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Abstract This paper presents an efficient and robust numer-
ical framework to deal with multiphase real-fluid flows
and their broad spectrum of engineering applications. A
homogeneous mixture model incorporated with a real-fluid
equation of state and a phase change model is considered
to calculate complex multiphase problems. As robust and
accurate numerical methods to handle multiphase shocks
and phase interfaces over a wide range of flow speeds,
the AUSMPW+_N and RoeM_N schemes with a system
preconditioning method are presented. These methods are
assessed by extensive validation problems with various types
of equation of state and phase changemodels. Representative
realistic multiphase phenomena, including the flow inside a
thermal vapor compressor, pressurization in a cryogenic tank,
and unsteady cavitating flow around a wedge, are then inves-
tigated as application problems. With appropriate physical
modeling followed by robust and accurate numerical treat-
ments, compressible multiphase flow physics such as phase
changes, shock discontinuities, and their interactions arewell
captured, confirming the suitability of the proposed numeri-
cal framework to wide engineering applications.
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1 Introduction

Compressible multiphase flows are found in numerous appli-
cations such as underwater explosive devices, cavitation
around high-speed projectiles, phase change in desalination
plants, and liquid propellant flows in rocket engines. Numer-
ical analysis of these flows requires a suitable mathematical
model representing compressible multiphase flow features.
For example, the multiphase mathematical model should
properly handle a phase interface andmultiphase shockwhen
dealing with the underwater explosion. For the simulation of
flows with phase change, the heat exchange between phases
must be accurately reflected in the multiphase model, which
can be realized by fully coupling the energy equation. Also,
the multiphase mathematical model should be able to readily
include, if necessary, additional phase (or species) without
incurring a significant increase in computational cost.

One of the well-known general multiphase models is
the non-equilibrium model proposed by Baer and Nunzi-
ato [1], which solves the continuity, momentum, and energy
equations for each phase, recognizing different pressures,
velocities, and temperatures between phases within a com-
putational cell. The non-equilibrium interactions at phase
interfaces are taken into account by modeling the interfacial
drag, heat and mass transfer, and pressure relaxation. The
governing equations of this type are usually hyperbolic, but
cannot be expressed in a fully conservative form, making it
difficult to obtain the correct shock jump condition. Another
non-equilibrium model that is hyperbolic as well as conser-
vative has been proposed by Romenski et al. [2]. However,
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solving this set of conservation laws with full interaction
terms requires a significant computational cost for realistic
three-dimensional applications. Depending on the nature of
the problems of interest, redundant equations of the non-
equilibrium model can be dropped while keeping the terms
directly related to the velocity non-equilibrium process [3].
Some reducedmodels with the velocity and/or pressure equi-
librium are widely used, and continuous efforts have been
made to analyze them and to address issues associated with
conservation and hyperbolicity [4–6].

On the other hand, a wide range of multiphase flows
can also be described by further introducing the mechanical
(velocity and pressure) and thermal (temperature) equilib-
rium assumptions between phases on each computational
cell, which is known as the homogeneousmixturemodel. The
homogeneous mixture approach secures the issues of con-
servation and hyperbolicity, ensuring the Rankine–Hugoniot
shock jump condition, and thus facilitates the numerical
methods developed for single-phase gas dynamics. In the
homogeneous mixture model, the fluid mixture is described
by one set of the continuity, momentum, and energy equa-
tions. One more continuity equation is necessary to account
for the mixture composition in the metastable equilibrium
induced by the different chemical potentials of the vapor
and liquid phases. Turbulence effects can be incorporated
by employing a turbulence model in single-phase flows,
although more research on two-phase turbulence modeling
is definitely necessary. Owing to relatively simple formula-
tion, realistic three-dimensional applications can be realized
when the relevant equilibrium assumptions are acceptable.

Numerous studies on multiphase problems, especially on
phase change problems, have been carried outwith the homo-
geneous mixture model [7–10]. However, applications have
been mostly limited to the area of phase change flows; multi-
phase flows with shocks or interactions between shocks and
phase interfaces have been rarely investigatedwith the homo-
geneous mixture model. The purpose of the present work is
efficient and accurate computations of a broad spectrum of
multiphase phenomena. Within the framework of the homo-
geneous mixture approach, the applicability of a numerical
framework can be extended with:

– accurate numerical methods suitable to flows over a wide
range of speeds,

– proper physical models for phase change,
– real-fluid properties by general equation of state (EOS).

Describing multiphase flows with the homogeneous mix-
ture model is rather straightforward, but the numerical
methods designed for single-phase flows should be substan-
tially altered by incorporating physical and numerical issues
arising from homogeneous multiphase flows. Among such
issues are the lower speed of sound in a mixture, deteriora-

tion of convergence and accuracy in the low-Mach-number
regions, and separate treatment for shock and phase discon-
tinuities. Keeping these in mind, the authors have developed
robust and accurate flux schemes for multiphase real-fluid
flows spanning a wide range of flow speeds [11].

