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Abstract Self-sustained oscillations in aMach 3 supersonic
cavity with a length-to-depth ratio of three are investigated
using wall-modeled large eddy simulation methodology for
ReD = 3.39×105. The unsteady data obtained through com-
putation are utilized to investigate the spatial and temporal
evolution of the flow field, especially the second invariant
of the velocity tensor, while the phase-averaged data are
analyzed over a feedback cycle to study the spatial struc-
tures. This analysis is accompanied by the proper orthogonal
decomposition (POD) data, which reveals the presence of
discrete vortices along the shear layer. The POD analysis is
performed in both the spanwise and streamwise planes to
extract the coherence in flow structures. Finally, dynamic
mode decomposition is performed on the data sequence to
obtain the dynamic information and deeper insight into the
self-sustained mechanism.

Keywords LES · Supersonic cavity · Proper orthogonal
decomposition · Dynamic mode decomposition

1 Introduction

Supersonic cavity flows have beenwidely studied both exper-
imentally and numerically [1–4] because of their applications
to various practical engineering problems. Although geo-
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metrically simple, the flow physics is quite challenging and
complex. The first insight into the rectangular cavity was
provided by Rossiter [5], where a semi-empirical formula
was proposed to predict the resonant frequencies. Also, the
mechanism of a feedback cycle was explained [6–8] through
the sequence of events, such as (1) excitation of shear layer
at the leading edge due to acoustic resonance, leading to
vortical shedding, (2) convection and growth of the vorti-
cal structures further downstream, ultimately impacting the
trailing edge, (3) generation of upstream traveling compres-
sion waves at the trailing edge, and (4) upstream propagation
of these compression waves exciting the shear layer. The
mechanism of flow-induced pressure oscillations in cavi-
ties has been reported in the published literature [9–12].
Heller and Bliss [10,11] modified Rossiter’s formula and
further classified four types of waves: type I: upstream prop-
agation of waves above the cavity, due to the disturbances
traveling upstream within the cavity, type II: formation of
compression and expansion waves at the leading edge due
to shear layer oscillation, type III: the quasi-steady external
bow shocks at the trailing edge due to reattachment of flow,
and type IV: the weak compression waves near the trailing
edge. Zhang et al. [13] were the first to observe the fifth type
of wave propagating upstream as an acoustic wave or pertur-
bation. Arunajatesan and Sinha [14] simulated the flow over
a cavity using a large eddy simulation as well as a hybrid
RANS/LES solver. The hybrid model predictions were in
good accordance with the measured pressure values. A com-
putational investigation of the supersonic flow (M = 1.5)
over a three-dimensional (3D) cavity was done by Rizzetta
and Visbal [15]. The frequency spectra from this computa-
tional analysis agreed well with the experimental data. It was
noted thatwhile the fundamental behavior of the problemwas
two-dimensional (2D), the presence of a vortex evolving at
the side wall of the front wall of the cavity produced notice-
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able 3D effects. In a subsequent study, Zhuang et al. [16]
observed generation of shock waves in shear layer due to
convection of large-scale structures. At high Reynolds num-
ber, the flow above a rectangular open cavity is relatively
undisturbed and the prominent unsteady flow feature is the
convection of the vortices in the shear layer [17]. The dynam-
ics of such a flow can be studied by observing themechanism
of the generation and propagation of the shear layer vor-
tices. But, any high Reynolds number flow is associated with
the significant separation of scales and isolating the different
types of vortices present in the unsteady shear layer is an
enormous task. Therefore, the proper orthogonal decompo-
sition (POD) and the dynamic mode decomposition (DMD)
are employed for the present study.

The proper orthogonal decomposition (POD), also known
as the Karhunen–Loeve expansion or principle component
analysis, was first introduced by Lumley [18] in the con-
text of fluid dynamics to understand the turbulent flows
by identifying the coherence in flow structures. The large-
scale structures, also called coherent structures, are primarily
responsible for most of the transport occurring in any turbu-
lent flow. Thus, the study of turbulent flows that contain a
wide range of scales and infinite degrees of freedom reduces
to the study of the dynamics of the coherent structures. POD
involves the decompositionof theflowfield in time and space,
and the eigenmodes are computed by collecting a sufficient
number of snapshots separated properly in time, as temporal
separation plays a vital role in the decomposition process.
The decomposition is performed in such a manner that only
a few basis functions are able to represent most of the energy.
Basically, this allows only the first fewmodes to represent the
flow field accurately. Over the years, the POD has emerged
as a powerful tool for the extraction of dominant structures
in turbulent flows. The POD has been widely used to con-
struct a low-dimensional model to study the dynamics of
the unsteady flow field. There exist various types of POD
techniques of which the direct method and the method of
snapshots are used widely. In the present investigation, the
method of snapshots proposed by Lawrence [19] is utilized,
and the formulation of energy-based POD is similar to [20–
23].

