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Abstract
A semi-analytical model is presented for predicting the trajectory of the transverse detonation during the re-initiation process
of a diffracted cellular detonation wave from a channel. Numerical simulations based on the two-dimensional reactive Euler
equations with a detailed hydrogen/oxygen chemistry model were first performed to observe key characteristics of cellular
detonation wave diffraction and to obtain required input parameters for the model construction. The present numerical
observations indicate that the transverse detonation stems from a location on the expansion wave front, and the horizontal
distance from this initial location to the channel exit can be scaled by a constant multiplied by the detonation cell width
for large deviation angles of the channel. The velocity of the transverse detonation basically equals the Chapman–Jouguet
detonation wave velocity consisting of two orthogonal components: the expansion velocity of the diffracted wave front and
the relative velocity to the diffracted wave front. The shape of the decoupled wave front is not affected by local explosion
and thus can be predicted by the Chester–Chisnell–Whitham theory. Based on these numerical observations and the Chester–
Chisnell–Whitham theory, a semi-analytical model is constructed to predict the wave trajectories as well as the distances of
the wall reflection point for various deviation angles and initial pressures. The model prediction agrees with the corresponding
numerical results. The model result shows that the distance of the wall reflection point varies from 15 to 20 multiples of the
cell width with a minimal dependence on deviation angle, independent of the initial pressure. The trajectory calculated by the
model is self-similar and determined by the horizontal distance of the initial location. The dimensionless trajectories divided
by the horizontal distance are coincident for different initial pressures.

Keywords Cellular detonation diffraction · Transverse detonation · Chester–Chisnell–Whitham theory · Semi-analytical
model

1 Introduction

When a detonationwave propagates froma confined area into
an unconfined volume, the diffraction phenomenon occurs.
Affected by the expansion wave originating at the expan-
sion corner, the detonation diffraction may lead to either
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detonation failure under a subcritical condition, or a suc-
cessful re-initiation in a supercritical case [1]. Moreover, in
a re-initiation process, a new detonation wave propagating
transversely along the diffracted wave front will be formed.
This transverse detonation plays a major role in re-uniting
the decoupled shock front and reaction zone and eventually
results in the diffracted detonation wave propagating sustain-
ably in the open area [2].

As a fundamental problem of detonation research, the
detonation diffraction phenomenon has been studied by a
number of researchers in the past fewdecades. The early stud-
ies generally focused on the critical condition for a successful
re-initiation in cellular detonation diffraction. Zeldovich [1]
first experimentally determined that the critical tube diame-
ter dc, the diameter value below which a detonation cannot
transmit into an open area, is about 500ΔI to 700ΔI, where
ΔI represents the length of the detonation induction zone.
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The criterion was then re-expressed in Mitrofanov [3] by
using detonation cell width λ as dc = 10λ for a flat chan-
nel and dc = 13λ for a cylindrical tube. The critical tube
diameter criterion was verified extensively for most com-
mon hydrocarbons/O2/N2 mixtures by Knystautas et al. [4].
The mechanisms of diffraction and re-initiation under super-
critical conditions were also explored in a number of studies.
Edwards et al. [2] studied the re-initiation process theoreti-
cally, determining the condition for local explosion as well
as the position where re-initiation originates. Murray and
Lee [5] built a quantitative model for the diffraction and re-
initiation process, which supports the theory of Edwards et
al. The effect of activation energy on the re-initiation process
was also investigated in detail by Arienti and Shepherd [6]
and Pintgen and Shepherd [7]. The latter, and also recently
Gallier et al. [8], pointed out that the effect of unsteadiness
in the reaction process affects the decoupling between the
reaction front and the leading diverging shock.

Two mechanisms of detonation diffraction failure were
also conjectured by Lee [9]: For highly unstable detonations,
the failure is due to the suppression of transverse instabili-
ties by corner expansion; for weakly unstable detonations, an
excessive front curvature distributed over the global detona-
tion surface is responsible for the failure. These conjectured
mechanisms were experimentally supported by recent find-
ings of Mehrjoo et al. that, for highly unstable mixtures,
the critical initial pressure for a successful transmission is
decreased by artificially generating instabilities using small
obstacles placed at the tube exit and increased by damping
transverse instabilities via porous tube walls, while generat-
ing or damping instabilities have minimal effects for weakly
unstable mixtures [10,11]. The re-initiation mechanism was
also investigated in recent experiments using high-speed flow
visualization [12]. The photographs highlight that the mech-
anism is a consequence of local instabilities within the region
between the leading shock and decoupled reaction zone,
resulting in an explosion bubble and a new transverse det-
onation sweeping through the shocked, barely reacted gas.
These experimental results thus suggest that cellular instabil-
ity and transversewaves are important factors for a successful
detonation (re-) initiation.

