀ij =
[
2𝜇̄

(
�sikuj,k + �sjkui,k

)
−

4

3
𝜇̄�smmsij

]

−
[
2𝜇̄

(
s̃ikũj,k + s̃jkũi,k

)
−

4

3
𝜇̄s̃mms̃ij

]
.

(19)
𝜕

𝜕t
𝜌̄k +

𝜕

𝜕xi
𝜌̄ũik =

𝜕

𝜕xi

[(
𝜇̄ + 𝜇T

) 𝜕

𝜕xi
k

]
− 𝜏ijs̃ij − 𝜌̄𝜀,

(20)𝜌̄𝜀 =
(
2𝜇̄�sijsij −

2

3
𝜇̄�smmsii

)
−
(
2𝜇̄s̃ijs̃ij −

2

3
𝜇̄ �smm �sii

)
.

(21)

𝜕

𝜕t
𝜌̄𝜀 +

𝜕

𝜕xi
𝜌̄ũi𝜀 =

𝜕

𝜕xi

[(
𝜇̄ + 𝜇T

) 𝜕

𝜕xi
𝜀

]
− C𝜀1𝜏ijs̃ij

𝜀

k
− C𝜀2

𝜌̄𝜀2

k
,

(22)qi = −𝜅Tẽ,i,

where c1 and c2 are yet-to-be-determined coefficients. This 
more general model will result in modifications to both the 
diffusion term and the source term in (5):

where the extra source term that originated from the unre-
solved turbulent heat fluxes is

So far, all common RANS and LES simulations have missed 
this source term. Based on our previous studies, we set 
c1 = c2 = −0.24 in the simulations described in Sect. 3.

2.3 � Guideline for conducting simulations

In the unfiltered turbulent flow field, the smallest time, 
length, and velocity scales are the Kolmogorov micro-
scales [15], which are determined by the viscosity of fluid 
and the turbulent dissipation rate. For the time-filtered 
turbulent flow field, by invoking an analogy to the Kol-
mogorov micro-scales, we may estimate that the subscales 
of time, length, and velocity for the unresolved turbulence 
should be determined by the effective subscale viscosity 
( 𝜈T + 𝜇̄∕𝜌̄ ) and subscale turbulent dissipation rate ε as 
follows:

where 𝜈T ≡ 𝜇T∕ 𝜌̄ , which is the subscale eddy viscosity. Fol-
lowing (26), the relationship between the length subscale 
ηTFNS and the time subscale TFNS is

Equation (27) indicates that for a given time subscale �TFNS 
(its value should be the width of time-filter ΔT), the length 
subscale ηTFNS will automatically adjust itself to the change 
of subscale eddy viscosity �T , or vice versa, i.e., the sub-
scale eddy viscosity �T will adjust itself to a given local grid 
spacing that usually defines the value of the length subscale 
ηTFNS. In this sense, there is a flexibility when selecting the 
grid spacing for a given time-filter width. However, the 
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situation may occur that for a given ΔT, the �T is no longer 
changing as the local grid spacing is reducing, which means 
that the simulation reaches a grid-independent solution, and 
the length subscale ηTFNS is no longer decreasing as local 
grid spacing is reducing.

2.3.1 � Resolution control parameter (RCP)

The resolution control parameter (RCP) (i.e., the ratio ΔT/T) 
is used in TFNS/VLES to regulate the content of the time 
scales of the resolved turbulence. When RCP → 1.0, all 
time scales of turbulent fluctuation have been filtered and 
the TFNS/VLES simulation becomes a RANS simulation. 
As the value of RCP decreases, the turbulent fluctuations 
become more pronounced in the calculated flow field and 
the simulation moves toward VLES or LES.

