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Abstract
An Eulerian approach for simulations of wave propagation in multiphase, viscoelastic media is developed in the context of
the Advection Upstream Splitting Method (AUSM). We extend the AUSM scheme to the five-equation model for simulations
of interfaces between gases, liquids, and solids with constitutive relations appropriately transported. In this framework, the
solid’s deformations are assumed to be infinitesimally small such that they can be modeled using linear viscoelastic models,
e.g., generalized Zener. The Eulerian framework addresses the challenge of calculating strains, more naturally expressed in
a Lagrangian framework, by using a hypoelastic model that takes an objective Lie derivative of the constitutive relation to
transform strains into velocity gradients. Our approach introduces elastic stresses in the convective fluxes that are treated
by generalizing AUSM flux-vector splitting (FVS) to account for the Cauchy stress tensor. We determine an appropriate
discretization of non-conservative equations that appear in the five-equation multiphase model with AUSM schemes to
prevent spurious oscillations at material interfaces. The framework’s spatial scheme is solution adaptive with a discontinuity
sensor discriminating between smooth and discontinuous regions. The smooth regions are computed using explicit high-order
central differences. At discontinuous regions (i.e., shocks, material interfaces, and contact surfaces), the convective fluxes
are treated using a high-order Weighted Essentially Non-Oscillatory (WENO) scheme with AUSM+-up for upwinding. The
framework is used to simulate one-dimensional (1D) and two-dimensional (2D) problems that demonstrate the ability to
maintain equilibrium interfacial conditions and solve challenging multi-dimensional and multi-material problems.
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List of symbols
AUSM Advection Upstream Splitting Method
FVS Flux-vector splitting
WENO Weighted Essentially Non-Oscillatory
FDS Flux-difference splitting
ρ Density
α(k) kth component volume fraction
K Number of materials
ui Velocity vector
p Pressure
E Total energy
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σi j Cauchy stress tensor
Qk Heat flux
κ Thermal conductivity
Nr Number of relaxation frequencies
e Internal energy
e(e) Elastic energy
T Temperature
NASG Noble-Abel Stiffened-Gas
EOS Equation of state
n, B, b, c, q NASG EOS material properties
ε̇i j Strain-rate tensor

ε̇
(d)
i j Deviatoric component of ε̇i j

τ
(d)
i j Deviatoric component of σi j

τ
(v)
i j , τ

(e)
i j Viscous and elastic contribution of τi j

μb, μs Bulk and shear viscosities
λr Relaxation time
G Underrelaxed shear modulus
Gr Relaxed shear modulus
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H(t) Heaviside function
ψ Shear relaxation function
ς(l) lth relaxation shear coefficient
θ(l) lth relaxation frequency
ξ (l) lth memory variable
a(k) kth component speed of sound
ζmax Maximum wavespeed
ν Courant number
νμ, νκ von Neumann numbers
Fi±1/2 Interface flux
φ, ϕ Normal and tangent convective flux
ηkk Normal Cauchy stress tensor flux
ηkl Tangent Cauchy stress tensor flux
uk,i+1/2 Normal interface velocity
ul,i+1/2 Tangent interface velocity
M, N Normal and tangent Mach number
M Split Mach number function
P Split pressure function
κp, κu AUSM+-up coefficients
A AUSM discretization operator
TRR Twin regular reflection–refraction
σvon von Mises stress

1 Introduction

The increased sophistication of numerical techniques for
compressible multiphase flows has enabled studies of implo-
sions, explosions, and ballistics, and with them the growing
need to accurately resolve features with high-frequency con-
tents (e.g., shock waves) propagating into heterogeneous
media. These flows involve regions of low Mach numbers
in homogeneous solids or liquids, while Mach numbers can
be supersonic in gas/liquid mixture regions where the sound
speed can be as low as tens of meters per second. Shocks
emitted from implosions propagate into surrounding media,
causing permanent deformations and possibly material loss.
An example of interest is cavitating bubble clouds collaps-
ing over a hydrofoil’s surface [1–3]. Computing such flows
requires high-order accuracy to resolve broadband motions,
robustness to be applicable across a range of Mach numbers
(including nearly incompressible flow), and computational
efficiency to represent a wide range of scales (e.g., bub-
ble clouds, cavitation sheets, turbulence). Flux-difference
splitting (FDS) or flux-vector splitting (FVS) are common
approaches to address these issues. FDS schemes are pop-
ular given their relatively simple implementation. However,
representation of flows across a wide range ofMach numbers
is not straightforward. On the other hand, FVS schemes, in
particular the AUSM schemes first developed by Liou and
Steffen [4], are capable of computing all-speed flows [5,6]
and multiphase flows [7–12].

AUSM schemes have been used to study multiphase
shock wave propagation and shock-droplet problems involv-
ing gases and liquids [11]. Here, the motivation is to develop
a coupled fluid–solid approach to study problems such as
cavitation bubbles collapsing near solid surfaces. The exten-
sion of an Eulerian framework to represent deformations,
more adequately expressed in a Lagrangian framework, is
non-trivial. Two major approaches have been pursued in the
literature [13]: Godunov-based (hyperelastic models) and
conventional (hypoelastic models). The former accounts for
finite deformations and ensures thermodynamic consistency
in an Eulerian framework. This approach has been used in
conjunction with FDS schemes to study ballistics [14,15],
and implosions [16] with interface-tracking approaches and
ballistics with interface-capturing approaches [17]. How-
ever, it is not clear how to implement FVS schemes with
the Godunov approach, specifically, the fluxes involving the
deformation tensor. Leveraging our previous work [18], we
follow the hypoelastic approach as it is possible to formulate
an Eulerian framework for simple linear viscoelastic models
for materials under the small-strain assumption. This limi-
tation is acceptable for problems with small deformations,
e.g., for materials with large Young’s modulus relative to the
pressure loads. An objective Lie temporal derivative of the
elastic contribution of the Cauchy stress tensor is taken, thus
transforming Lagrangian strains in the constitutive relation
into velocity gradients [19]. As a result, the convective fluxes
are modified by additional elastic components, such that the
implementation of FVS schemes, as developed for the Euler
equations where the Cauchy stress tensor involves only pres-
sure, is not trivial. We address this issue here for the AUSM
scheme by generalizing flux vectors to Cauchy stress tensors
describing linear viscoelastic constitutive relations.