While the aforementioned investigations generally con-
sidered a 90◦ expansion corner, the study of detonation
diffraction with various deviation angles θw is drawing more
attentionmainly due to the recent development of detonation-
based engines. The shock wave Chester–Chisnell–Whitham
(CCW) theory [13] was applied by Bartlmä and Schröder
[14] and Thomas et al. [15] to study the shape of diffracted
detonation fronts with θw ≥ 30◦. Two different re-initiation
mechanismswere found byThomas et al. [15] andKhasainov
et al. [16] for various θw. The study of Nagura et al. [17,18]
and Kasahara and Kawasaki [19] focused on the transverse
detonation in the re-initiation process for large values of θw,

reporting that both the positions of wall reflection point and
local explosion were independent of θw and initial pressure
p0.However, the detailedmechanismhas not been elucidated
by these authors.

Following Nagura’s study, a semi-analytical model was
constructed in this work to predict the trajectory of the trans-
verse detonation in the re-initiation process of a diffracted
cellular detonation wave. Since a highly unstable detonation
wave with an irregular cellular pattern may reveal excessive
complexity in the diffraction process and has a different re-
initiation mechanism from the weakly unstable one, only the
weakly unstable detonation wave with regular cellular struc-
ture is considered in this work. The paper is organized as
follows. In Sect. 2, the problem considered in the simula-
tions is described and the computational details for solving
the governing equations are provided. Several characteristics
of cellular detonationwave diffraction revealed from the sim-
ulation results are reported and discussed in Sect. 3. Using
the numerical observations, together with the CCW theory,
a semi-analytical model was then constructed. The detailed
calculation process and a validation of the model are pre-
sented in Sect. 4. In Sect. 5, the model is applied to analyze
the re-initiation process, especially to elucidate the mecha-
nisms underlying the experimental results of Nagura et al.
Section 6 concludes and highlights the key findings of this
work.

2 Numerical method and computational
setup

2.1 Numerical method

In the present study, numerical simulations were first per-
formed to reveal some key characteristics of cellular det-
onation wave diffraction. The numerical results are then
used to examine the predictive capability of the proposed
semi-analytical model. The adaptive mesh refinement code
AMROC [20,21] was adopted to complete the simulations.
It is an open-source code based on the structured adaptive
mesh refinement (SAMR) technique [22]. The code supports
abundant Euler solvers based on TVD and WENO schemes
and has been integrated in the virtual test facility (VTF) soft-
ware. It is widely applied in multi-dimensional detonation
simulations [23–28]. In this paper, the two-dimensional reac-
tive Euler equations were used as the governing equations. A
second-order accurate shock-capturing MUSCL-TVD finite
volumemethod (FVM)was adopted. The first-order accurate
Godunov splitting method was used to handle the reaction
source term. A difference scheme with second-order accu-
racy in space and time was constructed by the Van Albada
limiter with MUSCL reconstruction and the Runge–Kutta
technique [29], respectively.
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Fig. 1 Schematic of calculation domain: O , expansion corner tip; θw,
deviation angle

The simulations of cellular detonation wave diffraction
were conducted in a two-dimensional computational domain,
as shown in Fig. 1. It had a symmetric bottom boundary to
display half of the diffraction flow field. The stoichiometric
H2/O2 mixture with 70% argon dilution under temperature
of 298Kwas distributed in the domain, and the detailed reac-
tion model of nine species and 34 elementary reactions [30]
was employed. To initialize the computation, a self-sustained
cellular detonation under the specified initial conditions was
first achieved and then imposed near the inlet domain. More
details about the initiation procedure were discussed in pre-
vious research [23,24]. In the present study, the deviation
angle θw varied from 10◦ to 90◦ in an increment of 10◦. In
addition, various initial pressures p0 were chosen to change
the cell width λ to satisfy the relation of Dinlet = 13λ, 14λ,
17λ, 20λ, and 25λ, where Dinlet represents the full width of
the inlet domain (double the inlet domain width shown in
Fig. 1), and by preset simulations, the corresponding initial
pressures p0 were 20 kPa, 22 kPa, 25 kPa, 28 kPa, and 32 kPa.
According to the re-initiation criterion of dc = 13λ [3],
all the simulations are under supercritical condition, which
can realize re-initiation successfully. It is worth noting that

quantitative cell size comparison between numerical sim-
ulations and experimental measurement remains uncertain.
Besides the details of numerical methods, such comparison
also highly depends on the chemical kinetics model and non-
equilibrium effects, especially for H2/O2 mixtures [31,32],
and hence, to be consistent, all the cell sizes reported in this
work are based on the numerical values obtained from the
present simulations.

2.2 Grid resolution and time step study

To investigate the effect of grid resolution on the simulations,
a series of verification computations for detonation wave
diffraction with different mesh refinement strategies were
conducted with the conditions of θw = 90◦ and p0 = 22 kPa.
Even under the same grid resolution, different numbers of
time steps may lead to unreliable results [33,34]; thus, the
selected simulations were also repeated with different num-
bers of time steps by varying the Courant–Friedrichs–Lewy
(CFL) number. In this paper, the trajectory of the transverse
detonation and the position where the transverse detonation
reflects on the expansion wave are most significant for veri-
fying our model, so the accuracy of these parameters should
be insured primarily. Figure 2 presents the numerical soot
foils for three different resolutions, where lig/�xmin repre-
sents the number of grid points per induction length in the
highest refinement area, and Fig. 3 shows the trajectories of
the transverse detonation for different resolutions and CFL
numbers. The distance Lw from the wall reflection point to
the expansion corner tip for each resolution and CFL num-
ber is listed in Table 1. It can be observed that the trajectory
is not very sensitive to the chosen grid resolutions and CFL
numbers, and the distance Lw of all cases is essentially the
same. Considering the computational cost, the resolution of
lig/�xmin = 16 and the CFL number of 0.95 were applied
for all the following simulations.