To carry out a very large eddy simulation, we need to 
choose a value of RCP from the outset. As we mentioned 
previously that the time-filter width ΔT is of the same order 
of �TFNS . Therefore, by using (26), we have

This is based on the assumption that 𝜈T ≫ 𝜇̄∕ 𝜌̄ for a very 
large eddy simulation and the subscale eddy viscosity �T is 
of order k2

/
� , where k and ε are the subscale kinetic energy 

and its dissipation rate. As a result, the resolution control 
parameter (RCP) (ΔT/T) is estimated according to

where T is the global time scale of turbulent flow of interest 
and is expressed as a ratio of the reference turbulent kinetic 
energy to its dissipation rate. We have also assumed that 
εref and ε are of the same order, since the dissipation mostly 
occurs in the small scales [15]. Equation (29) suggests a 
way to guide the selection of the value of RCP. For example, 
RCP = 0.20 means that we intend to directly resolve those 
turbulent scales that are responsible for about 80% of the 
total turbulent kinetic energy while modeling the rest of the 
unresolved turbulent scales that contain about 20% of the 
total turbulent kinetic energy.

In the simulations presented in Sect. 3, all the mesh grids 
are given mostly from the previous RANS simulations. The 
coefficient f

(
ΔT∕T

)
 for the subscale model in (8) is set to 

RCP = 0.16, 0.18, and 0.25 for the pipe flow, the LM6000 
injector, and the LDI combustor, respectively. The above 

(28)ΔT =

(
𝜈T + 𝜇̄∕ 𝜌̄

𝜀

) 1

2

≈
k

𝜀
.

(29)RCP =
ΔT

T
∼

k∕�

kref∕�ref
∼

k

kref
,

settings mean that the TFNS/VLES simulation is to resolve 
the large-scale turbulence that contains about 84% of the 
total turbulent kinetic energy for the pipe flow, 82% for the 
LM6000 injector, and 75% for the LDI combustor.

2.3.2 � Arrangement of numerical mesh grid and possible 
grid‑independent solution

A computational mesh grid based on a priori knowledge of 
the flow field is generated subject to the constraint of the 
available computing resources. Typically, finer grid spac-
ing is used in regions where the shear rates are higher and 
the turbulent fluctuations are stronger. Then we decide the 
extent to which the turbulence is to be resolved. In general, 
simulations with different levels of coarse grid spacing are 
all legitimate. And of course, the finer turbulent structures 
will reveal the finer grid spacing, but the statistical mean 
should be about the same. By refining the grid, it is pos-
sible to attain a grid-independent solution and ηTFNS would 
remain the same order of magnitude when the grid spacing 
is further reduced.

3 � Numerical results of TFNS/VLES 
simulations

The simulations of three turbulent flows will be presented: 
The first one is a turbulent pipe flow to illustrate the basic 
features of TFNS/VLES; the second one is a swirling turbu-
lent flow in a GE LM6000 single injector to further demon-
strate the advantage of the nonlinear subscale models over 
the common eddy viscosity models; and the third one is a 
nonreacting flow in a single-element lean direct injection 
(LDI) combustor. The last simulation was performed with 
a relatively coarse grid for a quite complex geometry; its 
important dynamical, unsteady turbulent flow structures 
have been well observed.

3.1 � Pipe flows

The turbulent pipe flow is one of the ideal benchmark flows 
for evaluating/validating numerical simulation approaches, 
because the geometry is simple and the flow is statistically 
homogeneous in the axial direction so that periodic bound-
ary conditions can be applied to the inlet and the outlet to 
avoid the often-complicated boundary condition issues. 
In addition, some experimental data [16] are available for 
comparison.
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Turbulent pipe flows at several different Reynolds num-
bers (from high to low) have been used to evaluate the fun-
damentals of the TFNS/VLES approach [17]. At each Reyn-
olds number, the simulation was performed over a range of 
f(RCP) (from 0.2 to 1.0) to demonstrate the unified feature 
of the current approach. Also, two types of subscale models 
were used for flow simulation at each Reynolds number: One 
is a traditional linear eddy viscosity model, and the other 
is a nonlinear subscale model described by (8). We have 
found that the nonlinear subscale model is critically impor-
tant for the successful simulation of low-Reynolds-number 

pipe flow. Here we present some results at two Reynolds 
numbers: Reτ = 180 and 3322 (based on the pipe radius and 
friction velocity). The value of RCP was set to 0.16, which 
is a typical value for a very large eddy simulation.

The computational domain has an aspect ratio of length/
radius = 10, where radius = 0.06468  m. Figure  1 shows 
the grid spacing in a cross section of the pipe. The grid 
is nearly orthogonal everywhere. The total number of 
the hexahedral elements is 906,750, more specifically 
(156 × 29 + 39 × 39) × 150.