Since the homogeneous mixture model accompanies the
relaxation of chemical potential during phase change, a
proper phase change model should be implemented. In order
to apply the non-equilibrium phase transition models, the
EOS should cover not only the sub- and supercritical states,
but also the metastable state. Furthermore, a simple mathe-
matical formulation of EOS is not available tomost real fluids
such as cryogens (LH2, LO2, and LN2), or liquid fuels (gaso-
line, kerosene, LPG, and ammonia). Therefore, it is crucial
to develop a numerical framework that is fully compatible
with arbitrary EOS encompassing the metastable state.

In this work, we firstly present efficient, robust, and accu-
rate numerical methods to deal with multiphase real-fluid
flows over awide range of speedswithin the framework of the
homogeneousmixturemodel and then validate them by com-
puting multiphase test cases extensively. Finally, we apply
the validated numerical framework to practical engineering
problems with their own difficulties as follows:

– nucleation in a thermal vapor compressor (TVC) which
requires a non-equilibrium phase change model to simu-
late droplet condensation inside the TVC,

– pressurization inside a cryogenic tank, where an EOS
should cover the entire regime of thermodynamic states,

– unsteady cavitating flow around a wedge which requires
a well-scaled numerical flux for unsteady flows spanning
from subsonic to supersonic Mach numbers.

2 Governing equations

2.1 Homogeneous mixture model

The homogeneous mixture model with mass fraction is
adopted to describe multiphase flows. The compressible
Reynolds-averaged Navier–Stokes equations are cast in an
integral, Cartesian tensor form within an arbitrary control
volume Ω with control surface ∂Ω as follows:

∂

∂t

∫
Ω

WdΩ +
∮

∂Ω

[F − Fv] dS =
∫

Ω

QpcdΩ. (1)

The vector of conservative variables W and the convective
flux vector F are, respectively, given by

W = [ρ ρu ρv ρE ρyv ρyg ρη
]T

, (2)
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F = [ρU ρuU + nx p ρvU + ny p

ρHU ρyvU ρygU ρηU ]T. (3)

Fv indicates the viscous flux vector, and Qpc is the vector
of the phase change source term. Note that the equation of
ρη is included only if the nucleation-theory-based model is
employed as a phase change model, which will be handled
in Sect. 2.3. In (3), U (≡ nxu + nyv) is the contravariant
velocity component normal to the surface element dS. The
mass fractions satisfy the following constitutive relation:

yl + yv + yg = 1, (4)

where the subscripts (l, v, g) signify the liquid, vapor, and
non-condensable gas phases, respectively.

The speed of sound of a mixture is evaluated from the
following definition:

c2 ≡ ∂p

∂ρ

⏐⏐⏐⏐
s
= ρ ∂h

∂T

ρ
∂ρ
∂p

∂h
∂T + ∂ρ

∂T

(
1 − ρ ∂h

∂p

) . (5)

The density and derivative values of the mixture are deter-
mined from the definitions of mixture density and enthalpy
(7, 8). For example,

∂ρ

∂p
=ρ2

(
1 − yv − yg

ρ̌l
2

∂ρ̌l

∂p

⏐⏐⏐⏐
T
+ yv

ρ̌v
2

∂ρ̌v

∂p

⏐⏐⏐⏐
T
+ yg

ρ̌g
2

∂ρ̌g

∂p

⏐⏐⏐⏐
T

)
,

(6)

where the derivatives of each phase are obtained from the
respective EOS of each phase. The left-hand side of (6) is
evaluated under constant T, yv, yg conditions. Figure 1
shows that the mixture speed of sound obtained by (5) is
lower than Wood’s speed of sound (speed of sound from
the mechanical equilibrium mixture), indicating that the
homogeneous mixture model satisfies the subcharacteris-
tic condition with respect to the mechanical equilibrium
model [12].

2.2 Equation of state (EOS)

The mixture density is defined as follows:

1

ρ
=
(
1 − yv − yg

)
ρ̌l

+ yv
ρ̌v

+ yg
ρ̌g

. (7)

Here, q̌ indicates the quantity q defined by Amagat’s law.
The mixture enthalpy h is calculated as

h = hl
(
1 − yv − yg

)+ hvyv + hgyg. (8)

The system is then closed by including an EOS for the con-
stituent phases. All thermodynamic properties of each phase
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Fig. 1 Comparison of speed of sound

are generated as functions of the local pressure p and tem-
perature T as follows:

ρ̌i = ρ̌i (p, T ) , hi = hi (p, T ) , (i = l, v, g). (9)

We use various relations between the thermodynamic prop-
erties (ρ, h) and the independent variables (p, T ).

In order to adopt the same EOS used in the reference
paper of each validation case, the non-condensable gas phase
is described by an ideal gas EOS and the liquid phase of
water is approximated by the stiffened gas model [13] for
air–water flows without phase change. An EOS for phase
change flows is chosen to reflect real-fluid properties and to
covermetastable states as well. In the phase change problems
of water, the liquid and vapor phases are described by the
IAPWS97 formulation [14].