(a) lig/Δxmin = 8,CFL= 0.95 (b) lig/Δxmin = 16,CFL= 0.95 (c) lig/Δxmin = 32,CFL= 0.95

Fig. 2 Numerical soot foils of detonation wave diffraction for three different mesh resolutions
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Fig. 3 Trajectories of transverse detonation for different mesh resolu-
tions and CFL numbers

Table 1 Wall reflection point distance Lw for differentmesh resolutions
and CFL numbers

Condition Lw (mm)

lig/�xmin = 16,CFL = 0.65 56.469

lig/�xmin = 16,CFL = 0.8 56.483

lig/�xmin = 8,CFL = 0.95 56.462

lig/�xmin = 16,CFL = 0.95 56.478

lig/�xmin = 32,CFL = 0.95 56.448

3 Numerical observations of cellular
detonation diffraction

Before starting to build the model, results from numeri-
cal simulations were explored. Three key characteristics for
the weakly unstable detonation diffraction were determined,
which are the essence of the present model development.

3.1 The initial position of the transverse detonation

The position where local explosion occurs in the re-initiation
process, i.e., the initial location of the transverse detona-
tion, was first studied theoretically by Edwards et al. [2].
These authors reported that the location of local explosion
was on the expansion wave front with a horizontal distance
of st = 5λ cot α to the channel exit, where λ and α repre-
sent the cell width and the horizontal angle of the expansion
wave front, respectively, as shown in Fig. 4. However, recent
studies [8,18] claimed that the position of local explosion is
related to the deviation angle θw, instead of on the expan-
sion wave front. Figures 5 and 6 display the numerical soot
foils and the enlarged views with overlay of density-gradient

Fig. 4 Sketch of position where local explosion occurs in Edwards’s
theory: st , horizontal distance from position of local explosion to chan-
nel exit; α, horizontal angle of expansion wave front; λ, detonation cell
width

schlieren and cellular pattern presenting the re-initiation pro-
cess for various θw. The newly generated detonation cells at
the position of x > 30 cm in the soot foils, which have
the approximate size with the original ones, indicate that the
detonation re-initiation process has completed. These results
show that when θw < 30◦, the transverse waves reflect on the
expansionwall immediately after the detonationwave propa-
gates into the expansion area,which leads to a local explosion
in the vicinity of the wall, and the detonation wave can prop-
agate sustainably without decoupling, as shown in Fig. 5.
While θw ≥ 30◦, the detonation wave front near the wall
decouples first, then a local explosion occurs, and a transverse
detonation is generated on the upper side of the expansion
cone, as shown in Fig. 6. Since this case corresponds to a
supercritical condition, part of the diffracted detonation does
not fail completely by the expansion waves from the corner
and near the axis, transversewaves persist, but cells are grow-
ing along the diffracted front. It is worth mentioning that this
case also corresponds to a weakly unstable detonation and
the failure of the diffracted detonation is argued to be caused
by an excessive front curvature [9]. Thus, for a supercriti-
cal case, the detonation front would not be decoupled near
the channel axis since the front curvature there is sufficiently
small. These results agree well with the experimental studies
of Khasainov et al. [16] and Nagura et al. [18], but the loca-
tion of the explosion is often unpredictable. Nevertheless, as
Fig. 6 shows, it is found that the transverse detonation stems
from a location on the expansion wave front. Although one
cannot determine the exact coordinates of the local explo-
sion, this initial location can be identified in the numerical
soot foil by tracking the trajectory of the transverse detona-
tion (along the red arrow in Fig. 6) back to the expansion
wave front. Hence, the horizontal distance st from the ini-
tial location to the channel exit can be determined. Figure 7
presents the dimensionless value st/λ cot α for each case,
which represents the contained detonation cell number in
the width between the initial location and the channel wall.
Since the initial location on the expansion wave front just
corresponds to the tip of the detonation cell in the soot foil,
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Fig. 5 Numerical soot foil and the enlarged view presenting the re-initiation process of the diffracted detonation wave with θw = 20◦ and p0 = 22
kPa: E , position of local explosion

Fig. 6 Numerical soot foil and the enlarged view presenting the re-
initiation process of the diffracted detonation wave with θw = 60◦ and
p0 = 22 kPa: P , position of wall reflection point; T , transverse deto-
nation; E , position of local explosion; W , transverse wave; Q, initial

location of transverse detonation; st , horizontal distance from initial
location to channel exit; dotted line represents the trajectory of the
transverse detonation

the value st/λ cot α must be an integer multiple of 0.5. One
can notice that for all the cases, the value st/λ cot α increases
with θw as θw < 60◦, whereas at θw ≥ 60◦, the value sta-
bilizes at 5, which corresponds to that given in Edwards et
al. [2]. Therefore, for the cases with θw ≥ 60◦, the expres-
sion from Edwards et al. can be applied to predict the initial
location of the transverse detonation on the expansion wave
front, i.e., st = 5λ cot α. Thus, for the cases with θw ≥ 60◦,
the initial position of the transverse detonation can be the-
oretically predicted and used as an input parameter for the
semi-analytical model to calculate the subsequent trajectory
of the transverse detonation.