This grid was used for flows at both Reynolds numbers 
180 and 3322. The initial flow field was created by an arbi-
trary smooth profile plus random fluctuation. At the wall, a 
generalized wall function was imposed [18].

3.1.1 � Reynolds number Reτ = 180

Turbulent pipe flow at the low Reynolds number Reτ = 180 
(or Re = 7000 based on the pipe diameter and centerline 
velocity) is relatively weak. In this section, we will present 
the numerical results, which demonstrate that for such a low-
Reynolds-number turbulent flow, the linear eddy viscosity 
subscale model is unable to develop and sustain turbulent 
fluctuations in the numerical simulation.

3.1.1.1  Nonlinear subscale model  The time history of the 
velocity indicates that the initially induced random fluctua-
tions are significantly damped during the first 600 time-
steps, but the new fluctuations quickly grow and evolve into 
a fully developed turbulence (see Fig. 2a, b).

Fig. 1   Grid spacing in a cross section of the pipe

Fig. 2   Time history of a axial velocity; b u, v components
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The instantaneous contours of the axial velocity in a 
center plane (Fig. 3a) and in a cross section (Fig. 3b) clearly 
demonstrate the motions of various turbulent scales.

3.1.1.2  Linear subscale model  The TFNS/VLES with a 
linear eddy viscosity subscale model is unable to perform 
the fluctuation of a fully developed turbulent pipe flow. The 
time histories of the three velocity components w, u, and v 
at the center of the pipe indicate that the initially induced 
random fluctuations are quickly damped out and no new tur-
bulent fluctuation develops (see Fig. 4a, b).

Figure 5a, b shows the contours of the axial velocity 
in a center plane and a cross section of the pipe, respec-
tively. These smooth contours do not show any turbulent 
fluctuations.

To further study these phenomena, we have restarted a 
simulation using the eddy viscosity subscale model but start-
ing from a fully developed turbulent flow field obtained in 
Sect. 3.1.1.1. We have observed that this initial fully devel-
oped turbulence was not able to be sustained and the turbu-
lent fluctuation was quickly damped out. Then we continued 
the simulation by turning on the nonlinear subscale model; 

Fig. 3   Instantaneous contours of axial velocity in a a center plane; b a cross section

Fig. 4   Time history of a the axial velocity w; b the velocity components u, v 
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we found that the turbulent fluctuations were quickly devel-
oping and evolving into a fully developed turbulent pipe 
flow. The above simulations suggest that the linear eddy vis-
cosity model is not suitable for the TFNS/VLES simulation 
of a low-Reynolds-number turbulent flow.

3.1.2 � Reynolds number Reτ = 3322

Turbulent pipe flow at high Reynolds number Reτ = 3322 
(or Re = 150,000 based on the pipe diameter and centerline 
velocity) has quite strong turbulence. The strong turbulent 
fluctuations are easy to sustain in the numerical simulation 

even with a linear eddy viscosity subscale model. We have 
performed simulations using RCP = 0.16 with both linear 
and nonlinear subscale models. In both cases, the initially 
induced random fluctuations were able to evolve into the 
fully developed turbulent fluctuations. Here we only pre-
sent the numerical results from using the nonlinear sub-
scale model.

3.1.2.1  Time history  The time histories of the velocity com-
ponents w, u, v, and the subscale turbulent kinetic energy are 
recorded at 15 probes at various radial locations at the axial 
center of the pipe. We present the time histories of the axial 

Fig. 5   Contours of w component in a a center plane; b a cross section

Fig. 6   At Probe 1, the time history of a w component; b subscale turbulent kinetic energy k 
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velocity and the subscale turbulent kinetic energy k at Probes 
1, 6, and 14, which correspond to the locations r/R = 0.0, 0.5, 
and 0.9743, or y+ = 3322, 1661, and 85. Probe 1 is at the 
center of the pipe, Probe 6 is at the midpoint between the 
center and the pipe wall, and Probe 14 is very close to the 
wall. Figure 6 shows the solutions at Probe 1. The solutions 
at Probe 6 and Probe 14 are shown in Figures A1 and A2 
in the electronic supplementary material. The time histo-

ries at 28 other locations along the pipe radius and axis are 
also available. These time histories indicate that the initially 
induced disturbances of the velocity components are at first 
somewhat damped, followed by the development of new 
fluctuations, which are then quickly amplified and evolved 
into a fully developed turbulent pipe flow. The amplitude of 
the velocity fluctuations increases from the center toward the 
wall, so does the subscale turbulent kinetic energy.