The POD modes obtained from any system are based on
the energy content of the loss of phase information, which
makes POD unsuited for capturing any dynamic informa-
tion of the system. Thus, any small perturbation leading to
large-scale instability will not be captured by POD. How-
ever, the resulting flow features with high energy content
will be reflected in the POD modes. A system comprised of
a local instability in any finite region is capable of exhibiting
self-sustained oscillations at a particular frequency. The flow
over an open cavity is one such example with the deflection
of the shear layer being the local instability. Thus, to extract
dynamical features of a system, dynamic mode decompo-

sition (DMD), a tool based on Koopman analysis [24] and
introduced by Schmid [25], is employed. The basis of the
algorithm is the extraction of low-dimensional subspace after
fitting a high-degree polynomial to the original data sequence
without any prior knowledge of the process by which the
data had initially been generated. Thus, despite employing
an infinite-dimensional linear Koopman operator [24,26],
DMD can be used for any data that stems from a linear
or a nonlinear process. The eigenvalues and eigenvectors of
the low-dimensional subspace capture the principal dynam-
ics of the flow. Basically, DMD attempts to represent a data
sequence by orthogonalizing it in time, while POD attempts
a decomposition based on orthogonality in space. Further-
more, the DMD is directly applied to the data, while a POD
analysis processes second-order statistics of the data.

The POD and DMD are powerful tools to study any tur-
bulent flow associated with an enormous number of scales
(length and time) with infinite degrees of freedom. They con-
vert the study of the turbulent flow into the analysis of a few
modes corresponding to coherence in space and time. The
present flow geometry involves various interactions between
the acoustic and the hydrodynamic modes, which lead to
the generation of different types of vortices. The spatial and
temporal evolution of these structures is key to understand
the overall flow field. Hence, in the present work, both of
the modal decomposition techniques are employed to study
the generation and the propagation of the vortices along the
shear layer and the feedback loop generatedwithin the cavity,
which is the consequence of the convection of these vor-
tices. To the best knowledge of the authors, POD and DMD
analyses of a supersonic cavity flow have not been reported
widely except for recent work by Zhang et al. [27]. Their
work involves reduced-order modeling for supersonic flow
over a cavity using POD and Galerkin projection, whereas
the present research focuses on the study of the hydrody-
namic and acoustic modes due to the convection of discrete
vortices along the shear layer. To be precise, the major philo-
sophical difference between our study and that of the study
of by Zhang et al. [27] lies in the fact that they propose a
new norm for the reduced-order modeling of the supersonic
flow. However, in the present investigation, we are only inter-
ested in the modal decomposition and not the reduced-order
modeling; by this, we mean that these decomposition tools
are utilized to characterize the structures generated due to
the hydrodynamic and acoustic interactions leading to the
self-sustained oscillation.

2 Numerical details

The filtered governing equations for the conservation of
mass, momentum, and energy are solved and recast as:
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Continuity equation:

∂

∂t
(ρ̄) + ∂

∂xi
(ρ̄ũi ) = 0 (1)

Momentum equation:

∂

∂t
(ρ̄ũi ) + ∂

∂x j
(ρ̄ũi ũ j ) = − ∂

∂xi
( p̄) + ∂

∂x j

(
(μ + μt)

∂ ũi
∂x j

)

(2)

Energy equation:

∂

∂t
(ρ̄ Ẽ) + ∂

∂xi
(ρ̄ũi Ẽ) = − ∂

∂x j

(
ũ j

(
− p̃ I + μ

∂ ũi
∂x j

))

+ ∂

∂xi

((
k + μtCp

Prt

)
∂ T̃

∂xi

)
(3)

Equation of state:

p̃ = ρ̄RT̃ (4)

where ρ is the density, ui is the velocity vector, p is the
pressure, and E = e + u2i /2 is the total energy, where e =
h − p/ρ is the internal energy and h is enthalpy. The fluid
properties μ and k are, respectively, the viscosity and the
thermal conductivity, while μt and Prt are the turbulent eddy
viscosity and the turbulent Prandtl number, respectively. The
only unclosed terms in the above set of equations are the
subgrid stresses (terms involving μt), which are modeled
with the help of a turbulent eddy viscosity formulation.

The (−) quantities in the above equations are the Favre-
averaged quantities, and the (∼) quantities are the ones that
are obtained after the application of the filter function. The
application of the filter in the momentum equation produces
subgrid-scale stress (SGS), which aremodeled using an eddy
viscosity assumption. The turbulent eddy viscosity is given
by the relation:

μt = (Cs�̄)2|S̄ij| (5)

where Cs is the Smagorinsky constant, �̄ is the filter

width, and |S̄ij| = (2S̄ij S̄ij)
1
2 is the strain rate magnitude.

