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Abstract This paper investigates the application of mesh
adaptation techniques in the non-ideal compressible fluid
dynamic (NICFD) regime, a region near the vapor–liquid sat-
uration curve where the flow behavior significantly departs
from the ideal gas model, as indicated by a value of the
fundamental derivative of gasdynamics less than one. A
recent interpolation-free finite-volume adaptive scheme is
exploited to modify the grid connectivity in a conservative
way, and the governing equations for compressible inviscid
flows are solved within the arbitrary Lagrangian–Eulerian
framework by including special fictitious fluxes representing
volume modifications due to mesh adaptation. The absence
of interpolation of the solution to the new grid prevents spu-
rious oscillations that may make the solution of the flow
field in the NICFD regime more difficult and less robust.
Non-ideal gas effects are taken into account by adopting
the polytropic Peng–Robinson thermodynamic model. The
numerical results focus on the problem of a piston moving
in a tube filled with siloxane MD4M, a simple configuration
which can be the core of experimental research activities aim-
ing at investigating the thermodynamic behavior of NICFD
flows. Several numerical tests involving different piston
movements and initial states in 2D and 3D assess the capa-
bility of the proposed adaption technique to correctly capture
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1 Introduction

Computational fluid dynamics (CFD) has undoubtedly
become an important prediction, analysis, and design tool
in many engineering applications. New methods are contin-
uously developed to better exploit computational resources,
to increase solution accuracy, and to extend the rangeof appli-
cability of CFD to diverse fields. For instance, the numerical
simulation of fluid flows within the so-called non-ideal com-
pressible fluid dynamics (NICFD) regime still represents
some challenges for CFD experts, and it is a very active area
of research [1–7].

NICFD deals with flows occurring within the thermo-
dynamic region wherein the fluid thermodynamic behavior
significantly departs from the one predicted by the ideal gas
model, as occurs for dense vapors, supercritical flows, and
compressible two-phase flows. In this region, the attractive
and repulsive molecular forces are not negligible and non-
ideal gas effects, such as non-monotone variations of the
Mach number along isentropic expansions, or non-classical
phenomena, such as rarefaction shocks, may occur [8–10].

Reliable simulations of NICFD flows require accurate
thermodynamic models that are able to include non-ideal
effects, but that are usually characterized by complex math-
ematical descriptions. The inclusion of such thermodynamic
models in CFD software is not a trivial task and leads to a
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considerable increase in the computational time, especially
when the flow states are in the neighborhood of the vapor–
liquid equilibrium (VLE) curve [11].

In recent years, different efforts have been made to extend
standard techniques usually adopted under the perfect, i.e.,
polytropic ideal, gas assumption to the NICFD regime. As
a result, some CFD toolkits presently offer the capability to
perform simulations of non-ideal compressible flows, such as
the open-sourcemulti-physics software suite SU2, which has
been recently equipped with a varied thermodynamic library
for pure fluids [1], and commercial software such as ANSYS
CFD or STAR-CCM+.

In addition, new methods are continuously developed to
tackle specific numerical tasks or applications. For exam-
ple, several contributions have been dedicated to numerical
schemes [12–14], to efficient evaluation of thermodynamic
quantities [15,16], and, more recently, to shock waves [2,
17,18] and to turbulent flows [19,20] in the NICFD regime.
However, some numerical techniques widely used in ideal
gas simulations have not been the subjects of an adequate
investigation and assessment in the NICFD regime yet. In
particular, in our opinion, an example of these shortcomings
concerns mesh adaptation techniques in unsteady simula-
tions.

Mesh adaptation is a valuable strategy for the simulation
of flow fields characterized by different spatial scales and for
unsteady simulations, where the position of the relevant flow
features changes in space and/or time or the computational
domain undergoes large deformations. In these situations, the
grid spacing can be locally reduced or increased to efficiently
optimize solution accuracy, while preventing an excessive
growth of the number of grid nodes. Concerning the criteria
used to modify the grid, different choices can be made, as for
instance integral error indicators [21,22], local a-posteriori
error estimators based on interpolation error analysis [23,24]
or local indicators based on the behavior of the flow solu-
tion [25–27]. Similarly, various adaptation strategies have
been proposed, such as node displacement at fixed connectiv-
ity (r-adaptation) [28], local grid connectivity modification
(r-refinement) [29–31], partial or complete re-meshing, or
modification of the polynomial order used to discretize the
equations on each element (p-refinement) [32,33], which can
also be combined together, as hp-refinement. However, stan-
dard mesh adaptation techniques require the interpolation
of the solution from the old to the adapted grid. As is well
known, froma numerical point of view, solution interpolation
in compressible flow is an undesirable operation, because it
may undermine the accuracy of the solution and the proper-
ties of the scheme, such as stability and positivity-preserving
properties, and it may introduce spurious oscillations. This
latter fact can be particularly dangerous in NICFD simula-
tions, where oscillations may bring the thermodynamic state

of the fluid under the VLE curve, where the adopted single-
phase equation of state (EoS) is invalid.

To overcome the difficulties related to the solution inter-
polation, the inviscid flow solver Flowmesh is currently
under development at the Department of Aerospace Science
and Technology of Politecnico di Milano [34]. The solver
implements a finite-volume scheme for unstructured grids
based on an innovative interpretation of the modification of
grid elements due to mesh adaptation within the arbitrary
Lagrangian–Eulerian (ALE) framework [35–37]. Thanks to
a series of fictitious continuous deformations of the finite
volumes, interpolation of the solution from the initial to the
adapted grid is avoided, thus preserving the properties of the
fixed-connectivity ALE scheme while guaranteeing conser-
vativeness by construction. In our opinion, the absence in the
proposedmethod of an explicit interpolation step has a favor-
able impact on NICFD simulations, where oscillations in the
thermodynamic fluid state may undermine the robustness of
themethod to the point of jeopardizing the computation of the
solution. In addition, the flow solver is linked to theVThermo
library, now included in FluidProp [38], which offers the pos-
sibility of evaluating thermodynamic quantities by means
of different EoSs, such as the van der Waals EoS [39], the
Peng–Robinson EoS [40], the Martin–Hou EoS [41], the
Redlich–Kwong EoS [42], and the Soave–Redlich–Kwong
EoS [43]. For what concerns mesh adaptation strategies,
node displacement, insertion, deletion, and edge swap are
exploited to locally modify the grid spacing, with the sup-
port of the automatic triangular and tetrahedral re-meshers
of the open-source library Mmg [44].

A natural application of a numerical tool with the out-
lined features is, in our opinion, the simulation of a flow
inside a tube closed by movable pistons. Different types
of piston motions can be enforced to generate various flow
fields, which may include shock waves, contact discontinu-
ities, and smooth regions. Indeed, this setup is often the core
of experimental test-rig arrangements thanks to its feasibility
and flexibility [45–48]. However, the numerical simulation
of these flow fields is challenging due to the presence of trav-
eling waves with different spatial scales, and it represents a
valuable test to assess the capabilities of the proposed adap-
tive method.

In essence, this paper describes the assessment of an adap-
tive Euler solver over 2D and 3D unstructured grids for
moving-body problems in the NICFD regime. To authors’
knowledge, this is the first application of unsteady mesh
adaptation strategies to NICFD problems, and the inter-
polation-free approach here exploited represents an added
value with respect to standard adaptation techniques in
this peculiar thermodynamic regime. This work draws on
the investigation of mesh adaptation criteria based on flow
variables in the NICFD regime for bi-dimensional steady
simulations described in [49].
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The paper is organized as follows. Section 2 outlines the
main features of the thermodynamic modeling in the NICFD
regime and the polytropic Peng–Robinson model used in the
simulation of the piston problems. Section 3 sketches the
numerical method to solve the unsteady Euler equations over
adaptive grids within the ALE framework. Then, the adopted
mesh adaptation techniques are described in Sect. 4, along
with a summary of the entire computational process. An
assessment of the proposed unsteady method in 2D and 3D
steady tests is given in Sect. 5. Section 6 describes the results
of different piston problems.More specifically, Sects. 6.1 and
6.2 illustrate an oscillating piston in an infinite-length and in a
closed tube in the NICFD regime, starting from two different
initial conditions. Then, we show the results for an impul-
sively started piston in a closed tube. Section 6.4 displays
the results of two tests about the piston experiencing har-
monicmotion in the non-classical region. Three-dimensional
results are presented in Sect. 6.5. Finally, the conclusions of
the present work are drawn in Sect. 7.

2 Thermodynamic modeling in NICFD regime

In NICFD, a quantitative measure of the deviation of the flow
behavior from the ideal gas model is given by the value of
the fundamental derivative of gasdynamics Γ [50],

Γ = 1 + ρ

c

(
∂c

∂ρ

)
s
, (1)

which expresses the isentropic variation of the sound speed,
being ρ, c, s the density, the sound speed, and the specific
entropy, respectively.

The occurrence of non-ideal gas effects is determined by
values of Γ less than unity. More specifically, the gasdy-
namic behavior of fluids characterized by 0 < Γ < 1 shows
qualitative differences with respect to the ideal one. Themost
peculiar is the non-monotone dependence of the Mach num-
ber on the density along isentropic expansions because of the
increase in the speed of sound [51,52]. For thermodynamic
states at Γ < 0, non-classical gasdynamic phenomena,
such as rarefaction shock waves and composite waves, may
occur [53,54], although no experimental evidence of the exis-
tence of such exotic flow features in single-phase vapor flows
is available. The value of the fundamental derivative varies
over the thermodynamic plane, and some fluids have a finite
region near theVLE curvewhereΓ < 1 [9]. However, recent
advancements have predicted the possible occurrence of even
non-classical phenomena near the critical point also for quite
simple molecules [10,55].

Given the inappropriateness for NICFD simulations of
the perfect, or so-called polytropic ideal gas (PIG) model—
which predicts a constant Γ PIG = (γ + 1)/2 > 1, where

γ = cp/cv > 1 is the constant ratio between the iso-
baric (cp) and isochoric (cv) specific heat capacities—a
non-ideal thermodynamic model is required to describe the
flow behavior. For pure fluids, the complete evaluation of the
thermodynamic state can be obtained from a thermodynamic
potential expressing directly the fundamental relation, as the
Helmholtz free energy, or from two compatible equations of
states [56].

Different modeling approaches have been proposed to
describe the thermodynamic behavior of the flow in CFD
simulations. For instance, the pressure P can be expressed
in terms of temperature T and specific volume v by a cubic
equation, generally composed by two terms, one account-
ing for the attractive intermolecular forces and one for the
repulsive covolume effects. The simplest cubic EoS is the
van der Waals EoS, but several different pressure EoSs have
been proposed [40–43]. To have a complete thermodynamic
description, the pressure EoS has to be complemented by a
compatible caloric EoS [57]. A different approach may rely
on an accurate multi-parameter EoS expressing the funda-
mental relation, see for instance [58,59]. Because of their
high nonlinearity and complexity, a direct implementation in
CFD codes of such EoSs is practically unaffordable, but they
can be used in a preceding step to build accurate lookup tables
which are then recalled during the simulation to evaluate the
thermodynamic state by interpolation [60–62].

2.1 Peng–Robinson equation of state model

In this work, to model the thermodynamic behavior of the
flow, we use the pressure Peng–Robinson EoS [40]:

P(T, v) = RT

v − b
− a αω(Tr)2

v(v + b) + b(v − b)
, (2)

where a and b are two fluid-specific constants given in terms
of the critical pressure Pc and temperature Tc,

a = 0.45724
R2T 2

c

Pc
, b = 0.0778

RTc
Pc

,

and αω is a dimensionless function of reduced temperature
Tr = T/Tc, namely

αω(Tr) = 1 + fω
(
1 − √

Tr
)

where fω is a constant characteristic of the substance, defined
in terms of the acentric factor ω,

fω = 0.37464 + 1.54226ω − 0.26699ω2.

The acentric factor is a parameter that takes into account the
polarity and the lack of spherical shapes of the molecules. In
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this work, its (approximate) value is computed by means of
the Edmister’s equation [63]:

ω = 3

7

(
Tb

Tc − Tb

)
log10

(
Pc

101325

)
, (3)

where Tb is the temperature at the normal boiling point.
Given the pressure EoS, the compatible caloric EoS for the

internal energy per unit of mass e = e(T, v) can be derived
by integrating the reciprocity relation

(
∂e(T, v)

∂v

)
= T

(
∂P(T, v)

∂T

)
v

− P(t, v). (4)

However, the integration with respect to the specific volume
allows the compatible EoS to be determined only up to an
integration constant function of temperature,which is usually
connected to the dependence of the energy on temperature in
the dilute gas limit. In common practice, it is defined as

φ(T ) =
∫ T

Tref
cv∞(τ ) dτ, (5)

where cv∞ is the isochoric specific heat capacity in the ideal
gas limit, that is for v → ∞. For more details, see Ref. [56].

The caloric EoS compatible to (2) is

e(T, v) = eref + φ(T ) − a

b

αω(Tr)

2
√
2

[
αω(Tr) + fω

√
Tr

]
ln

1 + √
2 + v/b

1 − √
2 + v/b

(6)

where eref is an arbitrary reference value for the specific
energy, used in the integration of (4). In this work, we assume
a polytropic behavior in the dilute gas limit (v → ∞), and
therefore φ(T ) is a linear function of the temperature, i.e.,
cv∞ is constant.

A convenient parameter that easily expresses the deviation
of the pressure EoS from the ideal gasmodel is the compress-
ibility factor Z = Pv/(RT ), where R is the gas constant.
For the PIG model, Z is constant and equal to 1. The Peng–
Robinson EoS predicts the same compressibility factor at the
critical point for all substances. Indeed, by evaluating (2) at
Pc = P(Tc, vc), a cubic equation for Zc is obtained, which
has only one real root ZPR

c = 0.3214. As a consequence, this
EoS, as all the cubic ones, is not able to correctly compute
all three critical point coordinates Pc, Tc, and vc [56].