Fig. 7   Instantaneous contours of various variables in both a center plane and a cross section
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3.1.2.2  Instantaneous contour  To examine the turbulent 
flow structures, we have plotted the instantaneous contours 
of various variables in both a center plane and a cross sec-
tion. Here we present the instantaneous contours of the axial 
velocity component, the vorticity magnitude, the subscale 
turbulent kinetic energy, and the effective subscale viscosity 
in Fig. 7. The contours of the velocity component and the 
vorticity magnitude may illustrate the features of the resolved 

large-scale turbulent structures, whereas the subscale turbu-
lent kinetic energy and the effective viscosity illustrate the 
highly nonuniform features of the subscale turbulence.

3.1.2.3  Radial profile  The radial profiles of various flow 
variables (w, u, v, gauge pressure, vorticity magnitude, Mach 
number, subscale turbulent kinetic energy and dissipation 
rate, effective subscale eddy viscosity) are examined at dif-

Fig. 7   (continued)
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ferent locations along the pipe axis z = 0.0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.645 for the spatial development of the turbulent 
flow. Note that z is nondimensionalized by the pipe radius. 
Figure  8a shows the experimentally measured mean axial 
velocity [16] together with the (calculated) instantaneous 
axial velocity at six downstream locations. Figure 8b pre-
sents the profiles diametrically. Figure 8c, d illustrates the 
radial profiles of the subscale turbulent kinetic energy and 
the effective viscosity, respectively. These results indicate 
that the simulated turbulent flow is fully developed and is 
statistically homogeneous along the pipe.

3.1.2.4  Spectrum and correlation analysis  Figures 9 and 10 
present the power spectrum density (PSD) of the axial veloc-
ity component and its two-point (time) correlation at three 
locations (Probes 1, 6, and 14). The broadband feature of 
the PSD (i.e., more than two orders of energy variation from 
small scale to large scale) and the typical two-point corre-
lation shapes (i.e., the correlation rapidly decreases as the 
time lag increases) indicate that the TFNS/VLES simulation 
with RCP = 0.16 does mimic the statistical features of a fully 
developed turbulence.

Fig. 8   Radial profiles of various variables
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The experimental data of the mean axial velocity at Reyn-
olds number of 145,700 are used to compare the time-aver-
aged axial velocity obtained from the current simulation at a 
Reynolds number of 150,000. In Fig. 11, the result obtained 
from URANS (unsteady Reynolds-averaged Navier–Stokes) 
using a standard k–ε model and the wall function is included. 
The result obtained from TFNS/VLES is in a reasonable 
agreement with the experimental data, while the URANS 
result exhibits significant under-prediction.

3.2 � Flow in a single‑element LM6000 injector

LM6000 is a General Electric low NOx gas turbine. We 
have performed several types of numerical simulations of 
turbulent flows issued from one of its fuel injectors. A highly 
swirling jet is injected from a circular inlet. The inlet pres-
sure is about 6 atm, and the inlet temperature is about 644 K. 
The inlet boundary conditions are based on the experimen-
tal data. The combustor is a rectangular box. The Reynolds 
number based on the inlet axial velocity and the inlet jet 
diameter is about 3,200,000. Figure 12 depicts the compu-
tational domain and the numerical grid. The total number of 
grid points is about 495,000, which is the grid used for all 
simulations with the approaches of TFNS/VLES, URANS, 
and RANS. Here we will only present the results from the 
TFNS/VLES approach.

The value of RCP is set to 0.18. A convective unsteady 
boundary condition [19], which is similar to the one pro-
posed by Ferziger [20] and Grinstein et al. [21], is applied 
at the outlet boundary. The initial condition is set with a 
solution of a steady RANS simulation (see Figs. 13, 14). 
Two subscale models (nonlinear and linear) have been used. 
The results indicate that the nonlinear subscale models are 
very helpful for capturing large-scale swirling turbulent flow 
structures.