3.2 The velocity of the transverse detonation

The velocity of the transverse detonation Dt is another impor-
tant parameter in our model. The value of the velocity Dt was
extracted at each simulation time. Figure 8 shows the rela-

tion between dimensionless value Dt/DCJ and simulation
time for various initial pressures p0 with θw = 90◦. Table 2
lists the total average value of Dt/DCJ for these cases, where
DCJ represents the velocity value of aChapman–Jouguet (CJ)
detonation wave under the same condition. The results indi-
cate that the velocity Dt just varies in a small range from
0.94DCJ to 1.05DCJ, and the average velocity is close to
DCJ for each case. Therefore, it is reasonable to set DCJ as
the velocity value of the transverse detonation in the model
calculation, whereas the effect of the deviation will be dis-
cussed in Sect. 5. Furthermore, the direction of velocity Dt is
another key element to be considered. Figure 9 presents the
propagation of the transverse detonation in the re-initiation
process. The velocity of the transverse detonation Dt can be
considered as a combination of two velocity components: the
relative velocity of the transverse detonation to the diffracted
detonation wave front Dh and the expansion velocity of the
diffracted wave front Dv, as shown in Fig. 9. Since the trans-
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θ °

λ
α

Fig. 7 st/λ cot α–θw relation for various p0 compared with the
Edwards’s theory

Fig. 8 Relation between dimensionless velocity Dt/DCJ and simula-
tion time for various p0 with θw = 90◦

verse detonation always propagates along the diffractedwave
front, the velocity Dh should be tangent to the wave front sur-
face, whereas the velocity Dv is perpendicular to the surface,
which means Dh and Dv are orthogonal.

3.3 The shape of diffracted detonation wave front

In the present study, the shape of the diffracted detonation
wave front was analyzed by comparing with the results of the
CCW theory. This theory was first proposed in Whitham’s
research [13] by adopting the analysis of Chester [35] and

Table 2 Average value of Dt/DCJ for various p0 with θw = 90◦

Initial pressure p0 (kPa) Average value of Dt/DCJ

20 0.997

22 1.013

25 1.009

28 0.998

32 0.996

Fig. 9 Sketch showing the separation of the transverse detonation
velocity: Dt , velocity of the transverse detonation; Dh, relative veloc-
ity of the transverse detonation to diffracted wave front; Dv, expansion
velocity of diffractedwave front; T , transverse detonation; F , diffracted
detonation wave front; dotted line represents the trajectory of the trans-
verse detonation

Chisnell [36] and then extended by Skews [37] to predict the
shape as well as velocity of the diffracted shock wave front
with reasonable accuracy. To verify again the accuracy of the
theory, a simulation of shockwave diffraction was conducted
under the Mach number Ms = 4.7 and θw = 90◦. The shape
of the diffracted shock wave front was compared with the
results calculated by the CCW model (the detailed calcula-
tion process of the model will be introduced in Sect. 4), as
presented in Fig. 10. It can be observed that the results of the
CCW model agree well with the shape of the shock front.

As to detonationwave diffraction, it is known that the flow
state behind the wave front is highly non-uniform, which is
different from the inert shockwave, so theoretically theCCW
model cannot be applied directly to predict the shape of the
diffracted detonation wave. It is worth noting that in recent
years, a number of remedies have been proposed by sev-
eral researchers to address the effect of flow non-uniformity
[38–41], for example, by coupling the post-shock flow con-
ditions obtained from simulations or existing data into the
zero-order leading shock front solution. Nevertheless, for
simplicity, the original CCW formulation is retained in the
present study to illustrate the proposed modeling strategy.
Furthermore, as introduced in Sect. 3.1, the detonation wave
front will decouple in the diffraction process for θw ≥ 30◦,
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Fig. 10 Density-gradient schlieren of diffracted shock wave front and corresponding coordinates compared with the CCWmodel results at different
simulation times (Ms = 4.7, θw = 90◦)