The Smagorinsky constant is determined a priori and is
maintained as constant throughout the whole domain and
computational time. Yoshizawa [28] proposed an eddy vis-
cosity model that uses the Smagorinsky model to account for
the anisotropic part of the SGS stress tensor, while the SGS
energy was modeled separately as presented in the equations

τij − δij

3
τkk = −C2

s 2�̄
2ρ̄

(
S̃ij − δij

3
S̃kk

)
= C2

s αij (6)

τkk = CI2ρ̄�̄2
∣∣∣S̃ij

∣∣∣ (7)

The constant value of the Smagorinsky constant Cs hinders
the accurate prediction of the fields in massively separated
flow regions that is overcome by using a dynamic procedure
for the determination of the Smagorinsky constant [29]. This
procedure involves an application of a test filter �̂ that is
roughly two times the size of the filter �̄. The SGS stresses
τij = uiu j−ūi ū j are related to the resolved turbulent stresses

Lij = ̂ūi ū j − ̂̄ui ̂̄u j and the subtest stresses Tij = ̂uiu j − ̂̄ui ̂̄u j

via Germano identity [28]. A dynamic procedure proposed
by Yoshizawa [28] was applied by the Moin et al. [30]. For
the present study, this dynamic model has been used where
the constants Cs and CI were calculated as follows

C = C2
s = 〈LijMij〉

〈MklMkl〉 and CI = 〈Lkk〉
〈β − α〉 (8)
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(9)

In order to reduce the computational cost of the simulation,
the present LESgrid does not resolve thewall boundary layer.
Instead, a wall model is used to generate a smooth profile
from the wall up to the first grid point. The modeling of the
boundary layer is achieved through a wall model that uses
Spalding’s law of the wall to create a smooth profile for μsgs

from the wall until the first grid point. The Spalding’s law of
the wall is given by

y+ = u+ + 0.1108(e0.4u
+ − 1 − 0.4u+) (10)

where

uτ = √
τw/ρ, y+ = yuτ /ν, u+ = u/uτ (11)

From Spalding’s law, a smooth profile for the turbulent eddy
viscosityμt is created from the wall up to the first grid point.

μt

μeff
= 1/

[
1 + 1

0.04432

{
e0.4u

+ − 1 − 0.4u+ − (0.4u+)2

2!

}]

(12)

The performance assessment of the present wall model in
predicting the velocity profile is done by Soni et al. [31]
by comparing the results of LES simulation with the DNS
results of [32,33]. It has been shown by [31] that the val-
ues predicted by the wall model for y+ less than 100 are in
excellent agreement with the DNS results.
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Fig. 1 Computational domain (xy plane) and grid distribution

3 Computational details

The computational domain consists of two regions: an inter-
nal (cavity) region and an outer (channel) region as shown
in Fig. 1. The length from domain inlet to the cavity leading
edge is 10D, and from the trailing edge to domain outlet, it is
7D to allow the reattachment shock to exit the systemwithout
reflecting. In the outer region, the length of the wall normal
direction is 6.7D, and in the spanwise direction, it is 2D. The
cavity has L/D ratio of 3 where D = 8.9 mm. The domain is
discretized through the multi-block approach to maintaining
optimum grid size while retaining the resolution in the region
of interest. Three sets of grids are generated, namely Grid 1,
Grid 2, and Grid 3. For Grid 1, the outer region has a node
distribution of 250×85×40, whereas in the internal region,
the grid is distributed as 130×85×40 leading to a total grid
size of 1.29 M. Whereas Grid 2 consists of 630 × 125 × 50
nodes in the outer region, the internal region is discretized
with 250 × 150 × 50 nodes, and the total grid is 5.81 M .
Grid 3 is 1.5 times that of Grid 2. From Fig. 2 (Grid 2), it

can be seen that the grid clustering is mainly done in the
cavity region and also in the aft region to resolve the spa-
tial flow features. The Reynolds number based on the D is
ReD = 3.39×105. The grid spacing within cavity region for
Grid 2 is �x = 0.02D,�y = 0.0067D, and �z = 0.034D,
where for both Grids 2 and 3, y+ is 20, and in outer region
y+ of 30 is maintained.