3.2.1 � Nonlinear subscale model

The time histories of velocity components and gauge pres-
sure are recorded at four locations along the centerline: 
x = 0.015, 0.05, 0.10, and 0.2 m, from which we may moni-
tor the development of turbulent fluctuations. Here, the 

Fig. 9   Power spectrum density of the axial velocity at Probes 1, 6, 
and 14

Fig. 10   Two-point time correlations of <ww> at Probes 1, 6, and 14
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presented time histories of the velocity components are at 
x = 0.1 and 0.2 m, which are located before and after the rear 
stagnation point of the recirculation zone. Figures 15 and 16 
indicate that the turbulent fluctuations are fully developed.

The instantaneous contours of flow variables in a center 
plane are presented for the time-step of 60,000, which is 
about 100 times of the through flow time (TFT, defined as 
the ratio of the length of the combustor to the inlet center-
line axial velocity). Figures 17 and 18 are the contours of 
the axial velocity and the vorticity magnitude, respectively. 
The recirculation zone, the massive separation, and the shear 
layers are clearly visualized.

Fig. 11   Comparison of mean axial velocity between TFNS/VLES, 
URANS, and experimental data

Fig. 12   Computational domain for LM6000 single injector flow sim-
ulation

Fig. 13   Contour of the axial velocity (RANS)

Fig. 14   Contour of the vorticity magnitude (RANS)



1169Nonlinear subscale turbulent models for very large eddy simulation of turbulent flows﻿	

1 3

3.2.2 � Linear subscale model

In the early stage of the simulation, the calculated turbulent 
structures look reasonable. However, they are not sustain-
able in the long run and the calculation crashes after 18,000 
time-steps (about 36 times of the through flow time, TFT).

Here, we present the instantaneous contours at two 
instances: the time-step of 10,000 (about 20 TFT) and 
the time-step of 18,000 (about 36 TFT). Around 20 TFT, 
the flow structures, shown in Figs.  19a, 20a, and 21a, 
look reasonable except for the subscale turbulent quanti-
ties. The subscale turbulent kinetic energy k (not shown) 
and the eddy viscosity μT are too small (about two orders 
of magnitude smaller) when compared to its counterpart 

Fig. 15   Time histories of velocity at Probe 3

Fig. 16   Time histories of velocity at Probe 4

Fig. 17   Contour of instantaneous axial velocity

Fig. 18   Contour of instantaneous vorticity
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Fig. 19   Axial velocity at a 10,000 time-steps; b 18,000 time-steps

Fig. 20   Contour of vorticity at a 10,000 time-steps; b 18,000 time-steps

obtained from the nonlinear subscale model. Around 36 
TFT, the flow structures near the outlet become unphysical 
(see Figs. 19b, 20b, 21b), e.g., large amount of high-speed 
inflows occurs at the exit. The subscale turbulent kinetic 
energy (not shown) and the eddy viscosity become even 

weaker and smaller. The simulation crashes soon after 36 
TFT. These results suggest that the linear subscale k–ε 
model does not work very well for high swirling turbulent 
flows.
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3.3 � Flow in a single‑element LDI combustor

The lean direct injection (LDI) injector is a liquid fuel injec-
tor developed to reduce aircraft emissions. Stable combus-
tion is essentially completed within a short distance through 
rapid fuel and air mixing. This design also allows for the 
integration of many small fuel injectors into modules facili-
tating different fuel staging strategies, such as the one shown 
in Fig. 22. So far, experimental observations have not fully 
clarified the dynamics of the mixing and combustion pro-
cesses occurring in these injectors, and numerical studies 
need to be conducted to achieve a better understanding of the 
underlying unsteady physics of the LDI combustor.

A very large eddy simulation (TFNS/VLES) has been 
carried out for the nonreacting turbulent flow in a single-
element LDI combustor as the first step toward the simula-
tion of, for example, a 3 × 3 injector module.