3 Numerical method

The governing equations for unsteady inviscid compressible
flows are provided by the Euler equations. For a control vol-
ume C within the spatial domain Ω they read

d

dt

∫
C
u dx +

∮
∂C
f(u) · n ds = 0, (7)

where x ∈ R
k and t > 0 are as usual the position and the

time, u = [ρ, m, E t]T is the vector of conservative vari-
ables (density, momentum density, and total energy density,
respectively) and n(x, t) denotes the outward unit vector nor-
mal to the boundary ∂C, over which the position vector is
denoted s ∈ R

k−1. The inviscid flux function f(u) is defined
as

f(u) =
[
m, m ⊗ m/ρ + Π(u)Ik,

[
E t + Π(u)

]
m/ρ

]T
,

whereΠ(u) is the pressure function and Ik is the k×k identity
matrix. Suitable initial and boundary conditions have to be
specified to complement (7) [64].

The thermodynamic model completes the Euler equations
through the pressure function Π , which expresses the pres-
sure P as a function of the conservative variables. Indeed,
the pressure and caloric EoSs are manipulated so that

P = P(e(T, v), v) = P(E, ρ)

= P

(
E t − ‖m‖2

2 ρ
, ρ

)
= Π(u),

where E is the internal energy density (per unit of volume).

3.1 Spatial and temporal discretization

The discrete form of the Euler equations is now briefly
described. Since the focus here is on the influence of the ther-
modynamicmodel on themethod, only the relevant results of
the discretization process are illustrated. A detailed descrip-
tionof the scheme is given in [35,36] for the 2Dand in [37,65]
for the 3D cases.

A node-centered edge-based finite-volume scheme is
exploited to spatially discretize the governing equations
over the computational grid. Thus, the domain is split in a
finite number of non-overlapping finite volumes Ci so that⋃

i Ci (t) = Ω(t), where Ci is a volume surrounding the grid
node i . By adopting the backward Euler scheme for time inte-
gration, the discretized governing equations can be written
as

un+1
i − uni

Δt
Vi =

∑
k∈Ki, �=

Φ(ui ,uk, ηηηik)
n+1 + Φ∂(ui , ξξξ i )

n+1,

(8)

whereVi is the volumeof the cellCi ,ui is the average solution
u over Ci , Ki,�= denotes the set of finite volumes different
from Ci that share a portion of their boundary with Ci ; Φ and
Φ∂ are suitable integrated numerical fluxes that represent,
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respectively, the flux across the domain cell interface ∂Cik =
∂Ci ∩ ∂Ck and, if the node i lies on the boundary, across the
boundary interface ∂Ci,∂ = ∂Ci ∩ ∂Ω . The superscripts n
and n + 1 indicate variables evaluated at time tn and tn+1,
respectively, whileΔt is the time step in-between.Moreover,
we have introduced the integrated normal vectors:

ηηηik =
∫

∂Cik
ni dx and ξξξ i =

∫
∂Ci,∂
ni ds (9)

with ni denoting the outward normal with respect to the finite
volume Ci .

A pseudo-time step method is used to solve the nonlinear
(8) and the solution at time tn+1 is obtained through an iter-
ative process. The pseudo-time derivative is discretized by
means of the backward Euler scheme too, and the unsteady
residual, containing the numerical fluxes at the actual pseudo-
time step, is approximated by a Taylor expansion. Moreover,
according to the defect correction approach, the exact Jaco-
bian of the integrated fluxes is approximated by the Jacobian
of the first-order fluxes only, to increase its diagonal dom-
inance [66]. At each pseudo-time step, a symmetric Gauss
Seidel method is used to solve the system of linear equations.
Further details about the time integration are given in [67,68].

3.1.1 Integrated numerical fluxes

For the integrated fluxΦ, a high-resolution scheme based on
the total variationdiminishing (TVD)approach [69] is used in
the presentwork to correctly capture shockwaves and contact
discontinuities within the NICFD regime of interest. More
specifically, near discontinuities the second-order centered
approximation of the interface flux is replaced by the first-
order monotonicity-preserving Roe scheme. The switch is
controlled by the van Leer limiter. By denoting the limiter
Ψ = diag {Ψ1 . . . Ψk+2}, the integrated numerical flux across
the interface ∂Cik reads

Φ = f(ui ) + f(uk)
2

· ηηηik + 1

2
R|�̃| (Ψ − I) L(uk − ui )

where �̃ is the Roematrix, defined here as the Jacobian of the
flux function f(u) projected along the normal direction η̂ηηik
and evaluated at the intermediate Roe state ũ = ũ(ui ,uk).

Under the polytropic ideal gas assumption, only two
variables are required to define the Roe matrix [70]. Con-
versely, if a non-ideal thermodynamic model is assumed, the
Roe matrix is not uniquely determined by the conservation
property [71] and several approaches were proposed to com-
pute the Roe matrix. Most standard approaches rely on an
augmented intermediate state, which includes the pressure
derivatives as additional variables and aims at obtaining a
quasi-Jacobian form of the Roe matrix [12,13,72,73]. How-
ever, the average thermodynamic derivatives do not retain

their proper significance and this may lead to inconsistencies
whenever they are used to compute other thermodynamic
quantities, such as the speed of sound [71,74]. A different
approach is proposed in [71], where the Jacobian form of the
Roe matrix is enforced. This choice results in an intermedi-
ate state that is a one-parameter family of solutions, and the
following additional condition is imposed to determine the
intermediate density:

(
∂P

∂E

)
ρ

(
Ei − Ek

) +
(

∂P

∂ρ

)
E

(
ρi − ρk

) = Pi − Pk .

Unfortunately, when using complex EoSs the computation
of the intermediate density from the previous relation is not
easy, and it requires numerical techniques [75].

Nevertheless, it has been shown that no relevant differ-
ences can be appreciated in the results when using different,
simpler approaches [75,76]. Therefore, the generalized Roe
matrix for non-ideal gas flows is computed here following
the simplified approach proposed by Cinnella [77], which
consists in selecting the intermediate density as ρ̃ = √

ρi ρk ,
and the intermediate velocity and total enthalpy through the
same definitions used for the PIGmodel, which are valid also
for non-ideal gases as proved in [71].

3.1.2 Boundary fluxes

The boundary conditions are imposed in a weak form, i.e.,
by evaluating the flux in a suitable boundary state u∂

i =
u∂ (ui ,b), function of the solution on the boundary node ui
and of the boundary data b.

In the present work, three types of boundary conditions
are imposed: the slip wall, the normal inlet/outlet, and the
non-reflecting free surface. The former one is imposed by
setting the component of the fluid velocity normal to the
boundary equal to the boundary velocity along the normal
direction. The second condition models an infinite-length
open-end tube, that does not influence the flow inside the
domain but preserves only the flow direction parallel to the
tube axis, without imposing the sense (inflow or outflow).
Hence, this boundary condition simply nullifies the compo-
nent of the fluid velocity tangential to the open-boundary
(or, if need be, sets it equal to the tangential velocity of the
boundary). For the latter case, the boundary state is computed
via characteristic reconstruction, and the correct number of
the physical variables that can be imposed is automatically
computed by the eigenvalues analysis [1,78].

Because an implicit pseudo-time method is adopted in
this work and a Taylor expansion is used to approximate the
residual terms containing the numerical fluxes, the evaluation
of the Jacobianmatrix at the boundary state and the derivative
∂u∂

i
∂ui

are also required [67].

123



78 B. Re, A. Guardone

3.2 ALE framework for dynamic grids

Unsteady problems often require updating the computational
domain to follow the boundary motion or deformation. In
such situations, it is common practice to redistribute the dis-
placement occurring at the boundary among the internal grid
nodes depending on their shape and volume without mod-
ifying the grid connectivity; see for instance [79–81]. The
same technique can be used to move grid nodes to better
describe the local flow features, namely for r-adaptation. As
a consequence, on a dynamic grid, the formulation of the
flow equations has to be modified to account for the rela-
tive motion of the grid with respect to the fluid. The arbitrary
Lagrangian–Eulerian (ALE) formulation is awidely used and
effective strategy to accomplish this task [82,83]. Within the
ALE framework, the governing equations are enforced over
control volumes that can move and deform independently of
the fluid velocity.

The ALE formulation of the Euler equations reads

d

dt

∫
C(t)
u dx +

∮
∂C(t)
[f(u) − uv] · n ds = 0, (10)

where v is the velocity of the control volume. The previ-
ous equation can be discretized through the same strategy
outlined in Sect. 3.1, provided that the contribution of the
grid velocity is taken into account in the integrated fluxes.
In this regard, two additional quantities labeled as interface
velocities are defined as

νik =
∫

∂Cik
v · ni dx and νi =

∫
∂Ci,∂
v · ni ds, (11)

and the ALE formulation of (8) can be written as

(
V n+1
i un+1

i − V n
i u

n
i

) /
Δt

=
∑

k∈Ki, �=

φ(ui ,uk, ηηηik, νik)
n+1 + φ∂(ui , ξξξ i , νi )

n+1.

(12)

The additional constraint known as the geometric conser-
vation law (GCL) is beneficial to avoid spurious oscillations
and instabilities [84–86]. The GCL states that the movement
of the computational grid should not affect a uniform solution
and it amounts to a suitable computation of the geometrical
quantities involved in the grid movement [87]. In this work,
the interface velocities defined in (11) are computed in a
GCL-compliant fashion by means of the following relations:

ΔV n+1
ik = Δt νn+1

ik and ΔV n+1
i,∂ = Δt νn+1

i , (13)

where ΔV n+1
ik and ΔV n+1

i,∂ are the volumes swept during the
time step Δt by the interfaces ∂Cik and ∂Ci,∂ , respectively.

Assuming that the positions of the grid nodes at the beginning
and at the end of the time step are given, the swept volumes
can be easily computed by exploiting geometrical relations,
as shown in [35] for triangular grids and in [37] for tetrahedral
ones.

3.2.1 Extension to variable connectivity grids

The ALE scheme presented in the previous subsection has
been extended also to variable connectivity grids. Previous
works [35–37] detail how to compute the swept volumes
ΔV n+1

ik and ΔV n+1
i,∂ when the local connectivity varies due

to mesh adaptation. Connectivity changes are described as
fictitious continuous deformations of the involved finite vol-
umes through a series of collapse and expansion operations.
More precisely, the following three steps can be defined with
the aid of the fictitious dimensionless time τ (see also Fig. 1
for an example about edge split in 2D).

1. Collapse, 0 < τ < 0.5: all elements involved in the local
adaptation collapse into an arbitrary point.

2. Connectivity change, τ = 0.5: when all involved ele-
ments reach null volumes, nodes may be inserted or
deleted.

3. Expansion, 0.5 < τ < 1: all elements still active (i.e.,
not deleted at τ = 0.5) expand to the final configuration.

i

k

v1

v2

xm1

xm2

τ = 0.0

i

k

v1

v2

τ = 0.25

i

k

v1

v2

τ = 0.5

i

k

v1

v2

j

τ = 0.5
i

k

v1

v2

j

τ = 0.75
i

k

v1

v2

j

τ = 1

Fig. 1 Three-step procedure applied to the split of edge eik . The
non-dimensional time 0 ≤ τ ≤ 1 is used to describe the different
fictitious steps. The dashed gray lines show the grid connectivity in
the original/final configuration, while the portions of the finite volumes
associated with i , k, and j are shown with light green , light blue ,
and orange , respectively. The label xmi indicates the barycenter of the
elementmi . In the first row the collapse phase 0 < τ < 0.5 is depicted:
the elements that share the edge eik at τ = 0 are collapsed over its
mid-point. When they reach a null area, the connectivity is changed
(τ = 0.5): the new point j is inserted, the edge eik is split into two
edges (i– j and k– j), and two new edges are created to connect j to v1
and v2. The second row displays the expansion phase 0.5 < τ < 1:
the nodes i , k, v1, v2 return to their original positions to reach the final
configuration (at ζ = 1)
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The collapse and expansion phases are merely continuous
deformations from the initial position to the pivotal point, and
from it to the final position. Since the positions of these points
are known, the volume swept by the involved interfaces can
be easily computed from geometrical considerations. More-
over, the fictitious fluxes generated by these deformations can
be expressed within the ALE framework as shown for stan-
dard fixed-connectivity deformation and included in (10).
Conversely, the connectivity change at τ = 0.5 occurs while
the elements have null volume, so no volume is swept by any
interface and no flux is exchanged. In this way, we are able
to compute the GCL-compliant interface velocities through
(13) also when local grid topology is modified and to include
the volume changes due to mesh adaptation into the standard
ALE scheme, without undermining the fixed-connectivity
properties and enforcing conservativeness.

The three steps and the core of the procedure are the same
for node insertion, node deletion, or edge swap, both in 2D
and 3D; only the involved elements depend on each specific
grid modification. The three-step procedure is carried out
immediately after each connectivity modification and it is
instantaneous, i.e., it starts and ends during the same time
step Δt at which the grid is adapted. Finally, we remark on
the local character of the three-step procedure. The interfaces
that are not modified by the connectivity change do not take
part in three-step procedure, as their contribution would be
null since they would sweep the same volume but with dif-
ferent sign during the collapse and the expansion phase [37].

4 Mesh adaptation in unsteady NICFD simulations

The accuracy of the numerical solution of the flow equa-
tions is strongly influenced by the grid spacing. For simple
geometries or in steady simulations, it is possible to generate
a priori a mesh that provides sufficiently small numeri-
cal errors with respect to the modeling errors. This task
becomes considerably more challenging or impossible for
complex flow fields characterized by different spatial scales
and in unsteady simulations, where the grid spacing has
to be related to the behavior of the solution in an efficient
way. Solution-dependent adaptive grid techniques represent
a valuable tool to deal with this requirement. More specif-
ically, in unsteady simulations, mesh adaptation techniques
may be profitably used to tackle two different tasks: to han-
dle large deformations of the boundaries, and to capture the
relevant flow features that originate and move through the
domain [80,88,89], as outlined in the following subsections.

4.1 Adaptation on flow features

The solution accuracy is here optimized following the equi-
distribution principle, whereby the grid spacing is modified

to equi-distribute the error over the mesh [90,91]. The first
step of this strategy consists in the definition of an error esti-
mator, based upon the flow solution. It appears evident that
an effective error indicator will be extremely advantageous
to the entire adaptation process. In the NICFD regime, the
error estimators based on the Mach number seem to be more
efficient than the density-based ones because of the non-
monotone dependence of the Mach number on density along
isentropic expansions for supersonic flows at Γ < 1 [49].