The representation of material interfaces typically falls
under one of two approaches: tracking or capturing. The
former, while being able to resolve the interface exactly,
involves solving non-conservative equations that may lead
to conservation issues. AUSM schemes have been used in
interface-tracking approaches, e.g., the Ghost Fluid Method,
in conjunction with arbitrary Lagrangian–Eulerian frame-
works [20,21]. While conservation issues can be mitigated,
the overall solver can become complicated and involves two
different solvers, one for theflowandone for the solid dynam-
ics, to be appropriately coupled. Moreover, comparisons of
AUSM schemes and FDS schemes demonstrated AUSM
schemes to be numerically stiffer in such problems [20]. In
the latter approach, the interface is regularized over a few
cells in a fashion that ensures conservation using a single-
solver framework. Although the six-equation multiphase
model has been used with AUSM schemes [11], the five-
equation model is appealing for the simplicity of its imple-
mentation and because it does not require the calculation
of the complicated source terms present in the six-equation
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model. The five-equation multiphase model has been imple-
mented successfully for FDS schemes that eliminate spurious
errors due to the inconsistent treatment of primitive variables
and maintain equilibrium conditions [22]. There have been
efforts toward high-order accurate numerical approaches
using FVS schemes for multiphase compressible flows that
prevent spurious errors [23]; however, this approach only
considers gases described by the ideal gas law. The five-
equation model has yet to be extended to FVS-type schemes
for multi-component flows.

By following the analysis of [24,25] and using the
AUSM+-up scheme, we obtain the appropriate discretiza-
tion for the non-conservative equations in the five-equation
model, which prevent spurious errors at material interfaces.
In an extensive study of AUSM schemes with high-order
approaches, Scandaliato and Liou [26] suggest utilizing
characteristic variable reconstruction WENO with AUSM
schemes to avoid the oscillations present in other recon-
structions that would lead to a stiff scheme; we utilize
primitive variable reconstructionWENO scheme of [25] due
to its straightforward implementation and ability to elim-
inate spurious errors. Our objective is to extend AUSM
schemes to interface-capturing approaches for gas–liquid–
solid flows in which the solid behaves in a linear viscoelastic
fashion. Furthermore, we focus on high-order-accurate spa-
tial discretizations that result in a single, solution-adaptive
framework to compute compressible multiphase flows with
viscoelasticity. The paper is organized as follows. The phys-
ical model is first presented, followed by a description of
the numerical model. Thereafter, the AUSM implementation
for interface capturing and viscoelastic media is outlined.
The approach is then tested using a series of one- and two-
dimensional problems. Finally, the work is summarized, and
future directions are outlined.

2 Physical model

2.1 Equations of motion

The equations governing the phenomena of interest are mass
conservation, momentum, and energy balance:

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0, (1a)

∂

∂t
(ρui ) + ∂

∂x j
(ρuiu j − σi j ) = 0, (1b)

∂E

∂t
+ ∂

∂x j
(Eu j − σi j ui ) = −∂Qk

∂xk
, (1c)

∂

∂t
(ρ(k)α(k)) + ∂

∂x j
(ρ(k)α(k)u j ) = 0, (1d)

where ρ is the total density, ui the velocity vector, σi j the
Cauchy stress tensor, Qk the heat flux, α(k) the volume frac-
tion of material k, k = 1, . . . , K − 1, K the total number of
materials, and indices i, j = 1, 2, and 3. Equation (1d) is a
mass conservation equation for K − 1 materials. Material k
has volume fraction α(k) and density ρ(k), with the following
relations

∑

k

ρ(k)α(k) = ρ,
∑

k

α(k) = 1. (2)

As described in Sect. 3.2, K − 1 additional mass balance
equations along with the total density balance equation, cor-
responding to the K materials, must be evolved. The total
energy per unit volume, E , is comprised of the internal,
kinetic, and elastic contributions:

E = ρe + 1

2
ρu2i + ρe(e). (3)

The internal energy (per unit volume) ρe is determined
through the equation of state described in the next section,
and the elastic energy ρe(e) is described in Sect. 2.3.

2.2 Equation of state

The Noble-Abel Stiffened-Gas (NASG) equation of state
(EOS) [27] is used to relate the internal energy to pressure
and temperature in gases, liquids, and solids:

ρe = p(1 − ρb)

n − 1
+ nB(1 − ρb)

n − 1
+ ρq (4a)

= ρcT + B(1 − ρb) + ρq, (4b)

where T is the temperature and q, n, B, b, and c are mate-
rial properties empirically for liquids and solids [27–29]. The
equation reduces to the stiffened-gas equation of state [29]
with b = 0 and modifying the other material properties
appropriately. In the limit of ideal gases, B = 0, b = 0,
q = 0, c is the specific heat at constant volume and n = γ is
the ratio of specific heats. Table 1 provides the values of the
material properties used in this work.

Table 1 Material properties corresponding to differentmedia described
by the Noble-Abel Stiffened-Gas equation of state

Property Air Water and model
Zener solid

n 1.4 1.19

b (m3/kg × 10−4) 0 6.61

B (Pa × 106) 0 702.8

q (kJ/kg) 0 −1.167

c (kJ/kgK) 0.718 4.167
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2.3 Constitutive relations

Constitutive relations for the heat flux and Cauchy stress ten-
sor are required. For the former, Fourier conduction describes
the heat diffusion process:

Qk = −κ
∂T

∂xk
, (5)

where κ is the thermal conductivity.
For the latter, we first define the strain-rate tensor and its

deviatoric component

ε̇i j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
, ε̇

(d)
i j = ε̇i j − 1

3
ε̇kkδi j , (6)

where the dot denotes the Lie objective temporal derivative.
The Cauchy stress tensor can be written in terms of isotropic
(bulk) and deviatoric contributions

σi j = −pδi j + μbε̇kkδi j + τ
(d)
i j , (7)

where thefirst two terms are themechanical pressure andbulk
(dilatational) viscous isotropic contributions, the third term
the deviatoric stress, and μb the bulk viscosity. We consider
the Zener constitutive model suitable for materials exhibit-
ing elasticity, viscosity, and stress relaxation. We consider
elasticity in the infinitesimally small-strain limit such that
the stress and its rate depend linearly on the strain and its
rate [30]:

λr τ̇
(d)
i j + τ

(d)
i j = 2μsε̇

(d)
i j + 2Gε

(d)
i j , (8)

where the viscous contribution is τ
(v)
i j = 2μsε̇

(d)
i j , the elastic

contribution τ
(e)
i j = 2Gε

(d)
i j , λr the relaxation time, μs the

shear viscosity, and G the shear modulus. The elastic energy
is defined as

ρe(e) = τ
(e)
i j τ

(e)
i j

4G
. (9)

Moreover, the Zener model has the advantage of reducing
to other simple linear constitutive relations [31–33]. We can
generalize the Zenermodel to account formultiple relaxation
frequencies. To do so, a shear relaxation function is defined
as [31]

ψ = Gr

(
1 +

Nr∑

l=1

ς(l) exp(−θ(l)t)

)
H(t), (10)

where Gr is the relaxed shear modulus, ς(l) the relaxation
shear coefficient corresponding to relaxation frequency θ(l),
Nr the total number of relaxation frequencies, and H(t) the
Heaviside function. The elastic stress is a convolution of the
shear relaxation function and (deviatoric) strain rate

τ
(d)
i j = 2ψ(t) ∗ ε

(d)
i j . (11)

Taking an objective Lie temporal derivative and introducing
evolution equations of the memory variables close the sys-
tem.

3 Numerical model

3.1 Zener model in an Eulerian framework

The main challenge with incorporating elasticity into a
shock-capturing framework lies in the representation of
deformations or strains. An objective temporal derivative of
the elastic contribution of the deviatoric stress is taken to
transform strains into strain rates. The Lie derivative is used
to make this transformation [18,34]

τ̇
(e)
i j = ∂τ

(e)
i j

∂t
+uk

∂τ
(e)
i j

∂xk
−τ

(e)
k j

∂ui
∂xk

−τ
(e)
ik

∂u j

∂xk
+τ

(e)
i j

∂uk
∂xk

, (12)

where the first two terms are the material derivative of the
stress tensor and the rest of the terms contribute to preserving
objectivity. Here, we incorporate the material derivative and
(1a) into the Lie derivative to transport elastic stress tensor
and memory variable discontinuities, which yields [18]

∂

∂t

(
ρτ

(e)
i j

)
+ ∂

∂x j

(
ρτ

(e)
i j u j

)
= ρ

[
2Gε̇

(d)
i j +

Nr∑

l

ξ
(l)
i j

]

+ ρ

[
τ

(e)
k j

∂ui
∂xk

+ τ
(e)
ik

∂u j

∂xk
− τ

(e)
i j

∂uk
∂xk

]
, (13a)

∂

∂t

(
ρξ

(l)
i j

)
+ ∂

∂x j

(
ρξ

(l)
i j u j

)

= ρ

[
ξ

(l)
k j

∂ui
∂xk

+ ξ
(l)
ik

∂u j

∂xk
− ξ

(l)
i j

∂uk
∂xk

]

− ρ
[
θ(l)

(
2ς(l)Gr ε̇

(d)
i j + ξ

(l)
i j

)]
, (13b)

where l = 1, . . . , Nr, ξ
(l)
i j is the lth memory variable

ξ
(l)
i j = −θ(l)Grς

(l) exp(−θ(l)t)H(t) ∗ ε̇
(d)
i j , (14)
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Nr the total number of relaxation frequencies corresponding
to Nr memory variables and evolution equations, and Gr the
relaxed shear modulus

G = Gr

(
1 +

Nr∑

l=1

ς(l)

)
, (15)

where ς(l) are the relaxation coefficients for the given mate-
rial, which can be obtained bymaterial characterization [35].
The memory variable evolution equations close the system
without having to perform the temporal convolution in (14).

Using the Lie derivative, the generalized Zener model
equations are (1a), (1d), (13), and the momentum and energy
balance equations:

∂

∂t
(ρui ) + ∂

∂x j

(
ρuiu j + pδi j − τ

(e)
i j

)

= ∂

∂x j

(
τ

(v)
i j + μbε̇kkδi j

)
, (16a)

∂E

∂t
+ ∂

∂x j

[
(E + p)u j − τ

(e)
i j ui

]

= ∂

∂x j

[
ui

(
τ

(v)
i j + μbε̇kkδi j

)]
+ ∂

∂x j

(
κ

∂T

∂x j

)
. (16b)

3.2 Multi-material framework

To represent different materials, we use the five-equation
compressiblemultiphasemodel [22,36,37] for gases, liquids,
and solids [18]. All materials are assumed to obey the same
equation of state and constitutive relation, but with different
properties. Numerical dissipation at interfaces gives rise to a
(numerical) mixture region of ∼4–5 computational cells in
which appropriate rulesmust be specified to prevent spurious
errors. In addition to the total mass conservation equa-
tion (1a), K − 1 species conservation equations are solved
in both conservative form as in (1d) and in non-conservative
form tomaintain interfacial equilibrium conditions for veloc-
ity, pressure, and temperature [22]

∂α(k)

∂t
+ u j

∂α(k)

∂x j
= Γ (k) ∂u j

∂x j
, (17)

where k = 1, . . . , K − 1 and

Γ (k) = α(k)

K (k)
s

⎛

⎝ 1
∑

l
α(l)

K (l)
s

− K (k)
s

⎞

⎠ , (18)

K (k)
s = ρ(k)(a(k))2 = n(k)(p + B(k))

(1 − ρ(k)b(k))
. (19)

Although necessary to represent compressible multiphase
problems with significant dilatational effects, the right-hand

side of this equation is sometimes set to zero [36,38,39]. In
this work, we assume dilatational effects are such that the
right-hand side is negligible and thus neglect these terms.
When using AUSM+-up with the source terms, the system
becomes considerably stiffer; future studies will investigate
how to incorporate this term in this framework.