At the inlet boundary, uniform flow properties such as
static pressure (P∞ = 18.78 KPa) and static temperature
(T∞ = 107 K) are specified providing Mach 3 flow, while
a power law velocity profile is imposed for the velocity. A
supersonic freestream condition is imposed at the top,while a
no-slip boundary condition is enforced along the bottomwall
with condition that the normal pressure gradient vanishes at
the wall. At the outlet, flow variables are extrapolated and a
non-reflecting boundary condition (NRBC) is imposed based
on the formulation of Poinsot and Lele [34]. This boundary
condition provides a wave transmissive outflow condition
based on solving ∂

∂t (ψ,U ) = 0 at the boundary. The wave
speed is calculated as
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Fig. 2 Time-averaged non-dimensional pressure distribution along the
cavity wall

xp = ϕp

|sf | +
√

γ

ψp
;

where xp is the value of the field at the patch, ϕp is the
flux value of the field, Sf is the face area vector, and ψp

is the patch compressibility. Numerical results are obtained
by employing the dynamic SGS model inside the density-
based solver (rhoCentralFoam) in OpenFOAM framework
employing central schemes [35,36]. These Godunov-type
central schemes have been used by many authors for various
numerical studies [37–39].ThedynamicsSGSmodel utilized
for the present computation is based on a dynamic calcula-
tion of two model constants. A second-order backward Euler
scheme is used for temporal discretization, while the convec-
tion and diffusion terms are discretized using a second-order
low-dissipation filtered-linear scheme and a central differ-
ence scheme, respectively.

4 Results and discussion

This section is organized in the following manner: (1) Ini-
tially, the validation of the solver is demonstrated along with
the unsteady results, then (2) the results of both energy- and
scalar-based POD are discussed at different planes, and (3)
finally, the observation from the DMD analysis is presented.

4.1 Mean and unsteady flow field

4.1.1 Grid independence and mean data analysis

The non-dimensional time-averaged pressure distribution for
both grids, along the cavity wall, is shown in Fig. 2. The
simulated result (Grids 2 and 3) exhibits excellent agreement
with the experimental results of Gruber et al. [40]. It can be
seen that the variation in pressure is only observed in the
region close to the trailing edge where the feedback occurs.
Since the results obtained via Grids 2 and 3 are in excellent
agreement with each other, therefore the detailed analysis is
presented in the following subsections using Grid 2 only.

To further demonstrate the resolution of the chosen grid,
energy spectrum using Grid 2 is presented in Fig. 3a. It can
be observed that the spectra follow the −5/3 slope closely in
the inertial subrange, and hence, it can be inferred that the
grid is resolved enough to capture the large-scale structures
in the cavity as well as in the wake region. Apart from energy
spectra, index of the grid quality, proposed by the Celik et
al. [41], which is based on the eddy viscosity ratio, is recast
as:

LES_IQ = 1

1 + αv

(
ϑt,Eff

ϑ

)n

Fig. 3 a Resolved energy spectrum and b resolution of grid through LES quality criteria
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Fig. 4 Instantaneous shadowgraph image depicting various flow features. a The presence of expansion and compression wave. b Left- and
right-moving acoustic wave. c Shear layer impingement leading to the formation of acoustic waves. d Upstream traveling acoustic wave

where n = 0.53 and αv = 0.05. It is generally suggested that
LES_IQ above 75 % indicates a well-resolved grid for LES
computations. In Fig. 3b, LES_IQ for Grid 2 is presented
in the near cavity region. It is evident from the plot that the
chosen grid offers sufficient resolution, and therefore, it is
invoked for the detailed analysis of the flow field.

4.1.2 Instantaneous data analysis

The instantaneous double derivative of density (shadow-
graph) is shown in Fig. 4. Figure 4a corresponds to the mean
flow with only expansion (E) and reattachment waves (C)
along the cavity leading and trailing edges. In Fig. 4b, apart
from the expansion and the compression waves, an acous-
tic wave (A) traveling left and right can be observed; these
acoustic waves while traveling within the cavity perturb the
shear layer and lead to self-sustained oscillations. Ben-Yakar
and Hanson [42] suggested that the acoustic waves traveling
upstream upon impinging the leading edge induce smaller
vortices, which eventually grow in size as they are convected
downstream. From the similar figure, it is also evident that
the acoustic waves (A) have their leg within the cavity with
a part of it moving above the cavity as well. Figure 4c, d
presents the formation of compression and expansion waves
along the shear layer due to the flapping of the shear layer.
The downstroke of the shear layer near the trailing edge intro-

duces mass inside the cavity that follows the feedback loop
and is added back to the main flow with the upstroke of the
shear layer. The results presented in Fig. 4a–d are consistent
with the observation of [43].

Figure 5a–d presents the second invariant of the velocity
gradient tensor over one feedback cycle. From Fig. 5, it is
evident that the large-scale structures are convected down-
stream along the cavity shear layer, which is consistent with
the observation of [44]. The 3D structures convected down-
stream upon reaching the trailing edge tend to transform into
a wake region and are discussed later. Apart from these vor-
tices, there are also vortical structures present near the trailing
edge due to vortex shedding. Arya et al. [43] too reported the
presence of the K–H vortices and three-dimensional struc-
tures in the shear layer region. From Fig. 5a, b, it is evident
that the incoming boundary layer contains vortical structures
that transform into a spanwise roller right at the leading edge
of the cavity.