and the decoupled detonation wave has similar flow structure
with shock wave. Bartlmä and Schröder [14] showed that the
shape of the decoupled wave front is the same as that of a
diffracted inert shock wave front under the same Mach num-
ber, which implies that the shape of the decoupled region
of the diffracted detonation wave front is self-similar and
could be predicted by the CCWmodel for a diffracted shock
wave.However, as to the diffraction of detonationwave, local
explosion and re-initiation will be generated in supercritical
condition, which is beyond the consideration of the study
of Bartlmä and Schröder. To describe the shape of detona-
tion wave after re-initiation, the density-gradient schlieren of
diffracted detonation waves at different times were captured
and overlaid for various cases, as shown in Fig. 11a, c, e.
It can be clearly seen that the local explosion happens and a
transversely propagatingdetonationwave is generated, divid-
ing the decoupled wave front from the coupled detonation
wave. Simultaneously, the center coupled detonation wave
spreads with a convex front, whereas the decoupled portion
of the wave with smooth front is swept by the transverse det-
onation and finally disappears as the transverse detonation
reaches the expansion wall and reflects. The symbols plotted
in Fig. 11b, d, f indicate the coordinates extracted from the
diffracted detonation wave fronts shown in Fig. 11a, c, e and
are compared with the corresponding results calculated by
the CCW model for inert shock diffraction (plotted as black
curves). As shown in the first and second sets of curves in
Fig. 11b, d, f, the shape of the decoupled wave front (plot-
ted as circular symbols) is coincident with the theoretical
curve under the condition of various θw and p0 at different
times, while the shape of the coupled detonation wave front
(plotted as triangular symbols) deviates from the theoreti-
cal curve gradually due to its different flow states behind
the wave front comparing with shock wave. Moreover, when
the transverse detonation reflects on the expansion wall, the

entire wave front becomes coupled, thus making the shape
of the entire wave front no longer coincide with the theoret-
ical result, as shown in the third set of curves in Fig. 11b, d,
f. Consequently, it is confirmed that in the re-initiation pro-
cess of detonation wave diffraction, although the shape of the
coupled detonation wave front with non-uniform flow state is
totally different from the prediction by the CCW model, the
shape of the decoupled wave front, which can be regarded as
a shock wave, agrees well with the theoretical result despite
the effect of the local explosion and thus can be predicted
accurately by the CCW theory. It must be emphasized that
despite such good agreement for the present validation case
in Fig. 10 and comparison shown in Fig.11 for the decoupled
part of the diverging detonation, the CCW theory remains
a zero-order approximate model considered in this work as
it does not retain all flow characteristics behind the leading
shock in the original formulation. In fact, the use of the CCW
theory in the presentmodel can be relaxed andwill be consid-
ered in the future by incorporating more recent geometrical
shock waves models, e.g., [42], to describe the propagation
of the decoupled detonation required in this work.

4 The semi-analytical model setup

With the key characteristics of weakly unstable detona-
tion diffraction being investigated numerically, the semi-
analytical model to predict the trajectory of the transverse
detonation can now be built. The calculation process and the
verification of the model are presented in detail here.

4.1 The CCWmodel for diffracted detonation wave

Since the CCW theory neglects the influence of the flow field
behind the wave front, it is more accurate for large deviation
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(a) θw = 60◦ and p0 = 22 kPa. (b) θw = 60◦ and p0 = 22 kPa.

(c) θw = 90◦ and p0 = 22 kPa. (d) θw = 90◦ and p0 = 22 kPa.

(e) θw = 90◦ and p0 = 32 kPa. (f) θw = 90◦ and p0 = 32 kPa.

Fig. 11 Density-gradient schlieren of diffracted detonation wave front and corresponding coordinates compared with the CCW model results for
various θw and p0 at different simulation times
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Fig. 12 Theoretical dimensionless shape of diffracted shock wave with
θw = 90◦ and γ = 1.4: Dw, velocity of wave front near expansion wall;
Ds, velocity of unaffected shock wave; θ , center angle from expansion
wave front to a certain point on diffracted shock front; A, end of curved
wave front

angles and strong shock waves (M2 � 1) [43–45]. As to
the diffracted shock wave, the CCWmodel yields convenient
results in a closed analytical form. The shape of the diffracted
shock wave can be given by:

x/s = (√
n + 1/

√
n
)
e−θ/

√
n cos(α − θ)

y/s = − (√
n + 1/

√
n
)
e−θ/

√
n sin(α − θ)

}

0 ≤ θ ≤ θw,

(1)

where x and y represent the coordinates of point on the
diffracted shock wave front, s the horizontal distance from
channel exit to the unaffected shock wave, and θ the angle
from expansionwave front to the corresponding point.More-
over, for strong shock waves, the parameters n and α can be
obtained approximately by:

n = (γ+2) /γ+√
2γ / (γ+1) and tan2α = 1/n, (2)

where γ is the specific heat ratio. The dimensionless shape
of diffracted shock wave calculated by (1) with θw= 90◦ and
γ = 1.4 is shown in Fig. 12. It can be found that the shape
is self-similar and determined by s. It is also noticed that the
wave front after point A is straight and perpendicular to the
wall.