The pressure and temperature are computed based on the
internal energy as follows:

p = E − ρ
u2i
2 − ρe(e) − ∑

k ρ(k)α(k)q(k)

∑
k α(k) 1

n(k)−1

−
∑

k α(k) n(k)B(k)(1−ρ(k)b(k))

n(k)−1∑
k α(k) 1

n(k)−1

, (20a)

T = E − ρ
u2i
2 − ρe(e) − ∑

k ρ(k)α(k)q(k)

∑
k ρ(k)α(k)c(k)

−
∑

k α(k)(1 − ρ(k)b(k))B(k)

∑
k ρ(k)α(k)c(k)

, (20b)

where terms with ρ(k)α(k) are calculated using (1d), and
terms with α(k) only are calculated using (17), as described
in [22]. The internal energy can be calculated by rearranging
(20). Mixture material properties φ (e.g., elastic moduli, vis-
cosities, thermal conductivity) are weighted by the volume
fraction:

φ =
∑

k

α(k)φ(k). (21)

The spatial gradients of α(k) are computed to obtain the spa-
tial gradients of φ.

4 Numerical method

4.1 Baseline temporal and spatial schemes

We use the standard explicit fourth-order Runge–Kutta
scheme for time marching. Accounting for advection and
diffusion, the minimum time step is computed:

Δt = min

(
ν

Δx

ζmax
, νμ

Δx2

(μs/ρ)
, νκ

Δx2

(κ/ρc)

)
, (22)

where Δx is the mesh size, ζmax the maximum global wave
speed, ν is the Courant number, and νμ and νκ are the von
Neumann numbers for viscous and thermal diffusion. Unless
stated otherwise, we set ν = 0.75 and νμ = νκ = 0.125.
The maximum wave speed is calculated using the maximum
eigenspeed and incorporating the effect of linear viscoelas-
ticity [18]:
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ζmax = max j

⎛

⎜⎝|u| ±

√√√√ n(p + B)

ρ(1 − ρb)
+ 4G/3 + τ

(e)
j j

ρ

⎞

⎟⎠

j

.

The spatial discretization is based on a solution-adaptive
approach that introduces numerical dissipation only where
necessary. The discontinuity sensor of [18,22,40] detects
shocks, contact discontinuities, and material interfaces, such
that the convective fluxes are computed as follows:

Fi±1/2 =
{
Fi±1/2|AUSM+−up, if ΦA > 10−4 ∀A
Fi±1/2|central, otherwise,

(23)

where the subscripts “central” and “AUSM+-up” are
explained below, and

ΦA = 4φA

(1 + φA)2
, φA = |AR − AL |

AR + AL
, (24)

where A is p, ρ, or n, and L and R denote the left and right
edges of a computational cell. If ΦA > 10−4 ∀A in a given
cell, the solution is considered discontinuous and theWENO
approach of [25] is used for all the primitive variables along
with AUSM+-up [10] generalized to viscoelasticity in the
context of the five-equation multiphase model. The sensor is
not activated for smooth problems, i.e., central differences
are used exclusively in such problems. If discontinuities
are detected, shock/interface capturing is applied. Although
the capturing scheme is second-order, it does not affect the
overall convergence rate, since problemswith discontinuities
exhibit first-order convergence only. Derivatives in the diffu-
sion and source terms and material properties are computed
using explicit fourth-order central differences. The numeri-
cal method has been verified to be high-order accurate for
smooth problems and at most first-order accurate at discon-
tinuities using a FDS scheme in conjunction with the HLL
Riemann solver [18].

4.2 Implementation of the AUSM+-up scheme for
the compressible, Zener model

AUSM schemes were extended to solve the compress-
ible Navier–Stokes equations for multiphase flows [7,9–11].
The constitutive relation for the Cauchy stress tensor is
σi j = −pδi j +μbε̇kkδi j +τ

(v)
i j , for Newtonian fluids. AUSM

schemes split the flux into convective and pressure flux con-
tributions [41], with the viscous terms computed separately.
We first generalize the AUSM+-up flux-vector splitting to
solve the numerical model with a general Cauchy stress ten-
sor; we then extend this procedure to the generalized Zener
model. For brevity, the extensionofAUSM+-up for all speeds
is not presented, but can be obtained in a straightforward

fashion following [5]. We start by formulating the AUSM
flux-vector splitting to (1) using the U-splitting form [42] for
a Cauchy stress tensor described by linear viscoelasticity

Fk,i+1/2 = max(uk,i+1/2, 0)ϕL + min(uk,i+1/2, 0)ϕR

+ max(ul,i+1/2, 0)ψL + min(ul,i+1/2, 0)ψR

+ ηi+1/2,

(25)

where k �= l, the first subscript denotes the flux-vector direc-
tion, and the second the discretization index. The subscripts
L and R indicate the left and right edges of the computa-
tional cell, respectively, whose values are calculated using
WENO [25]. To account for the second term in the convec-
tive flux in (16b), an additional convective flux vector, ψ ,
is needed alongside the conventional convective flux vector
in AUSM+-up, and the pressure flux is generalized to the
Cauchy stress tensor flux

ϕ =

⎡

⎢⎢⎣

ρ

ρul
E − σkk
ρ(k)α(k)

⎤

⎥⎥⎦ , ψ =

⎡

⎢⎢⎣

0
0

σkl
0

⎤

⎥⎥⎦ , η =

⎡

⎢⎢⎣

0
−σkl
0
0

⎤

⎥⎥⎦ , (26)

where k �= l. The velocities uk,i+1/2 and ul,i+1/2 are com-
puted using the AUSM+-up Mach number splitting [10]

uk,i+1/2 = a1/2(M+
(4)(ML) + M−

(4)(MR))

+ κpmax(1 − M̄2, 0)
(σL − σR)

ρ1/2a1/2
, (27a)

ul,i+1/2 = a1/2(M+
(4)(NL) + M−

(4)(NR)), (27b)

where the subscripts of M are the order of the polynomial
used, the left and right Mach numbers

ML/R = uk,L/R

a1/2
, NL/R = ul,L/R

a1/2
,

the interface values arithmetic averages, with a1/2 =(
aL + aR

)
/2, M̄2 = (

M2
L + M2

R

)
/2, and the coefficient

κp = 0.4 unless stated otherwise. The third terms of (27)
and (28), are the “up” velocity–stress coupling terms that
add the necessary dissipation to handle flows with large den-
sity ratios [9,10]. The tangent velocity ul,i+1/2 and Cauchy
stress tensor flux ηkk,i+1/2 in (27) and (28), respectively, are
attributed to the elastic shear wave. Since the shear wave is
not significantly affected by the large density gradients rel-
ative to their normal stress wave counterparts, these terms
are computed without the “up”-dissipation terms. The split
Mach number functions are defined
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M±
(4) =

⎧
⎨

⎩

M±
(1), if |M | ≥ 1,

M±
(2)

[
1 ∓ 2M∓

(2)

]
, otherwise,

M±
(1) = M ± |M |

2
, M±

(2) = ± (M ± 1)2

4
.