A metric map is used to prescribe the size of grid ele-
ments during the mesh modification process. If anisotropic
mesh adaptation is performed, the shape and the orientation
of the elements are also prescribed [24,90,92]. Two differ-
ent procedures are followed to build isotropic or anisotropic
metrics. In the former case, a target grid spacing is computed
at each grid node by reducing (or augmenting) the actual
average size of the edges connected to the node if the error
is greater (or less) than a refinement (coarsening) threshold,
prescribed in terms of mean and standard deviation of the
estimated error over the domain. Conversely, the anisotropic
map is built on the basis of the eigenstructure of the Hessian
matrix of a certain solution variable [93], as M = RΛ̃L ,
where R and L are the right and left eigenvectors and

Λ̃ = diag

{
min

(
max

(
c|λp|

ε
,

1

�2max

)
,

1

�2min

)}
,

with λp the pth eigenvalue, �max/�min the maximum/ min-

imum edge length, c = k2

2(k+1)2
a constant, and ε a

user-defined threshold for the maximum acceptable error,
which in all presented computations ranges from 10−7 to
10−6. More details about the construction of the metric maps
can be found in [65,94,95].

The metricM(x) is a field of symmetric positive matrices
R
k×k that defines a Riemannian structure overΩ . The length

of a vector w in terms of this map is given by

‖w‖M=
√
wTMw . (14)

and the goal of mesh adaptation is to obtain a unit mesh with
respect to this metric, i.e., a mesh such that ‖w‖M= 1 for
all edges.

Given the initial grid and the metric M, the open-source
library Mmg [44,96] performs automatically a series of dif-
ferent local modifications to make the initial grid as similar
as possible to a unit mesh [31]. At first, the length of all
grid edges is computed according to (14), then the grid is
locally modified both on the interior and on the boundary.
Where the edges are too long, the grid spacing is reduced
by inserting a new node via element or edge split, or Delau-
nay triangulation. On the contrary, the nodes connected to
edges having ‖w‖M� 1 are removed via edge collapse.
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Edge swapping and barycentric regularization are also used.
In addition, the gradation control technique [97] is exploited
to limit the variation in size among adjacent grid elements.
All these operations are performed only if they lead to an
improvement of the quality of the involved elements, which
is defined as

– for tetrahedra: Qm = α Vm/
( ∑6

i=1 �2i

)3/2,
– for triangles: Qm = �max

∑3
i=1 �i

/
(2 Vm),

where Vm is the volume (or area in 2D) of the element m, �i
is the edge length, �max is the longest edge in the triangle,
and α is a constant introduced to give Qm = 1 for a regular
tetrahedron. It is not possible to specify a maximum or mini-
mum number of grid nodes, but the effect of mesh adaptation
can be controlled through the parameter ε in the anisotropic
case, and through the refinement/coarsening thresholds in the
isotropic case.

4.2 Large boundary displacements

Mesh adaptation here is exploited also to cope with large
boundary movements. At each time step, after the boundary
nodes are moved to the new positions, the internal nodes are
redistributed keeping the grid connectivity fixed. According
to the elastic analogy [79], the largest grid elements account
for the major part of the deformation while the smallest ones
move almost rigidly. However, when the displacements are
large, this strategy may lead to badly shaped or null-volume
elements. In such situations, mesh adaptation is exploited to
restore grid quality.

As detailed in [94], the displacement to be imposed at
the boundary nodes during the time step (labeled as Δxn+1

B )
is parameterized by a linear function. If the elastic analogy
fails in producing a valid mesh, the displacement is split
into smaller portions and the largest portion of Δxn+1

B that
leads to a valid mesh is imposed. Then, mesh optimization
is carried out aiming only at increasing the quality Qm of all
elements, not at modifying the grid spacing. In this specific
application of mesh adaptation, the edge swapping technique
is particularly effective to restore the element quality, while
keeping the number of grid nodes constant [29].

4.3 Summary of the computational procedure

To summarize, themain steps of the computational procedure
adopted for unsteady adaptive simulations are outlined, with
reference to Fig. 2. The generic time step tn ≤ t ≤ tn+1

begins with the grid Kn and the corresponding solution
u(tn,Kn). Then, the following operations are performed.

Mesh deformation The movement Δxn+1
B is imposed at the

boundary and the internal nodes are consequently relocated.

Solution

Mesh update

Error estimate

Prediction

Mesh deformation

mmg

mmg

Fails Y

Kn+1, u(tn+1,Kn+)

Kn+
s ,Ms(un+)

ΔKn+
s

Kn+,un+ = u(tn+1,Kn+)

Kn+, u(tn,Kn)

Kn+1,u(tn+1,Kn+1)

Kn, u(tn,Kn)

time
loop:

n = n + 1

Δxn+1
B

Kn+
s+1, u

n+

loop s mesh adaptation

Fig. 2 Whole adaptive computational procedure for unsteady prob-
lems. Mesh deformation is performed: If elastic analogy fails, Mmg
is used to modify grid connectivity. The grid Kn+ complies with the
boundary displacement Δxn+1

B , and over it the solution un+ is com-
puted. The metric field M(un+) is passed as input to Mmg which
communicates to the flow solver all performed modifications ΔKn+,
so that it can compute the swept volumes ΔV . The mesh adapta-
tion procedure, highlighted by the thick dashed line, can be repeated
(loop s). Finally, the solution at tn+1 over the adapted grid Kn+1 is
computed. The colored and bold symbols denote the variables changed
at each step

If the elastic analogy fails, a mesh optimization stage includ-
ing edge swapping is performed (see Sect. 4.2). The resulting
grid is labeledKn+ to highlight that it is intermediate, namely
it complies with the new geometry but the solution is the pre-
vious one.

Prediction The solution un+ = u(tn+1,Kn+) is computed
over the new grid. This step prevents a delay between the
solution-based mesh adaptation and the actual geometry.

Error estimate The metric map M is generated on the basis
of the solution un+ as summarized in Sect. 4.1.

Mesh adaptation The grid Kn+ and the metric map are
used as inputs to the library Mmg, which locally adapts the
grid through node insertions, deletions, relocations, and edge
swapping.

Mesh update The flow solver receives from Mmg all per-
formed local modifications ΔKn+, that are needed to update
the finite-volume discretization and to compute the swept
volumes ΔVik , ΔVi,∂ by means of the three-step procedure
(see Sect. 3.2.1).

Solution The final solution un+1 on the grid Kn+1 is com-
puted, using the solution un+ as initial guess.
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Steps three to five can be repeated to perform multiple adap-
tation cycles, as indicated by the loop s in Fig. 2.

The use of the re-mesher library Mmg [44,96] alleviates
the inherent difficulties of mesh adaptation over unstructured
three-dimensional grids, which, for instance, requires being
able to deal with a variable number of elements involved in
each local grid modification or with the multiple options that
are available for an edge swapping. The choice to exploit an
external library to cope with these tasks allows to implement
mesh adaptation techniques into the flow solver efficiently,
although some modifications to the Mmg library have been
required to exploit the three-step procedure of Sect. 3.2.1.

5 Assessment of the unsteady adaptive method for
in NICFD regime

This section presents the first validation of the proposed
unsteady method for 2D and 3D problems in the NICFD
regime. For the validation of the steady version, the reader is
referred to [49]. The geometries of the test cases consist in
a simple symmetric wedge in 2D and in a portion of a cone
in 3D, exposed to a free stream. As it is known, a steady
oblique (conical, in 3D) shock wave is generated to deflect
the flow such that it is alignedwith the downstreamwall. This
steady problem can be investigated by means of an unsteady
approach if we consider the far-field quiet and the wedge
(cone, in 3D) moving at the free stream velocity, namely, if
we switch from the body to the laboratory reference frame.
Obviously, the thermodynamic variables that are indepen-
dent from the reference frame, such as the pressure, are the
same in the steady and unsteady simulation.

5.1 Unsteady simulations of an oblique shock

Weselected a specific configuration that highlights the poten-
tial non-ideal effects in oblique shockwaves.As shown in [2],
when 0 < Γ < 1, the non-monotone variation of the speed of
sound along isentropic expansions can result in an increase in
the flowMach number across oblique shock waves, contrary
to what is predicted by the perfect gasmodel. Here, we repro-
duce one of the tests described in [2] to compare our results
with the analytical and numerical solution presented therein.
The working fluid is the siloxane MDM,1 and the test condi-
tions are detailed in Table 1. As in the reference, we adopt the
polytropic van der Waals model. Further information about
the implementation of this thermodynamic model in the flow
solver can be found in [49].

The domain extends from x = 0 to x = 1.7 and from
y = − 0.6 to y = 0.6 (assuming a unitary dimensional ref-

1 MDM is the acronym for the octamethyltrisiloxane, whose chemical
formula is C8H24O2Si3.

Table 1 Test conditions for the oblique shock test, and thermodynamic
properties of the working fluid MDM

Tc (K) 564.1 Pc (bar) 14.15
vc (m3/kg) 0.00525 cv∞/R 57.69

Upstream Downstream

P/Pc 0.704 1.160

v/vc 3.000 1.236

T/Tc 1.037 1.057

M 2.000 2.873

Γ 0.667 0.279

The deviation angle due by the wedge is θ = 20◦ and the oblique shock
angle is β = 37.60◦ [2]

erence length of 1 m). The leading edge of the wedge is at
x = 1.2, y = 0. Although the domain is symmetrical with
respect to the line y = 0, it is discretized by an unstructured
grid, so the symmetry is lost from the numerical point of view.
Inflow boundary conditions for density, velocity, and pres-
sure are enforced on the right end-wall, while the far-field and
the outflow are modeled by non-reflecting boundary condi-
tions that, where possible, impose only pressure and density.
Starting from an initial coarse grid, initialized everywhere
with the upstream conditions, three adaptation strategies are
performed by imposing three different minimal edge sizes:
hmin = {0.0008, 0.0004, 0.0002}. In all cases, an isotropic
adaptation criterion is built by blending together the Hes-
sian of the pressure and the gradient of the Mach number.
Five adaptation cycles (Prediction, Mesh adaptation, Solu-
tion) are performed, and all strategies successfully delivered a
refinement of the shock region, up to theminimumprescribed
edge size. The results obtained in the steady simulations with
hmin = 0.0002 are shown in Fig. 3. Remarkably, the post-
shock Mach number is larger than the pre-shock one, thus
pointing out the non-ideal nature of the shock. A comparison
against the analytical solution is given in Fig. 4: An excellent
agreement with the analytical solution is achieved.

The steady solutions are then used to initialize the
unsteady simulations. The free stream velocity is subtracted
from the solution and a displacement ofΔx = − 1 at M = 2
is imposed to the wedge. With respect to the three different
minimal edge sizes, the whole simulation time is divided in
NT = {1250, 2500, 5000} steps in order to have a Courant
numberCo = 1.The toppicture inFig. 4 shows that the initial
pressure profile (obtained in the steady simulation) is con-
served well during the unsteady computations. As expected,
the size hmin = 0.0002 allows to achieve the best results,
especially in terms of the post-shock state. The pressure is
slightly over-predicted if one uses a lower resolution grid.
The symmetry of the problem is recovered in the numerical
results, since no differences between the profiles extracted
from the lower and the upper part can be appreciated. Further
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Fig. 3 Steady simulation of the non-ideal oblique shock: pressure, Mach contour plots, and grid after five adaptation cycles. Pressure is scaled
with respect to the critical value
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Fig. 4 Steady andunsteady simulations of the non-ideal oblique shock.
Top: different minimal edge sizes at Co = 1. Bottom: hmin = 0.0002
at different Courant numbers. The pressure, scaled with respect to
the critical value, is extracted at two locations ȳ = ±0.2 and com-
pared to the analytical one [2], at three different times: when the
wedge displacement is Δx = 0 (the results of the steady simulation),
Δx = − 0.5, Δx = − 1. Only the last portion of the pressure is plotted
(for x > xR − 0.5, with xR the position of the right boundary)

simulations are performed with the highest grid resolution at
Co = {2, 4}, to assess the validity of the adaptive unsteady
scheme also at higher Courant numbers. The results, plot-
ted in Figs. 4 (bottom) and 5, agree well with the analytical
ones, and the shock resolution is deteriorated only to a small
degree by the high Courant number.

5.2 Unsteady simulations of a conical shock

A test similar to the one described in the previous subsection
is nowpresented to assess the validity of the proposedmethod

in 3D. The geometry of the test can be viewed as the solid
of revolution obtained by rotating half of the domain of the
wedge test through 90 degrees about the x-axis. The starting
wedge geometry used for the rotation is smaller than the
one used in Sect. 5.1, and it extends from x = 0 to x =
0.7 and from y = 0 to y = 0.3. In the resulting three-
dimensional domain, the far-field is represented by a quarter
of a cylindrical surface, and the solid body by a quarter of
a conical one. The lateral planes at y = 0 and at z = 0
are modeled as solid walls to respect the symmetry. For the
inflow and the outflow, the same non-reflection conditions
used in the oblique shock test are enforced.

An adaptive steady simulation with the free stream con-
ditions given in Table 3 is first performed. Even though the
upstream conditions are the same, the flow state downstream
of the conical shock differs from the one downstream of the
oblique shock, as is well known. No analytical solution of
the conical shock waves with van derWaals EoS is available.