4.1.3 FFT and phase averaging

Figure 6 presents the power spectrawhere three distinct peaks
are clearly visible, while the second and a third peak appear
to be harmonic frequencies. To performFFT, pressure signals
are acquired at various locations, but only locations close to
the shear layer and trailing edge are presented herein. The
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Fig. 5 Iso-surface of the second invariant of velocity gradient tensor, Q = 9
( u∞

L

)2presented for one feedback cycle, colored by instantaneous
streamwise velocity

Fig. 6 Energy spectra of pressure signal

first peak corresponds to 5518 Hz and is very close to the
theoretical calculation of Rossiter an Kurn [8], where the
frequency corresponding to Rossiter’s first mode calculated
through themodified formula is 4834Hz [8].To further assess
the evolution of flow field within the cavity, phase averaging
is performed corresponding to the first two peak frequencies,
namely 5247 and 7357Hz. The phase averaging is performed
over 10 cycles with a phase difference of 36◦ to eliminate
the effect of high-frequency oscillations present in the flow
field. Figure 7 represents the schematic of shear layer oscil-
lation about the mean shear layer (dotted centerline). The
position A of the shear layer is representative of the upstroke
where the mass ejection occurs, and position B represents
the downstroke leading to mass injection at the trailing edge.
The vortices generated at the leading edge induce instability
along the shear layer as they are convected downstream and
finally impinge on the trailing edge, leading to the generation
of noise. The vortices that impinge on the trailing edge during

Fig. 7 Schematic depiction of shear layer oscillation with mean shear
layer position (−)

the downstroke phase are entrained inside the cavity and roll
down along the trailing edge wall through the formation of
the second recirculation bubble and finally leave the cavity
during the upstroke phase.

Figure 8 presents the streamlines over one complete cycle,
where the movement of these vortical structures during
upstroke and downstroke is clearly observed. Moreover, the
shear layer oscillation can be identified along the various
phases as the oscillation of the shear layer alters the recir-
culation zones within the cavity. At different phases of the
cycle, the motion of two recirculation bubbles is observed.
In the first half of the cycle (phase 1–5), the leading-edge
bubble grows in size, while during the latter half of the
cycle (phase 6–10) the trailing edge bubble grows in size.
Worth noticing is the significant variation in the evolution of
two recirculation bubbles over a cycle, as the core of the
recirculation zone appears to shift in both transverse and
streamwise direction, which can be attributed to the shear
layer flapping. Essentially, the upstroke of the shear layer
results in the mass addition at the trailing edge and the
contraction near the trailing edge as the shear layer moves
downwards; this phenomenon leads to the change in the size
of the secondary bubble, while this leads to the elongation
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Fig. 8 Phase-averaged streamline plots over a cycle corresponding to first peak ( f = 5247 Hz)

of second recirculation bubble in streamwise direction but
during the downstroke the reverse happens, meaning the first
bubble grows due to the contraction at the leading edge. This
becomes a repetitive process corresponding to the frequency
7357Hz and primarily happens due to the shear layer oscilla-
tion during upstroke and downstroke. This particular process
is more prominent for the other frequency observed in Fig. 6
as depicted in Fig. 9.

In Fig. 9, phase-averaged data corresponding to the second
frequency, as obtained from Fig. 6, are presented. From dif-

ferent phase plots, the presence of vortical structures close
to the cavity leading edge is observed. On combining this
observation with that of Figs. 5 and 6, it becomes clear that
these vortical structures are the spanwise rollers formed at
the leading edge due to the perturbation of the shear layer.
These large-scale vortices, which are being convected over
the shear layer toward the cavity trailing edge, act as local
obstructions to supersonic flow and lead to the formation
of compression waves. However, vortical motion in the inner
edge of the shear layer is responsible for the generation of the
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Fig. 9 Phase-averaged streamline plots over a cycle corresponding to second peak ( f = 7357 Hz)

edge tone and formation of the feedback loop. The stream-
line plots from Figs. 8 and 9 clearly demonstrate the presence
of the discrete vortices. A high degree of unsteadiness in the
recirculating bubble is evident from the phase-averagedplots.
Further details about the underlying physics are discussed in
the POD section.

4.2 POD analysis (energy based)

4.2.1 POD at z/h = 0 plane

The energy-based POD analysis is presented in this section;
hereafter, energy-based POD means that temperature along
with components of velocities is used as input to perform the
decomposition and the inner product [20–22]. To demon-
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Fig. 10 Distribution of relative energy (λi ) content as a function of
mode number (N )

Table 1 Comparison of energy distribution for the first five eigenmodes
for all three N

Modes λi (N = 60) λi (N = 80) λi (N = 100)