As claimed in Sect. 3.3, the CCW theory can be applied to
predict the shape of the decoupledwave front.As the terminal
point of the decoupled wave front, the coordinates of the
transverse detonation also satisfy the relation in (1). Thus,
once we obtain the angle θ where the transverse detonation
locates and the horizontal distance s of the corresponding

Fig. 13 Sketch of the transverse detonation trajectory: P , position of
wall reflection point; A, end of curved wave front; Q, initial location of
transverse detonation; Lw, distance from wall reflection point to expan-
sion corner tip; st , horizontal distance of initial location; sA, horizontal
distance ofwave frontwith point A on it; sw, horizontal distance ofwave
front when the transverse detonation reaches expansionwall; dotted line
represents the trajectory of the transverse detonation

wave front for the entire re-initiation process, the trajectory
as well as the wall reflection position can be calculated by
(1).

The expansion velocity of the decoupled wave front can
also be calculated by the CCW model. Considering that the
velocity of the unaffected detonation wave equals DCJ, the
velocity of the straight wave front perpendicular to the wall
Dw can be given by:

Dw = DCJe
θw/

√
n . (3)

From (1), it is realized that the wave front shape in the range
from 0 to θw can always be coincident as θw changes, and the
velocity Dw is always perpendicular to the wave front. Thus,
we can approximate the expansion velocity Dv of any point
on the decoupled wave front as:

Dv = DCJe
θ/

√
n . (4)

4.2 Calculation process

The sketch of the transverse detonation trajectory is shown
in Fig. 13. To predict the full trajectory, we should obtain
the angle θ of the transverse detonation and the distance
s of the corresponding wave front at each time. As men-
tioned in Sect. 3.1, theoretically the calculation should start
at the initial location on the expansion wave front Q with
the coordinates of x0 = st = 5λ cot α and y0 = −5λ. How-
ever, the velocity Dt at point Q is perpendicular to the wave
front, which means the velocity component Dh0 = 0 and the
calculation cannot continue at the beginning. To avoid this
situation, a certain point which is extremely close to the point
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Fig. 14 Sketch of the first step
in the calculation process of
model: dotted line represents the
trajectory of the transverse
detonation

Q with the coordinates of x1 = x0 + l∗ and y1 = y0 + l∗ is
chosen as the initial point, where l∗ represents an extremely
short preset distance set equal to 0.05 mm in the present cal-
culation. The area around the point (x1, y1) as well as the
initial calculation step is displayed schematically in Fig. 14.
The angle θ∗ from the expansion wave front to point (x1, y1)
can be obtained easily by:

θ∗ = α − arctan |y1/x1| . (5)

So the distance s1 from the channel exit to the unaffected
wave front in Front 1 can be calculated by (1):

s1 = x1/
((√

n + 1/
√
n
)
e−θ∗/√n cos(α − θ∗)

)
≈ st. (6)

As discussed in Sect. 3.2, it is assumed that the velocity of
the transverse detonation is Dt = DCJ and the velocity com-
ponents Dh and Dv are orthogonal. According to (4), the
components Dv1 and Dh1 at point (x1, y1) can be expressed
as:

Dv1 = DCJe
θ∗/√n, (7)

Dh1 = DCJ

√
1−(

eθ∗/√n
)2

. (8)

As shown in Fig. 14, assuming that the transverse detonation
moves from (x1, y1) to (x2, y2), with a known small angle
variation of �θ (e.g., �θ = 1◦, the coordinates of point
(x2, y2) are still unknown), then the coordinates of the cor-
responding point (x ′

1, y
′
1) with the same angle variation �θ

on Front 1 can be obtained by:

x ′
1 = s1

(√
n + 1/

√
n
)
e−(θ∗+�θ)/

√
n cos (α − (θ∗ + �θ)) ,

y′
1 = −s1

(√
n + 1/

√
n
)
e−(θ∗+�θ)/

√
n sin (α − (θ∗ + �θ)) .

(9)

Therefore, the time �t1 when the transverse detonation
moves from (x1, y1) to (x2, y2) can be calculated approxi-
mately by:

�t1 = �l1/Dh1 ≈
√

(x ′
1 − x1)

2 + (y′
1 − y1)

2/Dh1. (10)

Then, the horizontal distance s2 for Front 2 can be determined
by:

s2 = s1 + DCJ�t1, (11)

and the coordinates of point (x2, y2) can be confirmed by:

x2 = s2
(√

n + 1/
√
n
)
e−(θ∗+�θ)/

√
n cos (α − (θ∗ + �θ)) ,

y2 = −s2
(√

n + 1/
√
n
)
e−(θ∗+�θ)/

√
n sin (α − (θ∗ + �θ)) .

(12)

This completes the first step of the calculation. After repeat-
ing the calculations from (9) to (12) for the counts of n =
θw/�θ , the transverse detonation will finally reach the end
of the curved wave front A in Fig. 13, and the trajectory of
the transverse detonation from point Q to point A can be
confirmed by tracking its location in each step. The coordi-
nates of point A as well as the horizontal distance sA can be
obtained by the last step of the calculation.