The steady results are then used to generate the initial
solution for the unsteady computation, which starts from a
grid made of 150,633 nodes and 882,581 elements, with a
minimum edge size of hmin = 0.0002. A displacement of
Δx = − 0.2 is imposed to the cone and a Courant number
of Co = 2 is enforced. The results are shown in Fig. 6. We
can observe that the flow field is well conserved during the
displacement thanks to the fine grid spacing obtained near
the shock as a result of mesh adaptation. Figure 7 confirms
the good agreement between the unsteady and the steady
pressure fields. Moreover, three planes are sliced at differ-
ent azimuth angles, and the resulting pressure contours are
plotted in the x–R plane, where R = √

y2 + z2. An almost
perfect overlap between contour plots over the three planes
is achieved, which confirms the capability of the proposed
approach to correctly recover the cylindrical symmetry of the
flowfield.Mesh adaptation plays a crucial role to achieve this
result, because only a proper refinement of the grid regions
where the flow variations are significant can overcome the
asymmetry of the unstructured grid.
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Fig. 5 Unsteady simulation of the non-ideal oblique shock, with hmin = 0.0002 and Co = 2. Pressure contour plot and grid are shown at three
different times, namely when the wedge displacement is Δx = − 0.1, Δx = − 0.5, Δx = − 1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

X

Y

Z

0.75 0.81 0.87 0.94 1.00

P/PC:

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

Fig. 6 Steady and unsteady simulations of the non-ideal conical shock,
with hmin = 0.0002 andCo = 2. Pressure contour plot and the grid over
the y = 0 plane are shown at the beginning of the unsteady simulation,

i.e., the results of the steady one (left), when the cone displacement is
Δx = − 0.1 (in the middle), and when Δx = − 0.2 (right)

6 Numerical investigation of unsteady piston
problems

The adaptive computational procedure described in the previ-
ous sections is here further assessed through the simulations
of different piston problems, in 2D and 3D. The piston prob-
lem is a standard gasdynamics test which presents diverse
numerical challenges. It models the motion of a piston inside
a tubewith no gap between the tube and the piston itself. If the
piston moves toward the right, the fluid lying in the right part

of the tube is compressed, the compressionwavemoves away
from the piston and travels rightwards. Correspondingly, in
the left part of the tube an expansion wave is generated and
travels toward the left. While these nonlinear waves propa-
gate through the tube, their waveform is distorted. If Γ > 0,
the compressive waves steepen, possibly forming a classical
compression shock, and the rarefaction waves spread out.
On the contrary, if Γ < 0, the compressive part of the wave
spreads over a longer space as it moves, while the expansion
part steepens and it may possibly form a rarefaction shock,
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Fig. 7 Steady and unsteady simulations of the non-ideal conical shock.
Contour lines of the pressure over the planes sliced at 30◦, 45◦, and 60◦
extracted at three different times, and plotted in the x–R plane, where
R = √

y2 + z2 is the radial distance. The black lines represent the
edges of the plane. Five contour lines are plotted, which are P/Pc =
{0.75, 0.8, 0.85, 0.9, 0.95}
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Fig. 8 Sketch of the reference piston problem. The piston (P) moves
inside a tube, and no gap is modeled between the piston and the tube
walls. The lettersL andR indicate respectively the right and the left side
of the tube, which, according to the test case, can be open-ends or solid
walls. The x-axis is placed along the lower side of the tube and x = 0
is in the middle of the piston. The length and the height of the piston
are LPx = 0.1 m and LPy = 0.05 m, respectively. The initial position
of the left and right piston faces are x−

0 = − 0.05 m and x+
0 = 0.05 m

the most representative flow structure of the non-classical
regime. If the tube is closed, the waves are reflected at the
tube ends and interact with the incoming waves, originat-
ing a complex flow pattern which contains compression and
expansion waves of different intensities, shocks, and con-
tact discontinuities. In addition, the intensity and the type
of the perturbation waves can be roughly controlled by the
piston motion, thus different tests can be performed. A flow
field encompassing simultaneously all these flow features
represent a valuable, challenging test to assess the proposed
method, since the finite-volume solver is edge-based and the
numerical simulations are performedover unstructured grids,
so they are inherently multidimensional. Rather, this feature
provides an additional opportunity to assess the validity of
the proposed method.

The geometry of the reference piston problem is shown
in Fig. 8. The tube has different lengths depending on per-
formed tests. For 3Dsimulations, a square section is assumed,
i.e., LPz = LPy . The tube is filled with the linear siloxane
MD4M,2 which is a high-molecular complexity fluid that
presents a quite extended Γ < 1 region and a small one

2 MD4M is the acronym for the tetradecamethylhexasiloxane, whose
chemical formula is C14H42O5Si6.

Table 2 Thermodynamic properties for MD4M

Mm (kg/mol) 0.45899 Tb (K) 533.9

Tc (K) 653.20 Pc (bar) 8.7747

vc (m3/kmol) 1.7309 Zc 0.2797

cp∞/R 115.99 ω 0.7981

The molecular mass Mm, the boiling temperature Tb, the critical
temperature and pressure are those included in the NIST software REF-
PROP [98]. The critical volume is given by the 12-parameter EOS [99]
implemented in the same software. The isobaric specific heat capacity in
the ideal gas limit cp∞ is computed through the polynomial expression
given in [99]. The acentric factor is approximated by (3)

Table 3 Initial thermodynamic state for the three tests

Test D Test NI Test NC

Regime Dilute Non-ideal Non-classical

T0/Tc 1.015 1.015 0.9955

P0/Pc 0.2 0.9 0.9

v0/vc 16.780 2.374 1.918

Z0 0.9257 0.5886 0.4861

Γ0 0.9306 0.4516 −0.0064

c0 (m/s) 101.9 61.9 45.2

at Γ < 0. Table 2 summarized the relevant thermo-physical
properties ofMD4M. As expected, the compressibility factor
at the critical point is different from the one predicted by the
Peng–Robinson EoS. Indeed, the specific volume computed
through the adopted cubic thermodynamic model slightly
deviates from the value reported in Table 2.

Initially, the fluid inside the tube is at rest (labeled with
subscript 0). Three different initial states are used to inves-
tigate peculiar gasdynamic behavior of the fluid: The initial
conditions for the dilute (TestD) and the NICFD (TestNI)
regimes are selected along an isotherm above the critical
one, while the initial conditions for the non-classical case
(Test NC) are selected along an isotherm below the critical
one. The initial states in all tests are detailed in Table 3, and
they are displayed on the P − v plane, along with the VLE
curve, in Fig. 9.

In this work, two different types of motion are simu-
lated: a harmonic motion which transfers to the fluid in
contact with the piston a sinusoidal perturbation wave, and
an impulsive start, which generates instantaneously a shock
wave and a rarefaction fan which travel outwards. In the har-
monic motion, the position of the piston is set as x(t) =
x0(t) + A cos(2π f t), where A is the amplitude and f the
frequency ( f = 30 Hz for all tests). In the other case,
the piston impulsively acquires a constant positive veloc-
ity VP = |Aπ f |, that is half of the maximum velocity
experienced by the piston during the harmonic motion. The
pistonmotion represents an additional challenge for the CFD
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Fig. 9 Description of the tests. The thick crosses display the ini-
tial states of the fluid at rest in the tube. For Test D and Test NI,
selected along the same isotherm at T0 = 1.015Tc (dashed line ), the
flow field resulting after one period of oscillation in the infinite-length
tube is plotted and colored according to the value of Γ . In addition, the

VLE curve (black line ) and four curves at constant Γ are displayed.
The coordinates are scaled with respect to the critical values reported
in Table 2. Note that the critical point coordinates computed by the
Peng–Robinson model are not unity, but vPRc /vc = 1.149

software, as it requires dealingwith large deformations, espe-
cially in the simulationof the impulsive start,where the piston
displacement amounts to more than the 40% of the length of
the domain.

The harmonic motion is first simulated in a tube with
infinite-length to assess the capability of reproducing both
the expansion and compressive waves generated by the
motion and to observe their distortion. Then, the simulation is
repeated considering a closed tube, to assess also the capabil-
ity to correctly model the interactions with solid boundaries
and other waves.

In the following subsections, the exposition anddiscussion
of the results starts from the 2D tests in the NICFD region,
with the harmonic motions of the piston in an infinite-length
tube and in a finite-length tube, followed by the impulsive
start in a closed tube. Then, results concerning the non-
classical region are shown for the harmonic motion of the
piston in an infinite-length tube, with two different ampli-
tudes. Finally, some 3D results are displayed to show the
capability of tackling 3D problems. In all figures of this sec-
tion, a reference length of 1 m is used to make all distances
dimensionless.

6.1 2D oscillating piston in an infinite-length tube:
dilute and non-ideal conditions

The first test case consists in the harmonic motion of the
piston in an infinite-length 2D tube, with an amplitude
A = − 0.25 m. In these simulations, the focus is on the
compressive and expansive waves generated by the harmonic
motion, so we have limited the influence of the bound-
ary on the flow field by modeling the left and right ends

as normal inlets/outlets, and by imposing the tube lengths
LL = LR = 10 m. The initial grid is composed of 6998
triangles and 4502 nodes and three oscillation periods are
simulated.

The piston starts moving toward the right. Its velocity pro-
gressively increases during the first quarter of the oscillation
period, 0 < t < 0.25T , until VP,max = − 2π f A. During
this interval, a compressive wave is generated on the right
side of the piston and moves toward the right end of the
tube. In the next quarter of the period 0.25T < t < 0.5T ,
the piston still moves toward the right but its speed reduces
(VP = 0 at t = 0.5T ). This gives rise to an expansion on
the right section and a compression on the left part, which
continue also in the next quarter of period. At t = 0.75T the
velocity of the piston is minimum, VP,min = 2π f A (same
magnitude of VP,max but negative), then, it increases leading
to an expansion on the left side and a compression on the
right side, similarly to the first quarter. The flow fields at dif-
ferent times during the first oscillation period are shown in
Fig. 10 for Test D and in Fig. 11 for Test NI. The solu-
tions at t = T are shown also in the P–v plane in Fig. 9,
from which the significant variation of Γ in TestNI can be
appreciated.

During the next periods, the flow field evolves in a similar
way. Nevertheless, unlike the ones occurring in the right part
at 0 < t < 0.25T , the following compressions are generated
by the largest variation of the piston velocity, i.e., from the
minimum to the maximum value, or vice versa. Therefore,
these waves may coalesce together generating a shock far
from the piston side.

Simulations with NT = {100, 200, 300} steps per period
are carried out to estimate the minimum number that does
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Fig. 10 Oscillating piston in an infinite-length tube, Test D: central
portion of the domain, near the piston. Top: pressure contour plots dur-
ing the first period, initial grid, and grid at t = 0.2T . The motion of the
piston is clearly visible (initial position x−

0 = − 0.3 and x+
0 = − 0.2).

Bottom: histogram of the number of grid nodes along x-axis, bin width
Δx = 0.05. A comparison between the grid histogram and the pressure

plot highlights the effect of mesh adaptation. For instance, by looking at
the right part, at t = 0.8T the almost equi-spatially distributed contour
lines are reflected by the almost uniform grid density. In the left part of
the domain, the mesh adaptation leads to an increase in the grid point
density as the compressive waves coalesce

not impair the solution accuracy. Figures 12 and 13 show the
pressure profile obtained with at t = 1.4T and t = 1.8T for
Test D and Test NI, respectively. For both cases, we can
observe that the largest time step leads to a loss of accuracy
in proximity of the pressure maxima and minima, while no
significant deviations can be noted for the other two time
steps. Therefore, NT = 200 steps per period are used in all
following simulations. Although the resulting plots appear as
single lines, Figs. 12 and 13 are in fact scatters of all points
of the unstructured grids. The one-dimensional behavior of
the flow is therefore perfectly recovered in both tests, and
this gives the first, partial, assessment of the validity of the
proposed scheme. Small symmetry disturbances that can be
detected in the contour plots of Figs. 10 and 11 are not present
in the pressure profiles, and they do not affect the symmetry
of the results. In our opinion, they could be ineffective con-
sequences of the unstructured grids, which do not undermine
the validity of the proposed approach.

In these tests, an anisotropic metric is built on the basis of
the Hessian of the Mach number and two adaptation cycles
are performed every time step. More precisely, the estima-
tor is obtained dividing the Hessian by the gradient to reduce

the predominance of the strongest phenomena [49]. The ben-
eficial effects of mesh adaptation are clearly displayed by
Figs. 10 and 11, which, in addition to the pressure contours,
show the histograms of the number of grid points along the
x-axis, and two grids. As perturbation waves propagate out-
wards,mesh adaptation affects a larger portion of the domain,
as it can be seen from the grids at t = 0T and t = 0.2T (grids
at the next times are not shown since the node density in some
regions becomes so high that mesh elements are indistin-
guishable at this resolution). Exploiting the one-dimensional
character of the flow, the grid density at three subsequent
times is represented by the histogram of the number of grid
nodes in fixed-width bins. This type of graph allows to high-
light the effect of mesh adaptation on a broad scale: the grid
points are gathered where the flow field exhibits large vari-
ations, while the grid density is reduced in correspondence
of almost uniform regions. Grid coarsening is of paramount
importance in unsteady simulations, since it allows limiting
the number of grid nodes. Mesh adaptation allows following
flow variations as, for instance, occurs with the compression
in the right part of the tube in Fig. 11: the peak in the his-
togram around x = 1.15 at t = 0.6T is progressively spread

123



An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured… 87

X

0.6 0.7 0.8 0.9 1 1.1 1.2
P/PC:

t = 0.0 T NV = 4502

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

t = 0.2 T NV = 4692

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
t = 0.4 T NV = 4691

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
t = 0.6 T NV = 6771

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
t = 0.8 T NV = 6893

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
t = 1.0 T NV = 8046

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

100

200

300

400

x

N
v
(Δ

x
)

t = 0.6T t = 0.8T t = 1.0T

Fig. 11 Oscillating piston in an infinite-length tube, TestNI: central
portion of the domain, near the piston. Top: pressure contour plots dur-
ing the first period, initial grid, and grid at t = 0.2T . The motion of the
piston is clearly visible (initial position x−

0 = − 0.3 and x+
0 = − 0.2).

Bottom: histogram of the number of grid nodes along x-axis, bin width
Δx = 0.05. A comparison between the grid histogram and the pres-

sure plot highlights the effect of mesh adaptation. The peaks in the
right part of the domain correspond to the compression that reduces its
strength as it travels outwards. The height of the peaks in the left part
increases from t = 0.6T to t = T , leading to the strongest refinement
in correspondence of the shock wave (around x = − 0.9 at t = T )

and moved toward the left, following the intensity and posi-
tion of the compression. Moreover, the grid density reflects
the strength of the flow variations, as it can be clearly noticed
by looking at the compressive waves and the corresponding
histogram peaks in the left part of the tube in both tests.
Therefore, the proposed approach is capable of linking the
grid spacing with the unsteady flow features.