1st 0.517 0.511 0.52

2nd 0.136 0.123 0.13

3rd 0.105 0.107 0.107

4th 0.061 0.054 0.06

5th 0.038 0.04 0.04

6th 0.026 0.0277 0.0277

strate the least number of snapshots required to resolve the
coherence in the flow, three different numbers of snapshots
(N ) are initially used and the distribution of energy is demon-
strated in Fig. 10. For all the values of N presented in Fig. 10,
the temporal spacing between the consecutive snapshots has
been maintained at �t = 10−5 s. The energy content of the
first mode for all values of N is around 51%, whereas for
the second and third modes for all N it varies between 10
and 13%. The first 10 modes represent around 88% energy
of the mean flow, and hence, the higher modes that amount
to approximately 1% energy are not included in the further
study. Comparison of energy distribution for the first five
modes for all three N is presented in Table 1. From Table 1,
comparison of eigenvalues for three different values of N
reveals that there exist very little differences in the value of
λi for a given mode using N = 80 and 100. Hence in the
present sectionPOD, eigenmodes obtainedwith 80 snapshots
are only reported.

Figure 11 presents the first six POD modes along the
centerline plane (z = 0), and the contour represents the
streamwise velocity fluctuations. It can be observed that
the various coherent structures are revealed by the POD
depending on the energy distribution for different modes.
The various vortical structures observed here are consistent
with the observation of phase averaged and the second invari-
ant of velocity data. The coherent structures are distinguished

Fig. 11 First six spatial eigenmodes colored with the streamwise velocity fluctuation
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by the labels, as shown in Fig. 11, e.g., type I and type II,
to facilitate the discussion. It is evident that every coherent
structure exhibits specific characteristics, but some appear to
transform into different structures altogether. At first, the role
and evolution of different vortices are discussed, and then,
the POD modes itself are characterized. Type I structures
near the trailing edge are formed due to the impingement
of discrete vortices present in the shear layer. As discussed
in [10], compression and expansion waves are generated at
the leading edge; this phenomenon leads to the generation
of type II vortices that are convected above the shear layer.
Type III vortices are formed due to the upstream traveling dis-
turbances. Further details will be discussed in the following
section. Type IV vortices are the structures present inside the
boundary layer, whereas type V structures are originally part
of type I vortices that follow the feedback loop, and type VI
vortices are formed by the pairing action of type II vortices.

In mode 1, type I and II vortices are resolved, the type I
vortices upon impinging the trailing edge lead to the acoustic
resonance, and an upstream traveling disturbance is created
that interacts with the shear layer at the leading edge. The
type II vortices are present above the shear layer and can be
associated with the large-scale structures that are responsi-
ble for the wake formation at the cavity trailing edge. From
modes 2 and 3, a very important observation can be made:
Type III vortices, which are also observed in Figs. 8 and
9, are generated at the leading edge (mode 2) and convect
along the shear layer (mode 3). From the discussion in the
previous sections, it can be determined that these vortices
are formed due to the perturbation caused by the shear layer.
The addition of mass within the cavity at the trailing edge
leads to the perturbation at the leading edge, and hence, type
III vortices, which are basically low-frequency structures,
are generated. The presence of the type III structure is con-
sistent with the observation of Figs. 8 and 9 and confirms
the presence of the feedback loop, which suggests that the
present modal decomposition is able to resolve the structures
formed due to both hydrodynamic and acoustic modes accu-
rately. If the eigenmodes are analyzed along with Figs. 5 and
6, it becomes apparent that type I vortices are transformed
into type III structures due to pairing/merging. The presence
of the vortices in the boundary layer is noticed; it is pos-
sible that while convecting downstream they interact with
other vortices especially ones formed on the outer edge of
the shear layer. The type II vortices present on either side
of the shear layer are present across different modes. These
vortices start to pair close to the trailing edge, and the pair-
ing continues further downstream leading to the large-scale
structure in thewake region (typeVI). The overall convincing
output is obtained through the modal decomposition, i.e., all
the vortical structures corresponding tomajor phenomena are
resolved. Although both hydrodynamic and acoustic mode-
related structures are present, the discussion in a temporal

Fig. 12 Phase plots of temporal coefficient

sensemay not be convincing from the eigenmodes plot alone.
However to remedy this, combined analysis with instanta-
neous data set can be utilized to better understand the nature
and formation of certain vortical structures and their motion.

Now coming to the contour plot, it can be noticed that all
six modes exhibit two local extremes of opposite sign. This
observation is especially more pronounced in the first four
modes, and modes one and four appear to be identical; simi-
larly, modes two and three appear in a pair but with the spatial
shift compared to modes 1 and 4. This suggests the periodic-
ity in the presence of the large-scale structures, present along
the shear layer. The first local extreme presents in first and
fourthmodes is of positive sign and suggest the local increase
in streamwise component yielding the downward shift of the
shear layer, whereas the second local extreme of negative
sign induces the increment in the streamwise component and
results in upward movement of the shear layer. This can be
ascribed to the momentum ejection and injection across the
shear layer. On combining this argument with the first four
modes, it becomes evident that the shear layer flapping is a
periodic event oscillating regularly about the mean position.
This suggests that the first four modes represent the undu-
lating motion of the shear layer. The last two modes (fifth
and sixth) are mainly representative of the wake mode and
relatively small-scale motions.