Figure 23 depicts the single-element LDI combustor 
geometry and its computational domain. The numerical grid 
is formed using hexahedral elements, and the total number 
of elements is 862,000, which is a relatively coarse grid 
used in a previous RANS simulation [22]. Embedded in 
this figure are the instantaneous iso-surface of zero axial 
velocity component colored by the subscale effective vis-
cosity and six instantaneous streamlines originating from 
the inlet of the injector, then passing through the swirler 
and the convergent-divergent nozzle, and finally entering 
the combustion chamber.

In this study, we first carry out a steady RANS simula-
tion to provide the initial flow field for the TFNS/VLES 
simulation. The inlet boundary conditions are set by 

specifying the velocity, the density, and the temperature 
based on the experimental data, and the outlet boundary 
condition is an unsteady convective boundary condition 
[19]. The nonlinear subscale model is used since it has 
been proven to be very effective in our previous studies. 
The value of RCP is set to 0.25 since the available numeri-
cal grid spacing is very coarse. We have also carried out 
an unsteady RANS (URANS) simulation to compare with 
the TFNS/VLES simulation. Available experimental data 
are used to assess the simulation results. It is demonstrated 
that, even with a grid spacing used in RANS, the TFNS/
VLES approach can successfully reveal the complex 
unsteady turbulent structures that occurred in this single-
element LDI combustor. These dynamically important 
flow structures include the precessing vortex core (PVC) 
and the vortex breakdown bubble (VBB). Good compari-
sons of velocity components with the experimental data 
are also demonstrated.

3.3.1 � Flow structures

In the following, the instantaneous contour plots and the 
iso-surfaces of some quantities are used to illustrate the flow 
structures.

3.3.1.1  Instantaneous contour plots  Figure 24 is the con-
tour plot of the axial velocity component in a center plane 
at time-step of 90,000. It shows that a strong recirculation 
zone is extended from the combustor dump plane deep into 
the upstream nozzle throat. Figure 25 is the contour plot of 

Fig. 21   Effective viscosity at a 10,000 time-steps; b 18,000 time-steps
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Fig. 22   Configuration of a 3 × 3 LDI injector module

Fig. 23   A snapshot of the flow and the grid spacing

Fig. 24   Contour of axial velocity in a center plane

Fig. 25   Contour of subscale k in a center plane

the subscale turbulent kinetic energy, which is high near the 
high-shear regions.

3.3.1.2  Instantaneous PVC and  VBB  The dominant flow 
structures in the LDI combustor can be best visualized 
via the iso-surface of the zero axial velocity and the iso-
surface of a relatively low pressure. The iso-surface of 
the zero axial velocity is also known as the vortex break-
down bubble (VBB). The iso-surface of a sufficiently 
low pressure captures the precessing vortex core (PVC). 
Figures 26 and 27 are the snapshots taken from two dif-
ferent angles. Figure  26 is a side view, and Fig.  27 is a 
perspective view. In these figures, the dark blue region is 
a vortex core, which is formed near the nozzle throat and 
extends into the combustor chamber. This spiraling vortex 
rotates and breaks; it changes randomly in space and time. 
Embedded in these figures is an instantaneous streamline, 
which starts from the inlet of the injector and goes through 
a complex seemingly random path in the combustor cham-
ber. This streamline spirals around the dark blue surface 
indicating that the dark blue region is indeed a vortex 

core. The light green surfaces are the iso-surfaces of the 
zero axial velocity.

3.3.2 � Profiles of velocity components

The experimental data reported in [23] are used to assess the 
current numerical results. The experimental data are mean 
values, but the numerical results are instantaneous values.

3.3.2.1  Axial velocity distribution along the centerline  Fig-
ure 28 is a comparison of the axial velocity profile between 
the calculated instantaneous values and the experimental 
mean value. Figure 29 is an enlarged view near the dump 
plane of the combustor chamber. These figures show that 
the calculated values are in reasonable agreement with the 
experimental data. It also supports the experimental obser-
vation that, near the dump plane, the turbulent fluctuations 
are quite large.

3.3.2.2  Axial velocity distribution along the y‑axis at sev‑
eral downstream locations  The distributions of the axial 
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velocity along the y-axis in the cross-section plane at 
several downstream locations x = 3  mm, 6  mm, 9  mm, 
12 mm, 90 mm, and 180 mm are presented for 10 differ-
ent instances and compared with the experimental mean 
value. Figure  30a–c clearly indicates that the turbulent 
fluctuations are quite large near the inlet of the combus-
tion chamber and are quickly reduced toward downstream 
as shown in Fig. 30d–f. In addition, the largest turbulent 
fluctuations are off the centerline, somewhere between the 
centerline and the wall.