A minor remark about Figs. 10 and 11 concerns the coars-
ening of the unperturbed regions of the initial grid, resulting,
for example, in the different grid spacing for x < −1.2
between the grids at t = 0 and t = 0.2T in Fig. 10. Accord-
ing to our experience, an extremely coarse initial grid may
jeopardize the development of important flow features, so it
is preferable to start with a barely coarse mesh and exploit
mesh coarsening already in the first adaptation step, which
is carried out after computing the solution in the Prediction
step, as explained in Sect. 4.3. If, as in these tests, the max-
imum edge size allowed during the adaptation is different
from the one of the initial grid, and the flow field at the
beginning of the simulation embeds large uniform regions,
the first adaptation step profoundly modifies the initial grid.
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Fig. 12 Oscillating piston in an infinite-length tube, Test D: pressure
at time t = 1.4 T (top) and at t = 1.8 T (bottom), obtained with
three different numbers of time steps per period: NT = 100 in black ,
NT = 200 in dark gray and NT = 300 in light gray . Each point
corresponds to a grid node
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Fig. 13 Oscillating piston in an infinite-length tube,TestNI: pressure
at time t = 1.4 T (top) and at t = 1.8 T (bottom), obtained with
three different numbers of time steps per period: NT = 100 in black ,
NT = 200 in dark gray and NT = 300 in light gray . Each point
corresponds to a grid node

The regions that remain uniform during the next time steps
are not affected by the following mesh adaptations.

Analysis of the flow behavior in dilute regime. To better ana-
lyze the flow behavior, the values of different flow quantities
are extracted at fixed locations during the whole simulation
time. For Test D, these quantities are shown in Fig. 14. The
results obtained with the Polytropic Peng–Robinson (PPR)
EoS are compared to the ones obtained with the polytropic
ideal gas (PIG) model, computed starting from the same P0
and T0. Although the initial condition of this test lies in the
dilute regime where the flow behavior is expected to differ
only quantitatively from the ideal gas model, a first, general
observation of Fig. 14 reveals that the differences between the
two thermodynamicmodels are significant. Themost notable
deviations affect the density and speed of sound profiles. We
can interpret these deviations as a measure of the non-ideal
gas effects. During the simulation, the value of Γ oscillates
between 0.83 and 0.96, but the PIG model is not able to
detect it, as it predicts a constant Γ = 1.004. This difference
is extremely important, because it is reflected in the speed
of sound. Indeed, reminding (1), a value of Γ constant and
close to unity results in a constant value of the speed of sound
along an isentropic expansion, as shown in the profile for the
PIG model. Conversely, for the PPR model, the shape of the
profile of c mirrors the one of Γ .

The differences on c and ρ affect the propagation of the
discontinuities originated on the piston surface. For weak
discontinuities, the acoustic theory links the pressure and
velocity perturbation (δP and δu, respectively) through the
initial acoustic impedance ρ0c0, namely δP = ρ0c0δu. This

relation suggests that, for the piston problem under investiga-
tion herewhere the only perturbation is the pistonmovement,
if density and sound speed are inaccurate, the same velocity
perturbation generates a very different pressure perturba-
tion. For instance, defining the deviation on the pressure as
EP = 100(PPR − P IG)/(PPR − P0), the deviations on the
maximum and minimum values are

at x̄1 = 1.0: EP,max = 51%, EP,min = 42%,
at x̄2 = 3.0: EP,max = 45%, EP,min = 29%,

which show the failure of the PIG model to describe the flow
behavior in this region, despite a value of Γ near 1.

A further difference that can be observed in the profiles
concerns the shape. In the PIG model, the perturbation is
propagated from the piston surface through the tube with an
almost constant shape, while according to the PPRmodel the
initial sinusoidal shape loses its symmetry and the compres-
sion part becomes steeper. This can be explained bywatching
the quantity u + c, which represents the wave speed in the
right part of the piston. For a one-dimensional homentropic
flow, the method of characteristics gives

d (u + c) = Γ

ρc
dP. (15)

Thus, for the PIG model the higher value of Γ and the lower
value of the acoustic impedance generate much faster waves,
which take shorter time to reach the same position. Finally,
for both models, being Γ > 0 the compressive part of the
wave becomes steeper, until a shock may form, generating
a total pressure loss. This phenomenon is captured only by
the PPR model, which predicts a faster increase in u + c.
For this reason, the profiles at the location farther from the
piston surface (x̄2 = 3.0) display different peak values,
although these differences are limited since the shocks are
quite weak.

For the sake of completeness, Fig. 14 reports also theMach
number profile, which embeds all the deviation explained
above and clearly displays the loss of the initial sinusoidal
shape as the maxima and the minima are not equally spaced.

Analysis of the flow behavior in NICFD regime. The same
quantities analyzed for Test D are shown in Fig. 15 for Test
NI, which takes place in the core of the NICFD regime, as
clearly displayed by Fig. 9. The variations of the fundamental
derivative Γ profile are much more significant than the ones
in Test D and the supercritical regime is also reached, in
which the behavior of the flow is more similar to the liquid
than the vapor one. A peculiar phenomenon of the NICFD
regime can be observed looking at the c profile. According to
(1), the variation of the speed of sound during an isentropic
expansion is proportional to Γ − 1. So, in the first part of
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Fig. 14 Oscillating piston in an infinite-length tube, TestD: temporal
evolution of eight thermodynamic quantities at two different locations
in the right part of the tube, one near the piston (x̄1, dark lines )
and one farther (x̄2, light-colored lines ). From the first row to
the last one: fundamental derivative, density, speed of sound, acoustic
impedance, pressure, x-component of the fluid velocity, wave propaga-
tion speed, and Mach number. The results obtained with the polytropic

Peng–Robinson EoS (solid lines) and the PIG model (dashed lines) are
compared. Pressure, density, and velocities are scaled with respect to
the initial values P0, ρ0, and c0 computed with the Polytropic Peng–
Robinson model and reported in Table 3. Note that, having kept fixed
P0 and T0, the initial density and speed of sound computed through the
ideal gas are different from those used to scale the values

the expansion where Γ > 1, the speed of sound decreases,
as occurs in ideal gas, while it increases in the second part,
where Γ < 1. Nevertheless, the increase is not sufficiently
strong to result in a non-monotoneMach profile.Watching at
the other quantities, a behavior similar to the one described
for Test D can be observed, although the shocks are now
stronger, because the lower value of the speed of sound (see
c0 in Table 3) leads, given the same piston velocity, to a
higher Mach number. For the same reason, also the wave
propagation speed is lower.

The results of the first tests and the previous analy-
sis demonstrate that the proposed method is capable of
detecting all expected NICFD phenomena, without introduc-
ing spurious oscillations due to mesh adaptation, and it is
robust.

6.2 2D oscillating piston in a finite-length tube

In the second type of test, presented here, the piston moves
inside a finite-length tube, to simulate the reflection of the
waves by solid walls and the interaction between waves with
opposite directions. The harmonic motion imposed to the
piston is the same one described in the previous section. In
TestD, the lengths of the tube are LL = 10m and LR = 8m
and the initial grid is composed of 4056 nodes and 6306 tri-
angles. In TestNI, as the wave propagation speed is lower,
the tube is shorter, LL = 8 m and LR = 5 m, and the initial
grid consists in 2927 nodes and 4548 elements.

The details of the reflection of the waves at the right wall
are shown in Figs. 16 and 17. When a compressive wave
reaches the right wall, it is reflected back and starts moving
upstream, in the direction opposite to the flow. Thus, it inter-
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Fig. 15 Oscillating piston in an infinite-length tube, Test NI: tem-
poral evolution of eight thermodynamic quantities at two different
locations in the right part of the tube, one near the piston (x̄1, dark
lines ) and one farther (x̄2, light-colored lines ). From the first
row to the last one: fundamental derivative, density, speed of sound,
acoustic impedance, pressure, x-component of the fluid velocity, wave

propagation speed, and Mach number. Pressure, density, and velocities
are scaled with respect to the initial values P0, ρ0, and c0 reported in
Table 3. The vertical dotted lines ( ) enclose the first region where
Γ > 1, which occurs in the last part of the first compression and in the
first part of the next expansion

acts first with the expansion waves, reducing its intensity,
then it comes into contact with the incoming compres-
sive waves. The interaction between compressive waves of
opposite family originates two compressions with different
strength that move outwards from the interaction point.

Mesh adaptation is crucial to correctly detect such a com-
plex, variable flow pattern, where the a priori determination
of the locations of all relevant flow features is not practical.
The histograms of the grid nodes along the x-axis in Figs. 16
and 17 highlight that the grid density is properly modified
according to the position and the intensity of the flow varia-
tions. In particular, the histograms in Fig. 17 display at times
t = 2.25T and t = 2.5 two peaks corresponding to the
incoming compressive waves (left) and to the reflected one
(right) which move toward each other; as the waves coalesce
at t = 2.75T only one peak is present; but at t = 3T when
the compressive waves go in opposite directions, two refined

regions are again generated. So, the present test assesses
also the capability of the proposed adaptive method to deal
with wave interactions and reflections in the NICFD regime,
which is an essential feature to simulate more complex and
realistic flow fields.

6.3 2D impulsively started piston

The last 2D test case in the NICFD regime is the impulsively
started piston in a closed tube, with sizes LL = 1.5 m and
LR = 2 m. For brevity, only Test NI is shown. At time 0,
the piston is instantaneously set into motion with a constant
velocity VP = 47.12 m/s, generating a shock wave in the
right part of the tube and an expansion fan in the left part.
The simulation is performed until the piston displacement
is ΔxP = 1.51 m, so that the shock is reflected twice, once
by the right end of the tube and once by the piston face.
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The initial grid is composed of 789 nodes and 1574 elements
and the whole simulation time is divided in NT = 1010
time steps. On the smallest allowed edge (hmin = 0.008 m),
the Courant number is Co = 1.8 with respect to the piston
velocity, but Co = 3.1 with respect to the velocity of the first
generated shock.

Figure 18 displays the results of the flow field before the
reflections of the shock and the expansion fan, and after the
shock reflection on the piston surface. In these pictures the
effectiveness of mesh adaptation is evident, especially after
the second reflection, when the strongest shock occurs. A
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Fig. 16 Oscillating piston in a finite-length tube, Test D: pressure
contour plots and histograms of the grid nodes (bin width Δx = 0.05),
near the right closed end, during the third oscillation period. The first
compressive waves originated on the right piston side reach the solid
wall after t = 2T . The reflected waves interact first with the rarefaction
waves and then with the compressive waves, generating a strong shock
(approximately around x = 5.9 at 2.65 < t/T < 2.7)

more quantitative view of the results is given by Fig. 19,
which shows the pressure, Mach, and fundamental derivative
profiles at two constant locations, in the left and right part
of the tube. From the evolution of the fundamental deriva-
tive, we can say that the left part of the tube remains for
the whole test in the NICFD region, 0 < Γ < 1, while the
right part ends in the supercritical regime. For the location
near the left end of the tube, the results of the open-end case
are also shown to highlight the velocity decrease imposed
by the no-penetration boundary condition. For the location
near the right end, the pressure evolution is computed also
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Fig. 17 Oscillating piston in a finite-length tube, Test NI: pressure
contour plots and histograms of the grid nodes (bin width Δx = 0.05),
near the right closed end, during the third oscillation period. The first
compressive waves originated on the right piston side reach the solid
wall after t = 2T . The reflected waves interact first with the rarefaction
waves and then with the compressive waves, generating a strong shock
(approximately around x = 4 at 2.75 < t/T < 3)
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Fig. 18 Impulsively started piston in NICFD regime (Test NI): pressure contour plots and grids. At left: the whole computational domain at the
initial time and at two instants before reflection of the waves. Right: details of the second shock reflection, which occurs on the right piston surface
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Fig. 19 Impulsively started piston in NICFD regime (TestNI): tem-
poral evolution of pressure ( ),Mach ( ) and fundamental derivative
( ) at x̄ = 1.6 (top) and at x̄ = − 0.8 (bottom). In the top plot, the
dotted line displays the pressure trend obtained analytically. In the bot-
tom plot, the dotted lines show the evolution of the same quantities in
case of an open-end tube, i.e., with no reflection

analytically according to the shock conditions. A fairly good
agreement between the analytical and the numerical result is
obtained, although a deviation between the pressure values
occurs after the second reflection and becomes larger with
the third reflection.

This test proves the capability of the proposed adaptive
scheme to deal with sudden generation of expansion fans
and shock waves in the NICFD regime, as well as with
their interaction with solid boundaries. The specification of
the maximum tolerated error during the metric construction
allows stronger or weaker grid refinement to be achieved
according to the strength of the flow phenomena without
requiring any user’s action.

6.4 2D oscillating piston in non-classical region

Acouple of tests inside and across the non-classical region, at
Γ < 0, are nowpresented.Thepistonoscillates harmonically
inside an infinite-length tube, but with respect to the previous
test cases, the oscillation amplitude is now reduced. More
specifically, a small amplitude A = − 0.05 m is selected
to constrain the fluid state to lie inside or near the region
at Γ < 0, and a large amplitude A = − 0.15 m is tested
to generate stronger perturbations. The evolution of the flow
field is shown in the P–v plane in Fig. 20. The flow state
evolves in close proximity to the VLE curve, being the initial
state on an isotherm below the critical one (T0 = 0.996Tc).