The phase plots of temporal coefficients are presented in
Fig. 12. The presence of a low-dimensional attractor is clearly
visible from the plots as mostly temporal coefficients are
clustered around the origin. Hence, it can be inferred that the
decomposition does its job to perform a linear mapping of
the data to a lower-dimensional space such that the variance
of the data in the lower-dimensional space is maximized.
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Since the POD decomposition is based on the two-point
correlation phase, information is lost due to which only spa-
tially coherent structures are revealed.However, the temporal
coefficients can be invoked to obtain insight in the spectral
sense. Although in general it is a good idea to utilize the tem-
poral coefficients, one must be careful as it does not reveal
the pure frequency. However, the fast Fourier transform of
the temporal coefficient could be a good indicator to estab-
lish relationship between modes. Hence, the FFT of the first
five temporal coefficients for three different norms is eval-
uated and collated in Fig. 13. Since the spatial coherence
is established from the energy-based eigenmodes, hence for
the sake of brevity only the FFT of temporal coefficients
for pressure- and density-based decomposition is reported.
The peak highlighted with the red circle corresponds to
5247 Hz, which corresponds to the vortical motion along
the shear layer (Fig. 8). This result explains the presence of
this particular frequency among all the eigenmodes investi-
gated in Fig. 11. It can be thought of as the most probable
(or dominant) frequency present in the domain; one can
safely assume that this frequency is responsible for large-
scale vortical motion along the shear layer and hence is the
frequency of the shear layer oscillation as well. The rela-
tion between mode two and three in Fig. 13(i) is clearly
unfurled from the FFT as well; the mode seems to be phase
shifted suggesting convection of vortices along the shear
layer. Similarly, for the density- and pressure-based decom-
positionmostly common frequencies are observed.However,
for these two decompositions, mostly higher harmonics are
witnessed, which suggests that these decompositions rep-
resent acoustic-related phenomenon. Most intriguing is the
presence of the higher frequencies; it appears that the two
peaks are in fact super-harmonics of the shear layer flapping
frequency. The harmonics can be related to the small-scale
vortical motion happening within the cavity due to vortex
stretching/breakdown at the trailing edge.

4.2.2 POD at x/d = 3.93 plane

POD modes for the x /d = 3.93 plane are presented in this
section, which lies in the region of vortex shedding immedi-
ately after the reattachment point. Here again, POD results
are shown for the N = 80 case. Again the first five and tenth
eigenmodes are presented in this section. From Fig. 14, it can
be inferred that first and third modes are closely related to
first mode very close to the mean flow. In these two modes,
vortical structures are observed above the aft region wall,
whereas second and fourth modes, which again appear simi-
lar, have more pronounced vortical structures shifted toward
the wall region. Similarly, from the fifth and tenth modes,
it can be seen that the structures are clustered close to the
wall. On combining this observation with that of z/d = 0
plane, it can be concluded that indeed large-scale structures

are present due to the vortex shedding at the trailing edge as
well as the structures passing through the shear layer, and
this is consistent with the observation of Fig. 11.

4.3 DMD analysis

From the discussion of the proper orthogonal decomposition
in the preceding section, the spatial coherence is established.
Although the fast Fourier transform does offer significant
insight in the spectral sense, the presence of mixed frequen-
cies throughout the modes indeed creates the confusion. The
source of this confusion lies in the lack of POD to extract
temporal orthogonality, which is its inherent limitation. This
issue can be remedied by invoking another modal decompo-
sition technique that extracts the temporal orthogonality and
relieves the observation of themixed frequency. The dynamic
mode decomposition does not collate the modes on the basis
of energy content; instead it is based on the observed fre-
quencies that are exclusive to a particular mode. So in a way
it can be said that the eigenvalues associated with the DMD
are actually representative of the growth and decay of any
instability present in the flow field. In the present investi-
gation, N = 101 snapshots are utilized that results in the
companion matrix of the size (N − 1) × (N − 1). The snap-
shots for the DMD have been generated such that it complies
with the Nyquist criteria, and in the current investigation, the
sampling frequency (Fs) has been maintained to be 105 Hz.
This choice of the Fs will assure that all the frequencies of
interest are resolved especially those detected in the POD
temporal coefficient spectra.