The trajectory after point A should also be considered.
The area around point A is presented in Fig. 15. It has been
pointed out that the wave front behind the point A is straight
and perpendicular to the wall with a constant velocity of
Dvw = DCJeθw/

√
n , so the component velocity Dhw of the

transverse detonation is also constant at:

Dhw = DCJ

√
1−(

eθw/
√
n
)2

. (13)
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Fig. 15 Sketch of trajectory behind point A: dotted line represents the
trajectory of the transverse detonation

It can be inferred that this part of trajectory is also straight.
Since the coordinates of point A have been known as
(xA, yA), the vertical distance Lv from point A to the channel
wall can be calculated by:

Lv =
√
x2A + y2A sin α. (14)

Thus, the time tw when the transverse detonationmoves from
point A to the wall can be given by:

tw = Lv/Dhw, (15)

and the horizontal distance sw when the transverse detonation
reaches the wall is known as:

sw = sA + DCJtw. (16)

According to (1), the distance of wall reflection point Lw can
be obtained by:

Lw = sw
(√

n + 1/
√
n
)
e

−θw/
√
n
cosα. (17)

It is clear that the trajectory after point A is a straight line
connecting point A and the wall reflection point; thus, the
entire trajectory of the transverse detonation is established.
In the present work, the calculation process is realized by
MATLAB®, and the flow parameters are calculated by CAN-
TERA.

4.3 Validation of themodel

It is realized that in the calculation process, the parameter�θ

can be regarded as the resolution of themodel, so the effect of
various �θ on the calculated results should be investigated.
The�θ of 2◦, 1◦, 0.5◦, 0.25◦, and 0.125◦ were chosen to cal-
culate the same condition of p0 = 22 kPa and θw = 90◦; the

°
°

°
°

°

Fig. 16 Trajectories of the transverse detonation calculated by model
for various �θ under p0 = 22 kPa and θw = 90◦

trajectories calculated by the present model with various �θ

are shown in Fig. 16. It can be visualized that the curves are
close to each other with only a slight deviation among them.
This indicates that all the above increments�θ can be applied
in the model with certain precision. Here, the resolution of
�θ = 0.5◦ is adopted in the present analysis. Moreover,
in order to verify the accuracy of the model, several com-
parisons between the transverse detonation trajectories in
simulations and the corresponding results calculated by the
model were conducted with various θw and p0, as displayed
in Fig. 17. In addition, the wall reflection point distance Lw

for each simulation case andmodel prediction is presented in
Fig. 18. It should be noted that the trajectories and reflection
points for simulations are all extracted from the numerical
soot foil. Due to the limited resolution, the extraction has a
certain error, which is presented as error bars in the figures.
Additionally, since the range of θw we simulated is from 10◦
to 90◦, only the results for cases with 90◦ ≥ θw ≥ 60◦ can be
compared with the results of model, whereas the model can
extend easily to a wider range of θw, as Fig. 18 shows. From
the figures, all the trajectory curves as well as the distances
Lw calculated by model are in good agreement with the sim-
ulation results, which indicates that the model can predict the
trajectory of the transverse detonation accurately under the
limitation of θw ≥ 60◦.

5 Analysis of themodel

Since the predictive capability of themodel has been verified,
the model can be applied to revisit the characteristics of the
transverse detonation in the re-initiation process. As intro-
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°

(a) θw = 60◦ and p0 = 22 kPa.

°

(b) θw = 90◦ and p0 = 22 kPa.

°

(c) θw = 70◦ and p0 = 28 kPa.

°

(d) θw=90◦ and p0 = 28 kPa.

Fig. 17 Comparison of trajectories for simulation and model with various θw and p0

duced in Sect. 1, in Nagura’s research [17,18], an important
conclusion was drawn that for 150◦ ≥ θw ≥ 60◦, inde-
pendent of θw and p0, the distance Lw varies in a small
range of (12.3 ± 4.1)λ in experimental observation, and the
range increases to about 20λ in two-dimensional simulations,
but the mechanism of this observation has not been given.
By applying the present model, the underlying mechanism
can be explained. Figures 18 and 19 show the Lw–θw and
Lw/λ–θw relation calculated by the model for various p0
with 150◦ ≥ θw ≥ 60◦, respectively. It can be seen clearly
from Fig. 18 that the value of Lw decreases with increasing
p0. Nevertheless, at 90◦ ≥ θw ≥ 60◦, the Lw appears almost
unchanged and just decreases slowly along with θw when
θw > 90◦. It is also found from Fig. 19 that the Lw/λ–θw
curves are perfectly coincident at a common model curve for
various p0, and the value of Lw/λ varies between 15 and 20,

so strictly speaking the distance Lw still has relation with
θw, but the deviation against θw is minimal and may be hard
to distinguish in experiments. Since the model is inferred
by the three features of cellular detonation wave diffraction
discussed in Sect. 3, we can deduce that this trend of nearly
stable value of the distance Lw against θw is just a natural
result determined by those three characteristics.