For the motion characterized by the small amplitude,
the evolution of different thermodynamic quantities at two
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Fig. 20 Oscillating piston in non-classical region, Test NC: results
of the motion with small (top) and large amplitude (bottom). The flow
fields resulting after one period of oscillation in the infinite-length tube
are plotted and colored according to the value of Γ , by using the same
color map. Pressure and specific volumes are scaled with respect to the
critical values reported in Table 2

fixed locations is displayed in Fig. 21. Since this motion
does not introduce strong perturbations, the flow field on
the right side of the tube evolves approximately along an
isentrope. During the first part of the compression, the flow
state moves more inside the non-classical region (see also
Fig. 20), reaching a minimum in the value of the fundamen-
tal derivative, but during the final part of the compression,
Γ slightly increases, as the flow is leaving the core of the
non-classical region. From here, the successive expansion
crosses the core of the non-classical region and ends in the
NICFD region, reaching the maximum value of Γ (equal to
0.187 for the location x̄1), from which the next compression
starts. Comparing to the NICFD results of Sect. 6.1, the most
notable differences concern the acoustic impedance and the
wave propagation speed. Indeed, rewriting the fundamental

derivative as Γ = 1
c

(
∂ρc
∂ρ

)
s
, if an isentropic expansion starts

in the non-classical region and evolves outwards, the acous-
tic impedance has a maximum at Γ = 0. In this specific test,
since the initial value of Γ is close to 0, the maximum of the
acoustic impedance is extremely close to the initial value, and
ρc < ρ0c0 everywhere. A similar evolution can be observed
also for the wave speed, which remains almost everywhere
smaller, though close, to the initial value. According to (15),
d(u+ c) is positive in the first part of the expansion (dP < 0
and Γ < 0) and negative in the second, and vice versa for the

123



An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured… 93

0 0.5 1 1.5 2 2.5 3

−0.1

0

0.1

0.2

t/T

Γ

0 0.5 1 1.5 2 2.5 3
0.8

1

1.2

t/T

ρ
/
ρ
0

0 0.5 1 1.5 2 2.5 3

0.8

0.9

1

1.1

1.2

t/T

c/
c 0

0 0.5 1 1.5 2 2.5 3
0.98

0.99

1

1.01

t/T

ρ
c/

ρ
0
c 0

0 0.5 1 1.5 2 2.5 3
0.9

0.95

1

1.05

1.1

t/T

P
/
P
0

0 0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

t/T

u
/
c 0

0 0.5 1 1.5 2 2.5 3
0.98

0.99

1

1.01

1.02

t/T

(u
+

c)
/
c 0

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

t/T

M

x̄1 = 1.0 m x̄2 = 3.0 m Peng Robinson EoS

Fig. 21 Oscillating piston in non-classical region, Test NC, small
amplitude: temporal evolution of eight thermodynamic quantities at
two different locations in the right part of the tube, one near the piston
(x̄1, dark lines ) and one farther (x̄2, light-colored lines ). From
the first row to the last one: fundamental derivative, density, speed of

sound, acoustic impedance, pressure, x-component of the fluid veloc-
ity, wave propagation speed, and Mach number. Pressure, density, and
velocities are scaled with respect to the initial values P0, ρ0, and c0
reported in Table 3. For x̄1, the vertical dotted lines ( ) highlight the
first two points where Γ = 0

compression. Observing that in this test all pressure maxima
occurs at Γ < 0 and the minima at Γ > 0, the wave prop-
agation speed has minima when dP = 0 and maxima when
Γ = 0. It is remarkable that such an “acoustic” behavior is
obtained for finite amplitude waves because the value of Γ

is close to zero [100].
Figure 22 shows the same quantities for the test in which

the large oscillation amplitude is imposed. In this test, the
flow state already exits the non-classical region during the
first compression and most part of the motion occurs in the
NICFD region. Therefore, both non-ideal and non-classical
phenomena occur. We can observe the non-monotone vari-
ation of speed of sound during the isentropic expansion,
as seen for Test NI in Sect. 6.1. As highlighted for the
small-amplitude test, the acoustic impedance hasminima and
maxima for Γ = 0 (see the vertical dotted lines in Fig. 22),
but these are not the absolute extrema, which occur in cor-
respondence of the extrema of ρ and c. Similarly, the wave

propagation speed exhibits local minima and maxima for
Γ = 0, but the absolute ones reflect the extrema of the pres-
sure, since all points at which dP = 0 fall in the region at
Γ > 0.

Also in these two tests, the proposedmesh adaptation strat-
egy allows the grid spacing to be automatically modified to
increase the solution accuracy, without introducing oscilla-
tions due to solution interpolation. The importance of this
feature can be appreciated by looking at Fig. 20: Some points
of the flow field are very close to the VLE curve and oscilla-
tions may cause them to enter the two-phase region, where
the speed of sound may become negative and ad hoc numer-
ical tools are required for the thermodynamic modeling.

6.5 3D assessment in the NICFD regime

In this final subsection, we briefly present some 3D results
to assess the proposed adaptive scheme also for tetrahe-
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Fig. 22 Oscillating piston in non-classical region, Test NC, large
amplitude: temporal evolution of eight thermodynamic quantities at
two different locations in the right part of the tube, one near the piston
(x̄1, dark lines ) and one farther (x̄2, light-colored lines ). From the
first row to the last one: fundamental derivative, density, speed of sound,

acoustic impedance, pressure, x-component of the fluid velocity, wave
propagation speed, and Mach number. Pressure, density, and velocities
are scaled with respect to the initial values P0, ρ0, and c0 reported in
Table 3. For x̄1, the vertical dotted lines ( ) highlight the first three
points where Γ = 0

dral grids. First, we reproduce an oscillating piston in an
infinite-length tube, the Test NI of Sect. 6.1. The initial
grid is made of 27,806 nodes and 97,259 tetrahedra. Given
that the physical problem is one-dimensional, we can make
a comparison between the results obtained in the 2D and
3D simulations. Figure 23 shows the pressure fields at two
different times during the second oscillation period, i.e., at
t = 1.4 T and t = 1.8 T , which are the same shown in
Fig. 13. A good matching between the 3D and 2D pressure
profiles is obtained. Furthermore, as observed already in the
2D tests, the profiles in Fig. 23 are in fact scatter plots of all
grid points, and themethod correctly reproduces the physical
one-dimensional behavior of the flow assessing the validity
of the proposed approach.

In this test, a target isotropic metric is defined by com-
bining an adaptation criterion based on the Hessian of the
Mach number and another criterion based on the gradient of

the pressure. A portion of the resulting grids at the previous
times is shown in Fig. 24 to highlight the crucial role of mesh
adaptation also in 3D. By comparing them with the pressure
fields shown in Fig. 23, the grids result to be refined near the
sharper variations and coarse in quasi-uniform regions.

Lastly, a test case of the impulsively started piston is per-
formed. We simulate the same physical features described in
Sect. 6.3 to be able to compare 2D and 3D results. As in the
previous test, three-dimensional isotropic mesh adaptation
is performed by exploiting a compound error estimator that
includes the Hessian of the Mach number and the gradient of
the pressure. The pressure field and the computational grid
are shown in Fig. 25 before any wave interaction with the
solid wall, and in Fig. 26 after the reflection of the expan-
sion fan on the left side of the tube and the second shock
reflection, which occurs on the piston right face. The effect of
mesh adaptation is clear, especially after the reflections of the
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Fig. 23 Oscillating piston in an infinite-length tube, Test NI, 3D:
pressure contour plot and pressure profile at two different times during
the second oscillation period. Pressure is scaled with respect to the
critical value. To make clearer the 3D picture, the y- and z-axis have
been multiplied by a factor 10 with respect to the x-axis. In the pressure
profile, each point corresponds to a grid node

expansion fan and of the shock. In particular, we can observe
the grid portion close to the shock reflected by the right pis-
ton wall, which is the strongest phenomenon in the flow field,
and the one next to the left end of the tube, where the rarefac-
tion fan is reflected. Because of the different intensity of the
phenomena, a different level of refinement is automatically
performed, i.e., a smaller grid spacing is reached near the
shock, without the user’s intervention.

Although concise, these results show that the proposed
method works well also for three-dimensional simulations.
From the displayed contour plots and pressure profiles, we

can notice that no spurious oscillations are introduced by
the interpolation-free adaptation and the physical mono-
dimensional behavior is achieved.

7 Conclusions

This paper presents and discusses the assessment of mesh
adaptation in unsteady NICFD simulations, since a detailed
investigation of the possible extension of standard adapta-
tion techniques, widely used in ideal gas simulations to deal
with geometrically complex moving-body problems or to
improve the solution accuracy, to such a peculiar thermody-
namic regime was missing. Among the available adaptation
techniques, we have selected an interpolation-free adaptive
scheme capable of representing the volume changes due to
mesh adaptation as fictitious continuous deformations of the
finite volumes that compose the domain, and of treating them
within the ALE framework. In our opinion, this approach
represents an advantage for mesh adaptation in the NICFD
regime since it prevents the introduction of spurious oscilla-
tions due to interpolation, which may unpredictably modify
the thermodynamic state of the flow, moving it under the
VLE curve.

The proposed method has been assessed through two
sets of numerical tests. First, steady simulations of oblique
and conical shocks were performed in the unsteady fash-
ion to assess the validity of the numerical scheme. Then,
different problems involving a piston moving into a tube
filled with MD4M were simulated. Two initial conditions
have been selected along an isotherm above the critical one:
Test D is representative of the dilute regime (approximately
0.9 < Γ < 1) and Test NI is more in the core of the
NICFD regime. A third initial state has been chosen near the
VLE curve, along an isotherm below the critical one, to per-
form tests across the non-classical and non-ideal region. The
thermodynamic behavior of the flow has been described by
the polytropic Peng–Robinson EoS. Different simulations of
the harmonic motion and the impulsive starting of the piston
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Fig. 24 Oscillating piston in an infinite-length tube, Test NI, 3D: detail of the grid at two different times during the second oscillation period, at
t = 1.4T and t = 1.8T . Watching also at the pressure fields shown in Fig. 23, we can notice how the grids are modified according to the solution
behavior
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Fig. 25 Impulsively started
piston in NICFD regime (Test
NI), 3D: pressure contour plot,
grid and pressure profile, when
the piston displacement is
ΔxP = 0.9, that is before any
wave reflection
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Fig. 26 Impulsively started
piston in NICFD regime (Test
NI), 3D: pressure contour plot,
grid and pressure profile, when
the piston displacement is
ΔxP = 1.5, that is after the
expansion fan has been reflected
by the left wall and shock waves
have been reflected by the right
piston wall (second shock
reflection)
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were performed, both in an infinite-length and in a closed
tube.

The expected NICFD and non-classical behavior was well
reproduced by the numerical results, and mesh adaptation
techniques have been successfully exploited to adapt the
computational grid to the unsteady solution. In particular,
in all tests, the resulting grid was refined near shocks, rar-
efaction and expansion waves, and their evolution in the
flow field was accurately tracked, even if large deforma-
tions were imposed on the domain boundaries. At the same
time, the adaptation strategy was capable of removing grid
nodes where the solution was smooth, without deteriorating
the solution accuracy. Also the interactions between waves
and solid walls, or other waves, were correctly treated. No
spurious oscillations appeared in the results, despite quite
large time steps having been enforced.

In conclusion, the proposed method was assessed to per-
form adaptive unsteady NICFD simulations. Therefore, in
future works it could be successfully exploited to perform
more complex unsteady simulations. For instance, it could
be useful to devise new experimental test rigs to investi-
gate thermo-physical properties of fluid flows in the NICFD
regime, or to improve the design of the components of sys-
tems operating in the NICFD regime, as organic Rankine
cycles or supercritical carbon dioxide power cycles.

Acknowledgements This study was partially funded by the European
Research Council (Consolidator Grant No. 617603, Project NSHOCK,
funded under the FP7-IDEAS-ERC scheme).

References

1. Vitale, S., Gori, G., Pini, M., Guardone, A., Economon, T.D.,
Palacios, F., Alonso, J.J., Colonna, P.: Extension of the SU2 open
source CFD code to the simulation of turbulent flows of fuids
modelled with complex thermophysical laws. 22nd AIAA Com-
putational Fluid Dynamics Conference, Dallas, TX, AIAA Paper
2015–2760 (2015). doi:10.2514/6.2015-2760

2. Gori, G., Vimercati, D., Guardone, A.: Non-ideal compressible-
fluid effects in oblique shock waves. J. Phys. Conf. Ser.
821(1), 012003-1–012003-10 (2017). doi:10.1088/1742-6596/
821/1/012003

3. Pini, M., Vitale, S., Colonna, P., Gori, G., Guardone, A.,
Economon, T., Alonso, J., Palacios, F.: SU2: the open-source soft-
ware for non-ideal compressible flows. J. Phys. Conf. Ser. 821(1),
012013 (2017). doi:10.1088/1742-6596/821/1/012013

4. Ameli, A., Uusitalo, A., Turunen-Saaresti, T., Backman, J.:
Numerical sensitivity analysis for supercritical CO2 radial tur-
bine performance andflowfield. EnergyProcedia 129, 1117–1124
(2017). doi:10.1016/J.EGYPRO.2017.09.233

5. Gori, G., Zocca, M., Cammi, G., Spinelli, A., Guardone, A.:
Experimental assessment of the open-source SU2 CFD suite for
ORC applications. Energy Procedia 129, 256–263 (2017). doi:10.
1016/J.EGYPRO.2017.09.151

6. Head, A., Iyer, S., de Servi, C., Pini, M.: Towards the validation of
a CFD solver for non-ideal compressible flows. Energy Procedia
129, 240–247 (2017). doi:10.1016/J.EGYPRO.2017.09.149

7. Keep, J.A., Vitale, S., Pini, M., Burigana, M.: Preliminary ver-
ification of the open-source CFD solver SU2 for radial-inflow
turbine applications. Energy Procedia 129, 1071–1077 (2017).
doi:10.1016/J.EGYPRO.2017.09.130

8. Colonna, P., Guardone, A.: Molecular Interpretation of nonclassi-
cal gasdynamics of dense vapors under the van der Waals model.
Phys. Fluids 18(5), 56101 (2006). doi:10.1063/1.2196095

123

http://dx.doi.org/10.2514/6.2015-2760
http://dx.doi.org/10.1088/1742-6596/821/1/012003
http://dx.doi.org/10.1088/1742-6596/821/1/012003
http://dx.doi.org/10.1088/1742-6596/821/1/012013
http://dx.doi.org/10.1016/J.EGYPRO.2017.09.233
http://dx.doi.org/10.1016/J.EGYPRO.2017.09.151
http://dx.doi.org/10.1016/J.EGYPRO.2017.09.151
http://dx.doi.org/10.1016/J.EGYPRO.2017.09.149
http://dx.doi.org/10.1016/J.EGYPRO.2017.09.130
http://dx.doi.org/10.1063/1.2196095