The Cauchy stress tensor flux is defined using the same
approach as the AUSM+-up pressure flux

ηkk,i+1/2 = P+
(5)(ML)σkk,L + P−

(5)(MR)σkk,R

+ κuP+
(5)(ML)P−

(5)(MR)ρ1/2a1/2(uL − ur),

(28a)

ηkl,i+1/2 = P+
(5)(ML)σkl,L + P−

(5)(MR)σkl,R, (28b)

where k �= l,

P±
(5) =

⎧
⎨

⎩

M±
(1)/M, if |M | ≥ 1,

M±
(2)

[
±2 − M ∓ 3MM∓

(2)

]
, otherwise,

M̄ = (ML + MR)/2, and the coefficient κu = 0.2 unless
stated otherwise. We follow [9,10] when specifying the
AUSM+ scheme’s tunable parameters for multiphase prob-
lems and set α = 3/16 and β = 1/8, see [5] for further
details on these parameters. In other AUSM schemes [9–
12], the κu and κp coefficients are set to unity to increase
the scheme’s dissipation and decrease the numerical stiff-
ness. Additionally, whenσkl = −pδkl , the numericalmethod
reverts to AUSM+-up for the Euler equations and the addi-
tional convective flux vector, ψ , is not computed. Using this
formulation, the x-direction AUSM+-up flux vectors for the
2D generalized Zener numerical model are:

φ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu
ρv

E − σ11

ρα(k)

ρτ
(e)
i j

ρξ
(l)
i j

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ψ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−τ
(e)
12
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, η =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−σ11

−τ
(e)
12
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where σ11 = −p+τ
(e)
11 and indices i, j = 1 and 2. Following

appropriate simplifications, the flux vectors for the general-
ized Zener numerical model reduce to simpler models (e.g.,
Kelvin–Voigt, Maxwell, and Newtonian).

4.3 Proposed AUSM+-up approach for
non-conservative transport equations

The non-conservative equation for the volume fraction in
the multi-material framework must be carefully discretized
using AUSM+-up to prevent spurious errors and maintain

equilibrium conditions for initially uniform flows. Follow-
ing [22,24,25], we aim to consistently solve the numerical
model using AUSM+-up with minimal modifications to the
overall method. We begin by prescribing that interfacial
conditions must be maintained for a flow initialized in equi-
librium, i.e.,

un+1 = un = u, pn+1 = pn = p, T n+1 = T n = T ,

where the superscripts denote the time step. Since the source
terms, elastic stresses, and memory variables depend on
velocity gradients, which are zero in equilibrium, those rel-
evant terms cancel out. Only the gradients in the volume
fraction and density remain. As part of the analysis, the
AUSM+-up operator under equilibrium conditions is first
identified to determine the necessary evolution equation for
the non-conservative volume fraction equation to maintain
interfacial equilibrium conditions.

Applying (25) to themass conservation equation, (1a), and
considering a simple time discretization yield the AUSM+-
up discretization operator A(·) such that

ρn+1
i = ρn

i − (Δt/Δx)A(ρ), (29)

where

A(ρ) =
(
max(uni , 0)ρ

n
i+1/2,L + min(uni , 0)ρ

n
i+1/2,R

)

−
(
max(uni , 0)ρ

n
i−1/2,L + min(uni , 0)ρ

n
i−1/2,R

)
.

(30)

Discretizing the momentum balance equation, the pressure
terms cancel, thus yielding the mass conservation equation
if and only if un+1 = un . Applying equilibrium conditions
yields

(ρe)n+1
i = (ρe)ni − (Δt/Δx)A(ρe). (31)

The kinetic energy contribution in the total energy produces
a result similar to (1a). The elastic energy contribution to
the total energy also cancels out. Applying the pressure- and
temperature-wise forms of the EOS for the internal energy,
i.e., (21), we obtain

(X p + χ)n+1
i = (X p + χ)ni − (Δt/Δx)A(X p + χ), (32)

where

X =
∑ α(k)

n(k) − 1
−

∑ ρ(k)α(k)b(k)

n(k) − 1
,

χ =
∑ α(k)n(k)B(k)

n(k) − 1
−

∑ ρ(k)α(k)b(k)n(k)B(k)

n(k) − 1
,
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for the pressure-wise form, and

(ΘT + θ)n+1
i = (ΘT + θ)ni − A(ΘT + θ), (33)

where

Θ =
∑

k

ρ(k)c(k)α(k),

θ =
∑

k

B(k)α(k) −
∑

k

B(k)ρ(k)α(k)b(k),

for the temperature-wise form. Equations (32) and (33) are
rearranged, and two equations are obtained: Equation (1d)
and one equation for α to maintain pressure and temperature
equilibrium,

(α)n+1
i = (α)ni − (Δt/Δx)A(α). (34)

This is a numerical discretization of the non-conservative
linear advection equation for α,

∂α(k)

∂t
+ u

∂α(k)

∂x
= 0. (35)

We note that the source term in (17) would cancel out since
the velocity is constant initially. Quantities X , χ,Θ, and θ

must be computed as described above when solving for p
and T to prevent spurious errors [18,22].

5 Results

We demonstrate our proposed approach by solving 1D and
2D multi-material problems with shocks. Using 1D prob-
lems, we demonstrate the framework’s ability to maintain
equilibrium conditions and resolve the wave structures. We
solve 2D shock–cylinder interaction problems in which the
cylinder is made of, alternatively, gas, water, and a Zener
solid.