3.3.2.3  Velocity components w and v along the y‑axis at sev‑
eral downstream locations  The distributions of the other two 
velocity components w and v along the y-axis in the cross 
section at several downstream locations x = 3  mm, 6  mm, 
9 mm, 12 mm, 15 mm, and 90 mm are shown for 10 different 

instances and compared with the experimental mean value in 
Fig. 31 and Figure A3 in the electronic supplementary mate-
rial, respectively. Again, these figures clearly indicate that the 
turbulent fluctuations are larger near the inlet of the combustor 
chamber and are quickly reduced downstream. The strongest 
turbulent fluctuations are found off the centerline, somewhere 
between the centerline and the wall.

Fig. 26   Side view of the PVC and the VBB

Fig. 27   45° view of the PVC and the VBB

Fig. 28   Centerline profile of the axial velocity

Fig. 29   Instantaneous profiles near the dump plane
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Fig. 30   Axial velocity along the y-axis at several downstream locations
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Fig. 31   Velocity component w along the y-axis in the cross section at several downstream locations
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Fig. 32   Axial mean velocity U along the y-axis in the cross-section plane at several locations
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Fig. 33   Mean velocity components V along the y-axis in the cross section at several downstream locations
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3.3.3 � Comparisons between RANS, URANS, TFNS/VLES, 
and experimental data

This section will compare the time-averaged mean velocity 
profiles from TFNS/VLES, URANS, and RANS simulations 
with the experimental data. The mean values are obtained 
by time-averaging the TFNS/VLES and URANS simulations 
over the last 10,000 time-steps.

3.3.3.1  Axial mean velocity U along  the  y‑axis at  several 
downstream locations  The distributions of the axial mean 
velocity U along the y-axis in the cross-section plane at sev-
eral downstream locations x = 3 mm, 6 mm, 9 mm, 12 mm, 
90 mm, and 180 mm are presented for RANS, URANS, and 
TFNS/VLES compared with the experimental mean values. 
Figure 32 clearly shows that the time-averaged axial veloc-
ity profile from TFNS/VLES simulation is much closer to 
the experimental data, especially in the region near the inlet 
of the combustor chamber where turbulent fluctuations are 
strong.

3.3.3.2  Mean velocity components V and W along the y‑axis 
at  several downstream locations  The distributions of the 
other two mean velocity components V and W along the 
y-axis in the cross-section at several downstream locations 
x = 3 mm, 6 mm, 9 mm, 12 mm, 15 mm, and 90 mm are com-
pared with the experimental mean value in Fig. 33 and Fig-
ure A4 in the supplementary material, respectively. Again, 
these figures clearly indicate that the time-averaged mean 
velocity profiles from TFNS/VLES simulation are much 
closer to the experimental data, especially in the region near 
the inlet of the combustor chamber where turbulent fluctua-
tions are strong.

4 � Conclusions

The basic equations of the TFNS/VLES approach for large 
or very large simulations are presented. They are based on 
the time-filtering with a constant filter width. Consequently, 
they are grid spacing independent or grid invariant. This fea-
ture allows the possibility of achieving a grid-independent 
solution.

The nonlinear subscale models are of better mathemati-
cal and physical meanings than the linear eddy viscosity 
models. The advantage of the nonlinear subscale models 
over the linear eddy viscosity models has been demonstrated 
in the simulations of turbulent pipe flow at low Reynolds 
number Reτ = 180 and the high swirling flow issued from 
an LM6000 single injector. In both cases, the linear eddy 
viscosity model does not lead to a sustainable and physically 
meaningful solution.

The simulations of the single-element LDI injector flow 
using the nonlinear subscale model have demonstrated that 
the TFNS/VLES approach can capture the dynamically 
important unsteady turbulent structures even with a grid 
spacing typically used for the RANS calculation. This is 
particularly encouraging, because the capability of predict-
ing unsteady turbulent flow structures with a coarse grid is 
very much desired for practical engineering applications.
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