An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured… 97

9. Harinck, J., Guardone,A., Colonna, P.: The influence ofmolecular
complexity on expanding flows of ideal and dense gases. Phys.
Fluids 21, 086101 (2009). doi:10.1063/1.3194308

10. Nannan,N.R.,Guardone,A., Colonna, P.: Critical point anomalies
include expansion shock waves. Phys. Fluids 26, 021701 (2014).
doi:10.1063/1.4863555

11. Colonna, P., Rebay, S.: Numerical simulation of dense gas flows
on unstructured grids with an implicit high resolution upwind
Euler solver. Int. J. Numer. Methods Fluids 46(7), 735–765
(2004). doi:10.1002/fld.762

12. Vinokur, M., Montagné, J.L.: Generalized flux-vector splitting
and Roe average for an equilibrium real gas. J. Comput. Phys.
89(2), 276–300 (1990). doi:10.1016/0021-9991(90)90145-Q

13. Abgrall, R.: An extension of Roe’s upwind scheme to algebraic
equilibrium real gas models. Comput. Fluids 19(2), 171–182
(1991). doi:10.1016/0045-7930(91)90032-D

14. Arabi, S., Trépanier, J.Y., Camarero, R.: A simple extension of
Roe’s scheme for real gases. J. Comput. Phys. 329, 16–28 (2017).
doi:10.1016/j.jcp.2016.10.067

15. Colonna, P., Silva, P.: Dense gas thermodynamic properties of
single and multicomponent fluids for fluid dynamics simulations.
ASME J. Fluids Eng. 125(3), 414–427 (2003). doi:10.1115/1.
1567306

16. Cinnella, P., Hercus, S.: Efficient implementation of short funda-
mental equations of state for the numerical simulation of dense gas
flows. 42nd AIAA Thermophysics Conference, Fluid Dynamics
and Co-located Conferences, Honolulu, HI, AIAA Paper 2011–
3947 (2011). doi:10.2514/6.2011-3947

17. Pantano, C., Saurel, R., Schmitt, T.: An oscillation free shock-
capturing method for compressible van der Waals supercritical
fluid flows. J. Comput. Phys. 335, 780–811 (2017). doi:10.1016/
j.jcp.2017.01.057

18. Passmann, M., aus der Wiesche, S., Joos, F.: A one-dimensional
analytical calculation method for obtaining normal shock losses
in supersonic real gas flows. J. Phys. Conf. Ser. 821(1), 012004-
1–012004-10 (2017). doi:10.1088/1742-6596/821/1/012004

19. From, C., Sauret, E., Armfield, S., Saha, S., Gu, Y.: Turbulent
dense gas flow characteristics in swirling conical diffuser. Com-
put. Fluids 149, 100–118 (2017). doi:10.1016/j.compfluid.2017.
03.021

20. Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Direct numerical sim-
ulations of supersonic turbulent channel flows of dense gases. J.
Fluid Mech. 821, 153–199 (2017). doi:10.1017/jfm.2017.237

21. Dwight, R.P.: Goal-oriented mesh adaptation for finite volume
methods using a dissipation-based error indicator. Int. J. Numer.
Methods Fluids 56(8), 1193–1200 (2008). doi:10.1002/fld.1582

22. Fidkowski, K.J., Darmofal, D.L.: Review of output-based error
estimation and mesh adaptation in computational fluid dynamics.
AIAA J. 49(4), 673–694 (2011). doi:10.2514/1.J050073

23. Formaggia, L., Perotto, S.: Anisotropic error estimates for ellip-
tic problems. Numer. Math. 94(1), 67–92 (2003). doi:10.1007/
s00211-002-0415-z

24. Coupez, T.: Metric construction by length distribution tensor and
edge based error for anisotropic adaptive meshing. J. Comput.
Phys. 230(7), 2391–2405 (2011). doi:10.1016/j.jcp.2010.11.041

25. Kallinderis, Y., Baron, J.: Adaptation methods for a new Navier-
Stokes algorithm. AIAA J. 27(1), 37–43 (1989). doi:10.2514/3.
10091

26. Choi, S., Alonso, J.J., van der Weide, E.: Numerical and mesh
resolution requirements for accurate sonic boom prediction of
complete aircraft configurations. J. Aircr. 46(4), 1126–1139
(2009). doi:10.2514/1.34367

27. Kallinderis, Y., Lymperopoulou, E.M., Antonellis, P.: Flow fea-
ture detection for grid adaptation and flow visualization. J.
Comput. Phys. 341, 182–207 (2017). doi:10.1016/j.jcp.2017.04.
001

28. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods,
Applied Mathematical Sciences book series, vol. 174. Springer,
New York (2011). doi:10.1007/978-1-4419-7916-2

29. Freitag, L.A., Ollivier-Gooch, C.: Tetrahedral mesh improve-
ment using swapping and smoothing. Int. J. Numer.
Methods Eng. 40(21), 3979–4002 (1997). doi:10.1002/
(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.
0.CO;2-9

30. Mavriplis, D.: Adaptive meshing techniques for viscous flow
calculations on mixed element unstructured meshes. Int. J.
Numer. Methods Fluids 34(2), 93–111 (2000). doi:10.1002/
1097-0363(20000930)34:2<93::AID-FLD48>3.0.CO;2-3

31. Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adap-
tive domain remeshing, implicit domain meshing, and applica-
tions to free and moving boundary problems. J. Comput. Phys.
262, 358–378 (2014). doi:10.1016/j.jcp.2014.01.005

32. Babuška, I., Suri,M.: The p and h−p versions of thefinite element
method, basic principles and properties. SIAM Rev. 36(4), 578–
632 (1994). doi:10.1137/1036141

33. Dolejší, V.: Anisotropic hp-adaptive method based on interpo-
lation error estimates in the H1-seminorm. Appl. Math. 60(6),
597–616 (2015). doi:10.1007/s10492-015-0113-7

34. Guardone, A., Isola, D., Quaranta, G.: Flowmesh. http://home.
aero.polimi.it/flowmesh (2012)

35. Guardone, A., Isola, D., Quaranta, G.: Arbitrary Lagrangian
Eulerian formulation for two-dimensional flows using dynamic
meshes with edge swapping. J. Comput. Phys. 230(20), 7706–
7722 (2011). doi:10.1016/j.jcp.2011.06.026

36. Isola, D., Guardone, A., Quaranta, G.: Finite-volume solution of
two-dimensional compressible flows over dynamic adaptive grids.
J. Comput. Phys. 285, 1–23 (2015). doi:10.1016/j.jcp.2015.01.
007

37. Re, B., Dobrzynski, C., Guardone, A.: An interpolation-free
ALE scheme for unsteady inviscid flows computations with large
boundary displacements over three-dimensional adaptive grids.
J. Comput. Phys. 340, 26–54 (2017). doi:10.1016/j.jcp.2017.03.
034

38. Colonna, P., der Stelt, T.P.: FluidProp: A Program for the Estima-
tion of Thermophysical Properties of Fluids (2005). http://www.
asimptote.nl/software/fluidprop

39. der Waals, J.: On the Continuity of the Gas and Liquid State. PhD
Thesis, University of Leiden, Leiden, The Netherlands (1873)

40. Peng, D.Y., Robinson, D.B.: A new two-constant equation of
state. Ind. Eng.Chem.Fundam.15(1), 59–64 (1976). doi:10.1021/
i160057a011

41. Martin, J.J., Hou, Y.C.: Development of an equation of state
for gases. AIChE J. 1(2), 142–151 (1955). doi:10.1002/aic.
690010203

42. Redlich, O., Kwong, J.N.S.: On thermodynamics of solutions V:
an equation of state. Fugacities of gaseous solutions. Chem. Rev.
44(1), 233–244 (1949). doi:10.1021/cr60137a013

43. Soave, G.: Equilibrium constants from a modified Redlich–
Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203
(1972). doi:10.1016/0009-2509(72)80096-4

44. Dobrzynski, C., Dapogny, C., Frey, P., Froehly, A.: Mmg PLAT-
FORM. www.mmgtools.org

45. Bryson, A.E., Greif, R.:Measurements in a free piston shock tube.
AIAA J. 3(1), 183–184 (1965). doi:10.2514/3.2828

46. Stalker, R.J.: The free-piston shock tube.Aeronaut.Q. 17(4), 351–
370 (1966). doi:10.1017/S0001925900003966

47. Kewley, D.J., Hornung, H.G.: Free-piston shock-tube study of
nitrogen dissociation. Chem. Phys. Lett. 25(4), 531–536 (1974).
doi:10.1016/0009-2614(74)85360-1

48. Hannemann, K., Itoh, K., Mee, D.J., Hornung, H.G.: Free Piston
Shock Tunnels HEG, HIEST, T4 and T5. In: Igra, O., Seiler, F.
(eds.) Experimental Methods of Shock Wave Research. Shock

123

http://dx.doi.org/10.1063/1.3194308
http://dx.doi.org/10.1063/1.4863555
http://dx.doi.org/10.1002/fld.762
http://dx.doi.org/10.1016/0021-9991(90)90145-Q
http://dx.doi.org/10.1016/0045-7930(91)90032-D
http://dx.doi.org/10.1016/j.jcp.2016.10.067
http://dx.doi.org/10.1115/1.1567306
http://dx.doi.org/10.1115/1.1567306
http://dx.doi.org/10.2514/6.2011-3947
http://dx.doi.org/10.1016/j.jcp.2017.01.057
http://dx.doi.org/10.1016/j.jcp.2017.01.057
http://dx.doi.org/10.1088/1742-6596/821/1/012004
http://dx.doi.org/10.1016/j.compfluid.2017.03.021
http://dx.doi.org/10.1016/j.compfluid.2017.03.021
http://dx.doi.org/10.1017/jfm.2017.237
http://dx.doi.org/10.1002/fld.1582
http://dx.doi.org/10.2514/1.J050073
http://dx.doi.org/10.1007/s00211-002-0415-z
http://dx.doi.org/10.1007/s00211-002-0415-z
http://dx.doi.org/10.1016/j.jcp.2010.11.041
http://dx.doi.org/10.2514/3.10091
http://dx.doi.org/10.2514/3.10091
http://dx.doi.org/10.2514/1.34367
http://dx.doi.org/10.1016/j.jcp.2017.04.001
http://dx.doi.org/10.1016/j.jcp.2017.04.001
http://dx.doi.org/10.1007/978-1-4419-7916-2
http://dx.doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
http://dx.doi.org/10.1002/1097-0363(20000930)34:2<93::AID-FLD48>3.0.CO;2-3
http://dx.doi.org/10.1002/1097-0363(20000930)34:2<93::AID-FLD48>3.0.CO;2-3
http://dx.doi.org/10.1016/j.jcp.2014.01.005
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1007/s10492-015-0113-7
http://home.aero.polimi.it/flowmesh
http://home.aero.polimi.it/flowmesh
http://dx.doi.org/10.1016/j.jcp.2011.06.026
http://dx.doi.org/10.1016/j.jcp.2015.01.007
http://dx.doi.org/10.1016/j.jcp.2015.01.007
http://dx.doi.org/10.1016/j.jcp.2017.03.034
http://dx.doi.org/10.1016/j.jcp.2017.03.034
http://www.asimptote.nl/software/fluidprop
http://www.asimptote.nl/software/fluidprop
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1021/i160057a011
http://dx.doi.org/10.1002/aic.690010203
http://dx.doi.org/10.1002/aic.690010203
http://dx.doi.org/10.1021/cr60137a013
http://dx.doi.org/10.1016/0009-2509(72)80096-4
www.mmgtools.org
http://dx.doi.org/10.2514/3.2828
http://dx.doi.org/10.1017/S0001925900003966
http://dx.doi.org/10.1016/0009-2614(74)85360-1


98 B. Re, A. Guardone

Wave Science and Technology Reference Library, vol 9, pp. 181–
264. Springer, Cham (2016). doi:10.1007/978-3-319-23745-9_7.