5.1 Material interface advection problem

We demonstrate that the five-equation framework for the
AUSM+-up scheme presented in Sect. 4.3 maintains equi-
librium conditions at interfaces [18,22,43–45]. We consider
a 1D multi-material interface problem [18] with the Zener
model for the viscoelastic medium and the material proper-
ties in Table 1. The initial conditions are

(ρ, u, v, p) =
{

(1, 0.5, 0.5, 1/γ ), if x/L ∈ [0.25, 0.75]
(1000, 0.5, 0.5, 1/γ ), otherwise,

(36)

with τ
(e)
11 = τ

(e)
22 = τ

(e)
12 = ξ

(1)
11 = ξ

(1)
22 = ξ

(1)
12 = 0

and n = 1.4 for air. For the model viscoelastic material,
μb = μs = 5mPa s,G = 100MPa,Gr = 50MPa, ς(1) = 1,
and θ(1) = 100MHz. For air, κ = 0.026W/(Km), and for
the model viscoelastic material, κ = 0.615W/(Km). The
domain is periodicwith L = 1mm, x ∈ [0, 1], and N = 200.
The normalized errors in x-velocity, pressure, temperature,
and elastic components of the Cauchy stress tensor after the
solution has traveled ten domain lengths are shown in Fig. 1.
At the final time, all the errors are below 4 × 10−10. The
normalized elastic stress errors for τ (e)

11 and τ
(e)
22 are localized

at the right interface, i.e., x/L = 0.75, due to the advec-
tion speed. The time histories of the normalized x-velocity,
pressure, and temperature errors are plotted in Fig. 2. Within
the first two periods of the simulation, the normalized tem-
perature errors quickly rise to 10−8. The temperature profile
modifies the pressure through the heat transfer term such that
discrepancies in pressure grow to a similar order of mag-
nitude. For an isothermal simulation (results not shown),
the normalized pressure errors do not exhibit this rise and
remain bounded below 5 × 10−10. After five periods, both
temperature and pressure errors decrease by two orders of
magnitude to 10−10. The x-velocity errors remain bounded
below 6 × 10−11. The y-velocity and the elastic stress
errors are negligible (data not shown). We conclude that our
multi-material framework utilizing AUSM+-up is capable
of maintaining equilibrium conditions and prevents spurious
interfacial errors.

5.2 Multi-material Riemann problem

We verify the extension of the five-equation multiphase
model to viscoelastic media with shocks by considering
the multi-material Riemann problem in [22,36,37] with vis-
coelasticity [18],

(ρ, p, α(1)) =
{

(1000, 109, 1) if x/L ∈ [0, 0.7],
(50, 105, 0) otherwise,

(37)

with u = v = 0 and L = 1mm.The initial elastic stresses are
τ

(e)
11 = τ

(e)
22 = τ

(e)
12 = 0. For the model viscoelastic material,

κ = 0.615W/(Km), and for the gas, κ = 0.026W/(Km).
The viscous (μb = μs = 50mPa s) and Kelvin–Voigt
(μb = μs = 50mPa s and G = 1GPa) solutions are shown
at t = 240µs in Figs. 3 and 4 alongwith their respective ana-
lytical solutions. The analytical solutions are generated using
the Riemann solver of [13], in which ρG is assumed constant
to obtain the analytical viscoelastic solution. The numeri-
cal results show good agreement with the analytical solution
since the density and pressure ratios are large. We note that
all the relevant waves are captured. A spurious over-heating
spike is observed in the temperature plot at the material inter-
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(a) x-velocity. (b) Pressure. (c) Temperature.

τ
τ

τ

(d) Elastic stress τ
(e)
11 .

τ
τ

τ

(e) Elastic stress τ
(e)
12 .

τ
τ

τ
(f) Elastic stress τ

(e)
22 .

Fig. 1 Relative error in the interface advection problem after ten periods. Black squares: Newtonian liquid (G = 0); blue diamonds: G = 100MPa

(a) x-velocity. (b) Pressure. (c) Temperature.

Fig. 2 Time histories of normalized L∞ errors for the interface advection problem through ten periods. Black squares: Newtonian medium; blue
diamonds: viscoelastic medium (μb = μs = 5mPas, G = 100MPa, Gr = 50MPa)

face for the Kelvin–Voigt solution. This spike has also been
observed for multi-material problems and can be addressed
with the fix by Fedkiw et al. [46].

5.3 2D shock–gas cylinder interaction problems

We demonstrate the numerical framework’s ability to han-
dle 2D multifluid problems by studying shock–gas cylinder
interaction problems. We compute the problem studied
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ρ

(a) Density. (b) x−velocity.

α

(c) Volume fraction.

(d) Pressure. (e) Temperature.

Fig. 3 Multi-material Riemann problem at t = 240µs with analytical (black dashed line) and numerical (blue square) solutions for the viscous
liquid–air shock wave interaction

experimentally by Haas and Sturtevant [47] and simulated
numerically by Quirk and Karni [48] and others [49–51].
The initial setup is shown in Fig. 5; given the symmetry
of the problem half of the domain is simulated. The ini-
tial cylinder radius is 25mm. The computational domain
extends six initial bubble radii in the x-direction from the
bubble center, with x ∈ [−150mm, 150mm] and y ∈ [0mm,
44.5mm]. The resolution is 256 points per initial cylinder
radius. We define the initial cylinder radius with a diffuse
interface whose volume fraction is α(1) = 1−tanh(�)

2 , where

� = (R − Ro)/Δx , in which R = √
x2 + y2 and Ro =

25mmbeing the initial cylinder radius.With volume fraction
defined and known velocity and pressure initial conditions
throughout the domain, the conservative variablesφ are com-
puted using the mixture relation, φ = α(1)φ1 + (1−α(1))φ2.

We solve the compressible Navier–Stokes equations for
the convergent (helium) and divergent (R22) cases uti-
lizing the same initial conditions as the experiment. The
surrounding medium is air with ρ = 1.204kg/m3 and
κ = 0.026W/(Km) with the remaining material properties
listed in Table 1. Helium and R22 properties reported by
Quirk and Karni [48] were adapted: ρHe = 0.222kg/m3,

κHe = 0.151W/(Km), ρR22 = 3.69kg/m3, and κR22 =
0.61 W/(Km). The shock wave is initialized at x = 5 × R0,
using the Rankine–Hugoniot conditions for a M = 1.22 nor-
mal shock propagating from right to left. No-penetration and
no-slip boundary conditions are set along the top wall.

Select contours of the nonlinear shading function from
Quirk and Karni [48] are shown for the R22 and helium cases
in Figs. 6 and 8, respectively. The times shown correspond
to those reported by Haas and Sturtevant [47] and shown in
Figs. 7 and 9 for the R22 and helium cases, respectively. To
obtain contours comparable to the experiments, the timing
was set such that at time t = 0 the shock is at x = 28mm
from the cylinder center. Haas and Sturtevant [47] reported
an error of 10% in their velocity measurements; thus, the
12% discrepancy in start time to obtain comparable contours
is reasonable.