In Fig. 14, the L2-norm of the DMD spectrum for pres-
sure and velocity is presented. The choice of the sampling
frequency is reflected in the resolution of all the frequen-
cies that are relevant to characterize the physics. The three
frequencies marked in the plot (Fig. 14) as 1, 2, and 3 rep-
resent 5590, 7381, and 11,190 Hz, respectively, where the
highest frequency is the super-harmonic of the lowest one.
The dynamic modes corresponding to all the three field vari-
ables are presented for only those three frequencies, which is
consistent with the observation of the temporal coefficient
spectra. In Fig. 15a–c, the dynamic modes computed for
velocity, vorticity, and pressure, respectively, are presented.
The dynamic modes related to streamwise velocity show
the convection of large-scale vortical motion along the shear
layer and inside the cavity. The structures present along the
shear layer are the ones generated at the leading edge and are
convected downstream to interact with the trailing edge and
lead to the initiation of the self-sustained oscillation (feed-
back mechanism). The large wavelength present inside the
cavity for the first two modes signifies the low-frequency
structures traversing upstream. However, for the last mode
relatively smallerwavelength structure inside the cavity gives
impression of the feedbackmechanism. It can be conjectured
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Fig. 13 Fast Fourier transform of the temporal coefficient corresponding to the first five most energetic modes (i. energy POD, ii. pressure POD,
and iii. density POD)
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Fig. 14 POD modes for x/d = 3.93 plane (contour: out-of-plane component)

that first two modes reflect mostly the large-scale vortices,
whereas the third mode signifies the effect of vortex stretch-
ing inside the cavity while sweeping upstream. Apart from
these, structures past the trailing edge are also reflected in
the modal plot, which suggests that shear layer flapping and
vortex shedding in the wake region are at a similar frequency.
The same is true for the dynamic mode computed through
spanwise vorticity; for low frequency, large wavelengths are
present within the cavity, and for the super-harmonic, smaller
wavelengths depicting a complete feedback cycle are present.
The presence of the local maxima and minima characterizes

the vortical motion of opposite sign convecting downstream.
The large wavelength witnessed for the lower frequencies
probably signifies the interaction of vortex leading to pair-
ing/merging phenomenon. The presence of a single structure
along the shear layer is possibly related to the Rossiter’s first
mode, which makes sense because as seen from the POD
analysis low frequency type III vortices are present due to
the acoustic perturbation. However, the single structure for
highest frequency showing two wavelengths along the shear
layer signifies the vortex stretching process, possibly higher
Rossiter’s mode. Finally, the modes corresponding to the

123



Modal decomposition of turbulent supersonic cavity 149

Fig. 15 L2 norm for pressure (left) and streamwise velocity (right)

Fig. 16 Dynamic modes computed for a streamwise velocity, b spanwise vorticity, and c pressure field

pressure mostly represent the propagation of acoustic waves
inside the cavity. The acoustic wave travels back and forth
inside the cavity and, upon interacting with the shear layer
at the leading edge, results in the formation of vortices in
shear region leading to the onset of the self-sustained oscilla-
tion. The different pressure modes also seem to represent the
compression and expansion region at the leading and trail-
ing edge apart from the waves that interact with the shear
layer the during up and downstroke. For example, the first
two low-frequency modes clearly show the presence of bow
shock (or reattachment) at the trailing edge as a region of
high gradient (Fig. 16).

5 Conclusions

Wall-modeled LES of the supersonic open cavity at Mach 3
is reported, and the numerical results (mean) follow the
experimental observation very closely. The numerical results
validate the fact that wall modeling approach is efficient
in reducing computational overhead without compromising
the numerical accuracy. Also, the LES_IQ demonstrates the
effect of grid resolution used in the present study. Unsteady
data and phase-averaged data reveal the presence of discrete
vortices along the shear layer; it is also confirmed that these
vortices are responsible for the acoustic excitation and feed-
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back mechanism in the cavity. The modal decomposition
(POD and DMD) is performed on the various snapshots,
and it reveals that major flow structures governing much of
the phenomenon in the cavity are discrete vortices present
along the shear layer. The energy- and scalar-based POD is
performed along the centerline plane (z = 0). The energy-
based POD along this plane reveals the evolution of various
large-scale structures. Higher eigenmodes along this plane
reveal the presence of discrete structures formed due to the
acoustic excitation and wake vortices; also the incoming
boundary layer contains vortical structures that are convected
downstream. The variation in the wavelength across vari-
ous modes suggests phenomena exclusive to vortical motion,
i.e., stretching and pairing/merging. This suggests that the
growth of vortices is basically due to the interaction of dif-
ferent types of vortices generated independently. The spectra
of temporal coefficients for energy, pressure, and density
show consistency in a sense that the entire norm reveals
more or less similar frequencies. The fundamental frequency
that is close to the Rossiter’s first mode is also revealed,
the most prominent being the first super-harmonic that is
present consistently throughout for all the norms. The DMD
performed on the spanwise vorticity, streamwise velocity,
and pressure all reveal the similar observation as POD. The
presence of the feedback mechanism is established through
the velocity- and vorticity-based decomposition, whereas
pressure-based modal analysis points toward the acoustics-
related phenomenon.
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