49. Re, B., Dobrzynski, C., Guardone, A.: Assessment of grid adap-
tation criteria for steady, two-dimensional, inviscid flows in
non-ideal compressible fluids. Appl. Math. Comput. 319, 337–
354 (2018). doi:10.1016/j.amc.2017.03.049

50. Thompson, P.A.: A fundamental derivative in gasdynamics. Phys.
Fluids 14(9), 1843–1849 (1971). doi:10.1063/1.1693693

51. Cramer,M.S., Best, L.M.: Steady, isentropic flows of dense gases.
Phys. Fluids A 3(1), 219–226 (1991). doi:10.1063/1.857855

52. Kluwick, A.: Transonic nozzle flow of dense gases. J. FluidMech.
247, 661–688 (1993). doi:10.1017/S0022112093000618

53. Cramer, M.S., Kluwick, A.: On the propagation of waves exhibit-
ing both positive and negative nonlinearity. J. Fluid Mech. 142,
9–37 (1984). doi:10.1017/S0022112084000975

54. Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of
real materials. Rev. Mod. Phys. 61, 75–130 (1989). doi:10.1103/
RevModPhys.61.75

55. Nannan, N.R., Sirianni, C., Mathijssen, T., Guardone, A.,
Colonna, P.: The admissibility domain of rarefaction shock waves
in the near-critical vapour–liquid equilibrium region of pure typi-
cal fluids. J. Fluid Mech. 795, 241–261 (2016). doi:10.1017/jfm.
2016.197

56. Guardone, A., Argrow, B.M.: Nonclassical gasdynamic region
of selected fluorocarbons. Phys. Fluids 17(11), 116102 (2005).
doi:10.1063/1.2131922

57. Callen, H.B.: Thermodynamics and an Introduction to Thermo-
statistics, 2nd edn. Wiley, New York (1985)

58. Span, R., Wagner, W.: Equations of state for technical applica-
tions. I. Simultaneously optimized functional forms for nonpolar
and polar fluids. Int. J. Thermophys. 24(1), 1–39 (2003). doi:10.
1023/A:1022390430888

59. Lemmon, E.W., Span, R.: Short fundamental equations of state for
20 industrial fluids. J. Chem. Eng. Data 51(3), 785–850 (2006).
doi:10.1021/je050186n

60. Rinaldi, E., Pecnik, R., Colonna, P.: Exact Jacobians for implicit
Navier–Stokes simulations of equilibrium real gas flows. J. Com-
put. Phys. 270, 459–477 (2014). doi:10.1016/j.jcp.2014.03.058

61. Pini, M., Spinelli, A., Persico, G., Rebay, S.: Consistent look-up
table interpolation method for real-gas flow simulations. Com-
put. Fluids 107, 178–188 (2015). doi:10.1016/j.compfluid.2014.
11.001

62. Moraga, F., Hofer, D., Saxena, S., Mallina, R.: Numerical
approach for real gas simulations: part I—tabular fluid proper-
ties for real gas analysis. In: Proceedings of ASME Turbo Expo
2017, 63148, pp. 1–8 (2017). doi:10.1115/GT2017-63148

63. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of
Gases and Liquids, vol. 5. McGraw-Hill, New York (2001)

64. LeVeque, R.J.: Numerical Methods for Conservation Laws.
Birkhäuser, Basel (1992)

65. Re, B.: An Adaptive Interpolation-Free Conservative Scheme for
the Three-Dimensional Euler Equations on Dynamic Meshes for
Aeronautical Applications. PhD Thesis, Politecnico di Milano,
Department of Aerospace Science and Technology (2016)

66. Koren, B.: Defect correction and multigrid for an efficient and
accurate computation of airfoil flows. J. Comput. Phys. 77(1),
183–206 (1988). doi:10.1016/0021-9991(88)90162-3

67. Isola, D.: An Interpolation-Free Two-Dimensional Conservative
ALE Scheme over Adaptive Unstructured Grids for Rotorcraft
Aerodynamics. PhD Thesis, Politecnico di Milano, Department
of Aerospace Engineering (2012)

68. Carpentieri, G.: An Adjoint-Based Shape-Optimization Method
for Aerodynamic Design. PhD Thesis, Technische Universiteit
Delft, Netherlands (2009)

69. Harten, A.: High resolution schemes for hyperbolic conserva-
tion laws. J. Comput. Phys. 49(3), 357–393 (1983). doi:10.1016/
0021-9991(83)90136-5

70. Roe, P.: Approximate Riemann solvers, parameter vectors, and
difference schemes. J. Comput. Phys. 43(2), 357–372 (1981).
doi:10.1016/0021-9991(81)90128-5

71. Guardone, A., Vigevano, L.: Roe Linearization for the van der
Waals Gas. J. Comput. Phys. 175, 50–78 (2002). doi:10.1006/
jcph.2001.6915

72. Glaister, P.: An approximate linearised Riemann solver for the
Euler equations for real gases. J. Comput. Phys. 74(2), 382–408
(1988). doi:10.1016/0021-9991(88)90084-8

73. Cox, C.F., Cinnella, P.: General solution procedure for flows
in local chemical equilibrium. AIAA J. 32(3), 519–527 (1994).
doi:10.2514/3.12016

74. Toumi, I.: A weak formulation of Roe’s approximate Riemann
solver. J. Comput. Phys. 102(2), 360–373 (1992). doi:10.1016/
0021-9991(92)90378-C

75. Guardone, A.: Three-dimensional shock tube flows for dense
gases. J. Fluid Mech. 583, 423–442 (2007). doi:10.1017/
S0022112007006313

76. Mottura, L., Vigevano, L., Zaccanti, M.: An evaluation of Roe’s
scheme generalizations for equilibrium real gas flows. J. Comput.
Phys. 138(2), 354–399 (1997). doi:10.1006/jcph.1997.5838

77. Cinnella, P.: Roe-type schemes for dense gas flow computa-
tions. Comput. Fluids 35(10), 1264–1281 (2006). doi:10.1016/
j.compfluid.2005.04.007

78. Selmin, V.: The node-centred finite volume approach: bridge
between finite differences and finite elements. Comput. Meth-
ods Appl. Mech. Eng. 102(1), 107–138 (1993). doi:10.1016/
0045-7825(93)90143-L

79. Batina, J.T.: Unsteady Euler airfoil solutions using unstructured
dynamicmeshes.AIAA J. 28(8), 1381–1388 (1990). doi:10.2514/
3.25229

80. Venkatakrishnan, V., Mavriplis, D.: Implicit method for the com-
putation of unsteady flows on unstructured grids. J. Comput. Phys.
127(2), 380–397 (1996). doi:10.1006/jcph.1996.0182

81. Degand, C., Farhat, C.: A three-dimensional torsional spring anal-
ogy method for unstructured dynamic meshes. Comput. Struct.
80(3–4), 305–316 (2002). doi:10.1016/S0045-7949(02)00002-0

82. Hirt, C., Amsden, A.A., Cook, J.: An arbitrary Lagrangian–
Eulerian computing method for all flow speeds. J. Comput. Phys.
14(3), 227–253 (1974). doi:10.1016/0021-9991(74)90051-5

83. Donea, J., Giuliani, S., Halleux, J.: An arbitrary Lagrangian–
Eulerian finite element method for transient dynamic fluid-
structure interactions. Comput. Methods Appl. Mech. Eng. 33(1),
689–723 (1982). doi:10.1016/0045-7825(82)90128-1

84. Formaggia, L., Nobile, F.: Stability analysis of second-order time
accurate schemes for ALE-FEM. Comput. Methods Appl. Mech.
Eng.193(39–41), 4097–4116 (2004). doi:10.1016/j.cma.2003.09.
028

85. Mavriplis, D.J., Yang, Z.: Construction of the discrete geomet-
ric conservation law for high-order time-accurate simulations
on dynamic meshes. J. Comput. Phys. 213(2), 557–573 (2006).
doi:10.1016/j.jcp.2005.08.018

86. Étienne, S., Garon, A., Pelletier, D.: Perspective on the geometric
conservation law and finite element methods for ALE simula-
tions of incompressible flow. J. Comput. Phys. 228(7), 2313–2333
(2009). doi:10.1016/j.jcp.2008.11.032

87. Lesoinne, M., Farhat, C.: Geometric conservation laws for
flow problems with moving boundaries and deformable meshes,
and their impact on aeroelastic computations. Comput. Meth-
ods Appl. Mech. Eng. 134(1–2), 71–90 (1996). doi:10.1016/
0045-7825(96)01028-6

123

http://dx.doi.org/10.1007/978-3-319-23745-9_7
http://dx.doi.org/10.1016/j.amc.2017.03.049
http://dx.doi.org/10.1063/1.1693693
http://dx.doi.org/10.1063/1.857855
http://dx.doi.org/10.1017/S0022112093000618
http://dx.doi.org/10.1017/S0022112084000975
http://dx.doi.org/10.1103/RevModPhys.61.75
http://dx.doi.org/10.1103/RevModPhys.61.75
http://dx.doi.org/10.1017/jfm.2016.197
http://dx.doi.org/10.1017/jfm.2016.197
http://dx.doi.org/10.1063/1.2131922
http://dx.doi.org/10.1023/A:1022390430888
http://dx.doi.org/10.1023/A:1022390430888
http://dx.doi.org/10.1021/je050186n
http://dx.doi.org/10.1016/j.jcp.2014.03.058
http://dx.doi.org/10.1016/j.compfluid.2014.11.001
http://dx.doi.org/10.1016/j.compfluid.2014.11.001
http://dx.doi.org/10.1115/GT2017-63148
http://dx.doi.org/10.1016/0021-9991(88)90162-3
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(83)90136-5
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1006/jcph.2001.6915
http://dx.doi.org/10.1006/jcph.2001.6915
http://dx.doi.org/10.1016/0021-9991(88)90084-8
http://dx.doi.org/10.2514/3.12016
http://dx.doi.org/10.1016/0021-9991(92)90378-C
http://dx.doi.org/10.1016/0021-9991(92)90378-C
http://dx.doi.org/10.1017/S0022112007006313
http://dx.doi.org/10.1017/S0022112007006313
http://dx.doi.org/10.1006/jcph.1997.5838
http://dx.doi.org/10.1016/j.compfluid.2005.04.007
http://dx.doi.org/10.1016/j.compfluid.2005.04.007
http://dx.doi.org/10.1016/0045-7825(93)90143-L
http://dx.doi.org/10.1016/0045-7825(93)90143-L
http://dx.doi.org/10.2514/3.25229
http://dx.doi.org/10.2514/3.25229
http://dx.doi.org/10.1006/jcph.1996.0182
http://dx.doi.org/10.1016/S0045-7949(02)00002-0
http://dx.doi.org/10.1016/0021-9991(74)90051-5
http://dx.doi.org/10.1016/0045-7825(82)90128-1
http://dx.doi.org/10.1016/j.cma.2003.09.028
http://dx.doi.org/10.1016/j.cma.2003.09.028
http://dx.doi.org/10.1016/j.jcp.2005.08.018
http://dx.doi.org/10.1016/j.jcp.2008.11.032
http://dx.doi.org/10.1016/0045-7825(96)01028-6
http://dx.doi.org/10.1016/0045-7825(96)01028-6


An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured… 99

88. Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and
update methods for 3D flow simulations. Comput. Mech. 23(2),
130–143 (1999). doi:10.1007/s004660050393

89. Hassan, O., Probert, E., Morgan, K., Weatherill, N.: Unsteady
flow simulation using unstructured meshes. Comput. Meth-
ods Appl. Mech. Eng. 189(4), 1247–1275 (2000). doi:10.1016/
S0045-7825(99)00376-X

90. Borouchaki, H., George, P.L., Hecht, F., Laug, P., Saltel, E.:
Delaunaymesh generation governed bymetric specifications. Part
I. Algorithms. Finite Elem. Anal. Des. 25(1–2), 61–83 (1997).
doi:10.1016/S0168-874X(96)00057-1

91. Dolejší, V.: Anisotropic mesh adaptation for finite volume and
finite element methods on triangular meshes. Comput. Vis. Sci.
1(3), 165–178 (1998). doi:10.1007/s007910050015

92. Del Pino, S.: Metric-based mesh adaptation for 2D Lagrangian
compressible flows. J. Comput. Phys. 230(5), 1793–1821 (2011).
doi:10.1016/j.jcp.2010.11.030

93. Frey, P., Alauzet, F.: Anisotropic mesh adaptation for CFD
computations. Comput. Methods Appl. Mech. Eng. 194(48–49),
5068–5082 (2005). doi:10.1016/j.cma.2004.11.025

94. Re, B., Guardone, A., Dobrzynski, C.: An adaptive conserva-
tive ALE approach to deal with large boundary displacements
in three-dimensional inviscid simulations. 55th AIAA Aerospace
Sciences Meeting, AIAA SciTech Forum, Grapevine, TX, AIAA
Paper 2017–1945 (2017). doi:10.2514/6.2017-1945.

95. Re, B., Guardone, A., Dobrzynski, C.: Numerical simulation of
shock-tube piston problems with adaptive, anisotropic meshes.
In: 7th International Conference on Computational Methods for
Coupled Problems in Science and Engineering, Rhodes Island,
Greece, pp. 1227–1238 (2017)

96. Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation
for unsteady simulations. In: Proceedings of the 17th International
Meshing Roundtable. Springer, Heidelberg, pp. 177–194 (2008).
doi:10.1007/978-3-540-87921-3_11

97. Borouchaki, H., Hecht, F., Frey, P.: Mesh gradation control. Int.
J. Numer. Methods Eng. 43(6), 1143–1165 (1998). doi:10.1002/
(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.
CO;2-I

98. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Reference
Fluid Thermodynamic and Transport Properties—REFPROP.
National Institute of Standards and Technology, Boulder, CO
(2013). doi:10.18434/T4JS3C. www.nist.gov/srd/refprop

99. Colonna, P., Nannan, N.R., Guardone, A., Lemmon, E.W.: Mul-
tiparameter equations of state for selected siloxanes. Fluid Phase
Equilib.244(2), 193–211 (2006). doi:10.1016/j.fluid.2006.04.015

100. Thompson, P.A.: Compressible-Fluid Dynamics. McGraw-Hill,
New York (1972)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://dx.doi.org/10.1007/s004660050393
http://dx.doi.org/10.1016/S0045-7825(99)00376-X
http://dx.doi.org/10.1016/S0045-7825(99)00376-X
http://dx.doi.org/10.1016/S0168-874X(96)00057-1
http://dx.doi.org/10.1007/s007910050015
http://dx.doi.org/10.1016/j.jcp.2010.11.030
http://dx.doi.org/10.1016/j.cma.2004.11.025
http://dx.doi.org/10.2514/6.2017-1945
http://dx.doi.org/10.1007/978-3-540-87921-3_11
http://dx.doi.org/10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I
http://dx.doi.org/10.18434/T4JS3C
www.nist.gov/srd/refprop
http://dx.doi.org/10.1016/j.fluid.2006.04.015

	0ptAn adaptive ALE scheme for non-ideal compressible fluid dynamics  over dynamic unstructured meshes
	Abstract
	1 Introduction
	2 Thermodynamic modeling in NICFD regime
	2.1 Peng–Robinson equation of state model

	3 Numerical method
	3.1 Spatial and temporal discretization
	3.1.1 Integrated numerical fluxes
	3.1.2 Boundary fluxes

	3.2 ALE framework for dynamic grids
	3.2.1 Extension to variable connectivity grids


	4 Mesh adaptation in unsteady NICFD simulations
	4.1 Adaptation on flow features
	4.2 Large boundary displacements
	4.3 Summary of the computational procedure

	5 Assessment of the unsteady adaptive method for in NICFD regime
	5.1 Unsteady simulations of an oblique shock
	5.2 Unsteady simulations of a conical shock

	6 Numerical investigation of unsteady piston problems
	6.1 2D oscillating piston in an infinite-length tube: dilute and non-ideal conditions
	6.2 2D oscillating piston in a finite-length tube
	6.3 2D impulsively started piston
	6.4 2D oscillating piston in non-classical region
	6.5 3D assessment in the NICFD regime

	7 Conclusions
	Acknowledgements
	References