R22 gas cylinder Upon interacting with the right side of
the R22 cylinder, the incoming shock is partially reflected
and transmitted (frame a). Since the speed of sound in R22
is lower than that of air, the transmitted shock propagates
more slowly than the shock in air (frame b). Additionally,
the reflected shock wave propagates radially and is reflected
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ρ

(a) Density. (b) x−velocity.

α

(c) Volume fraction.

(d) Pressure. (e) Temperature.

Fig. 4 Multi-material Riemann problem at t = 240µs with analytical (black dashed line) and numerical (blue square) solutions for theKelvin–Voigt
viscoelastic material–air shock wave interaction
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Fig. 5 Shock–gas cylinder interaction problem setup

from the top and bottom walls toward the cylinder. The inci-
dent shock intersects along the centerline after interacting
with the cylinder (frame c), and the transmitted shock is par-
tially transmitted into the air and partially reflected into the
cylinder (frame d). The transmitted shock also forms a central
wedge downstream of the R22–air interface comparable with
the experiments.As the incident shock traverses the interface,
the misalignment of density (material interface) and pres-
sure (shock) gradients deposits baroclinic vorticity along the
interface and generates roll-ups. Later, the shock is partially
transmitted into the surrounding air and propagates radially

interacting with the interface; this shock is also reflected
from thewalls (frames d–g). The transmitted shock–interface
interactions further enhance the roll-ups as the cylinder has
convected to the left (frames d–g). The two-pronged feature
at the downstream centerline edge of the interface noticeable
in the numerical simulations of Quirk and Karni [48] is also
observed. However, this feature is not as pronounced here.
Moreover, fewer and smoother roll-ups develop in the later
times (frame g) compared to the heavily corrugated interface
in [48]. We conclude that our AUSM scheme exhibits good
qualitative agreement with experiments.

Helium gas cylinder Since the impedance of the helium
cylinder is lower than that of the surrounding air, the inci-
dent shock is partially transmitted as a shock and partially
reflected as a rarefaction. Due to the higher speed of sound of
the helium with 20% air gas (aHe = 872 m/s), the transmit-
ted shock propagates ahead of the incident shock and reaches
the downstream cylinder interface (frame a). We obtain good
agreement with the flow features observed in [47,48]. At
t = 52µs (frame b), the four-shock, twin regular reflection–
refraction (TRR) configuration described in [52] is observed.
The transmitted shock then reaches the downstreammaterial

123



728 M. Rodriguez et al.

Fig. 6 Time evolution of numerical Schlieren contours for the shock–R22 gas cylinder interaction problem with a M = 1.22 shock moving from
right to left. The red dotted outline denotes the cylinder’s initial location

Fig. 7 Shadow photographs of the interaction of an M = 1.22 shock wave moving from right to left over a cylindrical R22 volume (5cm diameter).
Adapted from [47] with permission

interface at t = 62µs (frame c), is partially reflected, and
develops into two cusps within the cylinder. These two cusps
then converge, coincide, and are reflected outward to form a
small hoop (frames d and e). Over time, the magnitude of the
shock trapped in the cylinder decreases. Outside of the cylin-
der, the incident and partially transmitted shocks are reflected
from the walls and the material interface (frame f). The
baroclinic vorticity deposited along the material interface
gives rise to a reentrant jet as the cylinder convects down-
stream. Unlike the simulations of [48], the roll-ups along

the interface are not observed; the cylinder’s morphology in
our simulations is in better agreement with the experiments.
The reentrant jet develops while the cylinder takes a kidney
shape as the shocks in the surroundings weaken as they leave
the domain (frame g). Eventually, the upstream and down-
stream cylinder interfaces meet, such that the cylinder takes
the form of two vortex lines symmetric upon the centerline,
which convect downstream (frame h). Overall, the agreement
between the proposed approach and the experiments is good.
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Fig. 8 Time evolution of numerical Schlieren contours for the shock–helium gas cylinder interaction problem with a M = 1.22 shock moving
from right to left. The red dotted outline denotes the cylinder’s initial location

Fig. 9 Shadow photographs of the interaction of an M = 1.22 shock wave moving from right to left over a cylindrical helium volume (5cm
diameter). Adapted from [47] with permission

5.4 2D shock–water/Zener solid cylinder interaction
problems

We study shock–droplet/cylinder interaction problems with
density ratios of 1000:1 between the material in the cylinder
and the surrounding air. This problemhas been studied exper-
imentally [53] and numerically simulated with the Euler
equations using FDS schemes in 3D [54] andwith the AUSM
schemes [10–12,55]. The shock–water cylinder interaction
problem of [12] is adapted as shown in Fig. 10. The ini-
tial cylinder radius is 3.2mm. The domain extends three

initial bubble radii in both directions: x, y ∈ [−9.6mm,
9.6mm]. The resolution is 128 points per initial cylinder
radius. The shock is initialized at x = −2mm, using the
Rankine–Hugoniot conditions for a M = 1.47 normal shock
propagating from left to right. The initial cylinder radius and
conservative variables are initialized in the same fashion as
in Sect. 5.3. The Courant number is ν = 0.15, and AUSM+-
up velocity–stress coupling coefficients are kp = ku = 1.
Our simulations did not require the variable mixing (blend-
ing) procedure [10–12,56] where mixing is introduced to
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Fig. 10 Shock–cylinder interaction problem setup adapted fromChang
et al. [10]

prevent the occurrence of non-physical negative pressures
and improve numerical stability.

We consider two differentmaterials for the cylinder: water
and Zener material. We seek to evaluate the effect of the
viscoelasticity on the wave dynamics by considering the
numerical Schlieren and pressure contours and on the stress
response in the time evolution of the maximum von Mises
stress in the domain. Thus, the material properties of the
cylinders are set such that viscoelasticity is the only differ-
ence between the two simulations. The material properties
in Table 1 are used for the surrounding air and cylinder
materials. For both cylinder materials, ρ = 1000kg/m3 and
κ = 0.615W/(Km). By contrast to [12], which used the
stiffened-gas EOS, our simulations are conducted with the
NASG EOS to model the cylinder. Therefore, the speed
of sound of the materials in the cylinders is higher and
we expect to see small differences in numerical Schlieren
and pressure contours when compared to [12]. In the water
case, the compressible Navier–Stokes solutions are solved.
For the Zener solid case, the model in Sect. 3.1 is solved
with one relaxation time, μb = 50mPa s, G = 1MPa,
Gr = 0.5MPa, ς(1) = 1, and θ(1) = 10MHz. Simula-
tion results of the numerical Schlieren function of [10,12],
(1 + (α(1))2)log(|∇ρ| + 1), and pressure are presented in
Figs. 11 and 12 for the shock–water and shock–viscoelastic
solid cylinder cases, respectively.