As to that the parameter Lw/λ is constant for the same
θw and independent of p0, it is noticed from (6) to (12) that
the parameters x ′

1, y
′
1,�t1, s2, x2, and y2 can all be expressed

by a form of s1 multiplied by a function of �θ since the
parameters n, θ∗, θw, and α can be seen as constant for vari-
ous p0. In addition, we have known that s1 is an approximate
parameter of st , so it can be inferred that the trajectory of the
transverse detonation can be re-expressed in a dimensionless
form:
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θ °

Fig. 18 Comparison of distance of wall reflection point Lw for simu-
lation and model with various θw and p0

θ °

λ

Fig. 19 Lw/λ–θw relation calculated by model for various p0, θw, and
Dt (curves for various p0 are coincident)

xt/st = f (�θ) ,

yt/st = g (�θ) ,
(18)

where xt and yt represent the coordinates of point on the
trajectory. The dimensionless trajectories with θw = 90◦ are
shown in Fig. 20. Similar to Fig. 12, the trajectories are also
found to be self-similar and only related to the distance st ,
which leads to the dimensionless trajectories coincident at
one model curve for various p0. Thus, the relation of st =
5λ cot α determines that the parameter Lw/λ can be regarded
as constant for the same θw and independent of p0. It is also

Fig. 20 Dimensionless trajectories of the transverse detonation for var-
ious p0 and Dt with θw = 90◦ (curves for various p0 are coincident)

implied that this characteristic is available for all the weakly
unstable detonation waves with constant cell width.

Asmentioned in Sect. 3.2, the velocity Dt does not exactly
equal DCJ, which varies in a range between 0.94DCJ and
1.05DCJ. To discuss the effect of the deviation on the trajec-
tory calculated by the model, the dimensionless value Lw/λ

and trajectories for Dt = 0.94DCJ and Dt = 1.05DCJ are
presented in Figs. 19 and 20, respectively. It is found from
Fig. 20 that as Dt changes, the trajectories separatewith small
deviation initially,whereas the deviation increases alongwith
the center angle θ , which finally leads to a certain variation
of the wall reflection point and the distance Lw, and the value
of Lw decreases with the increase in Dt , as shown in Fig. 19.
The results indicate that the model is sensitive to the veloc-
ity Dt , and for the present study, the variation of Dt from
0.94DCJ and 1.05DCJ can make an error of 10 to −8% the
distance Lw calculated by the case of Dt = DCJ.

6 Conclusions

A semi-analytical model to predict the trajectory of the
transverse detonation in re-initiation of weakly unstable det-
onation wave diffraction was constructed by applying the
Chester–Chisnell–Whitham theory. Several key features of
cellular detonation wave diffraction that are significant for
the model were studied first by numerical simulation with
the adaptivemesh refinement codeAMROC. The calculation
process of themodel was presented in detail, and an accuracy
verification of the model was conducted. The re-initiation
process was analyzed, and the conclusion drawn from pre-
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vious research by Nagura et al. [17,18] was explained by
adopting the present model.

From the numerical simulations, the position of the local
explosion is related to the deviation angle θw of the channel.
Only at θw ≥ 30◦, the transverse detonation can be generated,
and it is shown to derive from a location on the expansion
wave front. When θw ≥ 60◦, the horizontal distance st from
the initial location on the expansionwave front to the channel
exit can be predicted by the theory of Edwards et al., which
satisfies the relation of st = 5λ cot α, where λ and α repre-
sent the detonation cell width and the horizontal angle of the
expansion wave front, respectively. In addition, the velocity
of the transverse detonation Dt has an almost equivalent value
to the Chapman–Jouguet detonation wave velocity DCJ, and
the velocity Dt can be separated into two orthogonal veloc-
ity components: the expansion velocity of the diffractedwave
front Dv, which is perpendicular to the front, and the relative
velocity of the transverse detonation to the diffracted wave
front Dh, which is tangent to the front. Moreover, before
the transverse detonation reaches the expansion wall, the
shape of the decoupled wave front will not be affected by
the local explosion and can be predicted by the Chester–
Chisnell–Whitham theory.

Based on the numerical observations and the Chester–
Chisnell–Whitham theory, a semi-analytical model can be
constructed, and the trajectories of the transverse detonation
as well as the distances of the wall reflection point Lw can be
confirmed, respectively, with various θw and initial pressure
p0 under the limitation of θw ≥ 60◦. The results calculated
by the model are verified to agree with the present simulation
results.

The model denotes that at 150◦ ≥ θw ≥ 60◦, the dis-
tance Lw varies in a small range of 15–20λ with various
θw, and the deviation is minimal as θw is varied. This trend
is considered to be a natural result determined by the three
key characteristics of detonation diffraction discussed in this
study. Furthermore, it is found that the trajectory of the trans-
verse detonation calculated by the model is self-similar and
has dependence only upon the distance st . Thus, the relation
of st = 5λ cot α determines that the parameter Lw/λ can
be regarded as constant for the same θw and independent of
p0. This characteristic is available for all the weakly unsta-
ble detonation waves with regular cellular structures. The
analysis which is induced by the model validates the previ-
ous finding by Nagura et al. [17,18] and gives a reasonable
explanation of the mechanism simultaneously. In addition,
the model is found to be sensitive to the velocity Dt , and the
deviation of Dt can make a certain error for the calculation
result.
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