Water Due to the acoustic impedance mismatch between
the water and air, the shock is partially transmitted and
reflected as a shock upon interaction with the cylinder. Since
water has a higher speed of sound than air, the transmit-
ted shock propagates ahead of the shock in air and interacts
with the downstream interface. The transmitted shock is par-
tially reflected as a rarefaction and focused upstream into the
cylinder (frame a and e). This process continues with phase
inversion upon each reflection (frames b and f). Upon the
third interaction with the downstream interface, two cusps
with negative pressure are observed, similar to those in [12].
However, this feature is further evolved in the present sim-

ulations due to a faster speed of sound in the liquid when
using the NASG EOS. A shock is also transmitted into the
domain, although it is too weak to be visible in the contours.
Numerical oscillations in both the numerical Schlieren and
pressure contours along the interface are likely due to the car-
buncle phenomenon and are also observed in [12]. The shock
diffracted from the partial reflection and the incident shock
continue to propagate and are not affected by the flow inside
the cylinder. The transmitted shock propagates back to the
downstreamcylinder interface and is reflected to form a small
hoop where a compressive wave is focused (frame c and g).
At t = 18.75µs, the small hoop wave advects downstream
and evolves into another tensile bow wave with two com-
pressive wing-like waves (frame d and h). We conclude that
despite the speed of sound differences and theminor effect of
the carbuncle phenomenon [57], the results are qualitatively
comparable to [12].

Zener material We set the shear modulus G = 10MPa such
that it is significant enough to illustrate the effect of viscoelas-
ticity while maintaining a similar speed of sound relative to
the water case. Thus, the pressure wave propagation is simi-
lar while the differences are attributed to the viscoelasticity.
In the Schlieren images, the weak waves are attributed to the
elastic shear waves that are slower than the main wave struc-
tures described in the water case. The two cusps (frames a
and e), tensile wave (frames b and f), small hoop (frames c
and f), and tensile wave with compressive wing-like waves
(frames d and h) described in the water case are observed for
the Zener solid cylinder. The elasticity increases the stress
response at the top and bottom of the cylinder interface as
the diffracted shock weakens. Moreover, the incident and
diffracted shocks are slightly affected with diffracted elastic
shear waves distorting the flow behind the diffracted shock
(frames b–d). At later times, the wave structures inside the
cylinder are significantly distorted due to the shear waves and
weak numerical oscillations, with the latter due to the lim-
ited dissipation (frames f and g). These oscillations could be
addressed by introducing numerical dissipation for the tan-
gential components, ul,i+1/2 andηkk,i+1/2, of the generalized
AUSM+-up scheme in (27) and (28). However, it remains
unclear how to properly introduce dissipation in the tangen-
tial direction without significantly increasing the scheme’s
numerical stiffness.

To observe the effect of viscoelasticity, we consider the
von Mises stress as a quantity of interest

σvon =
√

(σ11)2 − σ11σ22 + (σ22)2 + 3(σ12)2, (38)

which incorporates pressure and all three elastic components
of the Cauchy stress tensor. The time evolution of the von
Mises stress is shown in Fig. 13 for the water and Zener solid
cylinders. The effect of the incident shock interactingwith the

123



A high-order accurate AUSM+-up scheme for compressible, multiphase, viscoelastic flows… 731

Fig. 11 Time evolution of numerical Schlieren (top) and pressure (bottom) contours for the shock–water cylinder interaction problem. The red
dotted outline denotes the cylinder’s initial location

Fig. 12 Time evolution of numerical Schlieren (top) and pressure (bottom) contours for the shock–Zener solid cylinder interaction problem. The
red dotted outline denotes the cylinder’s initial location

cylinders and being partly transmitted and partly reflected is
apparent in the von Mises stress profile at t = 2µs. Starting
at t ≈ 3µs, the profiles diverge as the von Mises stress is
significantly increased in the Zener case. At times t ≈ 7µs

and t ≈ 11µs, the transmitted shock is reflected into the
cylinder and doubles in strength. The subsequent peaks in the
von Mises stress profiles are attributed to the internal shocks
interacting. Moreover, the results demonstrate the capability
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μ

σ

Fig. 13 Time evolution of the von Mises stress for the 2D shock–
cylinder interaction problem. Blue solid line: water; black dashed line:
Zener solid

of the AUSM+-up extension to the five-equation multiphase
model with linear viscoelasticity.

6 Conclusions

In this work, we extend the AUSM scheme to the five-
equation compressible multiphase model with viscoelastic-
ity. Stress relaxation, elasticity, and viscosity are included
to describe viscoelastic media, whose deformations are
assumed to be infinitesimally small such that linear viscoelas-
ticity applies. By taking an objective Lie derivative of the
constitutive relation, evolution equations are introduced for
the elastic contribution of the Cauchy stress tensor, while
strains are transformed into velocity gradients. We general-
ize AUSM schemes to account for the Cauchy stress tensor
appearing in the viscoelastic description. We determine the
appropriate discretization of the non-conservative volume
fraction evolution equation in the five-equation multiphase
model to prevent spurious oscillations at material interfaces.
The resulting framework is built upon a spatial scheme that
is solution adaptive and high order using explicit central dif-
ferences in smooth regions and WENO primitive variable
reconstruction for discontinuities. We conduct 1D numerical
simulations demonstrating the approach’s ability to maintain
equilibrium conditions at interfaces and solve multi-material
Riemann problems for gas–liquid and gas–viscoelastic solid
configurations. 2D problems involving shock–cylinder prob-
lems for different fluids are computed, with density ratios
up to 1000:1. Qualitative agreement is obtained with past
experiments and simulations. Using our proposed approach,
we successfully simulate the interaction of a shock wave
interacting with a viscoelastic medium, and use the simula-
tions to quantitatively investigate the stresses produced in the
object.
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