For real fluids, all thermodynamic properties of both liquid
and vapor phases are generated from the Standard Refer-
ence Database 23, available from the National Institute of
Standards and Technology (NIST) [15]. To access these ther-
modynamic properties efficiently, we express the density and
enthalpy as functions of the local pressure and temperature
by the spline-based table look-up method (SBTL) [16]. This
method creates biquadratic spline functions for describing
the intermediate regions between the data points that are gen-
erated from theNIST database. All coefficients of each spline
function are C1 continuous across every data point.

2.3 Phase change models

The present work describes the non-equilibrium phase
change process by adding source terms as follows:

Qpc = [0 0 0 0 ṁvp − ṁcd 0
]T

. (10)
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The vaporization and condensation rates, ṁvp and ṁcd, are
expressed in various forms in the literature. For example,
Merkle [17] defines the rates as:

ṁvp = Cvp
max(psat − p, 0)

0.5ρ∞V 2∞t∞
ρ̌lαl, (11)

ṁcd = Ccd
max(p − psat, 0)

0.5ρ∞V 2∞t∞
ρ̌vαv, (12)

where ρ∞ and V∞ are the free stream mixture density and
mixture velocity, respectively. Here, t∞ denotes the refer-
ence time scale, usually defined by the characteristic length
divided by V∞. The Schnerr–Sauer model [18] is given by:

ṁvp = 3αv(1 − αv)

RB

ρ̌vρ̌l

ρ

√
2

3

(psat − p)

ρ̌l
if p < psat,

(13)

ṁcd = 3αv(1 − αv)

RB

ρ̌vρ̌l

ρ

√
2

3

(p − psat)

ρ̌l
if p ≥ psat.

(14)

The bubble radius is given by RB =
(

αv
1−αv

3
4πn

)1/3
, and

the bubble number density (n) is set to 109 for all computa-
tions. When the Hertz–Knudsen-equation-based model [19]
is used, phase change rates are expressed as

ṁvp = Cvp
max(psat − p, 0)√

2πRuT
ρ̌lαl, (15)

ṁcd = Ccd
max(p − psat, 0)√

2πRuT
ρ̌vαv. (16)

Here, Ru is the universal gas constant. In the above phase
change rates, Ccd and Cvp indicate the accommodation
coefficients for condensation and vaporization, respectively.
Depending onwhether the local pressure is lower/higher than
the saturation pressure, the conversion from liquid/vapor to
vapor/liquid appears at the vaporization/condensation rate of
ṁvp, ṁcd, respectively. In order to capture the effect of nucle-
ation and droplet distribution accurately, we also employ a
phase change model based on the classical nucleation theory.
The nucleation-theory-based model considers the pressure
deviation from the saturation point and the droplet distribu-
tion [20], and hence, it solves an additional transport equation
for the droplet number density (η) in the governing equations.
The phase change source term is then expressed as

Qpc = [0 0 0 0 − (ṁgen + ṁgrowth
)

0 ρ I
]T

, (17)

where ṁgen and ṁgrowth stand for phase change rates due
to the generation and the growth/demise of droplets, respec-
tively. They are defined as follows:

ṁgen = 4

3
πρ̌l I r

∗3, ṁgrowth = 4πρ̌lr
2η

∂r

∂t
, (18)

where I and ∂r/∂t denote the nucleation rate and droplet
growth rate, respectively. Detailed formulations can be found
in Ref. [20].

2.4 Turbulence model

A turbulence model based on the Boussinesq hypothesis
relates the Reynolds stress with the eddy viscosity μT. The
role of such first-order turbulence closures is to compute
the eddy viscosity μT properly. Among a large variety of
first-order closure models, we choose the k − ω SST (shear
stress transport) two-equation model [21]. When the prob-
lems of interest need to take turbulence effects into account,
the following turbulence transport equations are added to the
governing equations (1). In the present work, the turbulence
equations are decoupled from the mean-flow equations to
realize the numerical treatment of the turbulence transport
and mean-flow equations flexibly.

– Turbulent kinetic energy (k) equation

∂

∂t
(ρk) + ∂

∂x j

(
ρu j k

)

− ∂

∂x j

[
(μ + σkμT)

∂k

∂x j

]
= QT,k . (19)

– Turbulent dissipation rate (ω) equation

∂

∂t
(ρω) + ∂

∂x j

(
ρu jω

)

− ∂

∂x j

[
(μ + σωμT)

∂ω

∂x j

]
= QT,ω. (20)

The vector of conservative variables (2) and convective flux
vector (3) are then given by

W = [ρ ρu ρv ρE ρyv ρyg ρk ρω
]T

, (21)

F = [ ρU ρuU + nx p ρvU + ny p ρHU

ρyvU ρygU ρkU ρωU
]T

. (22)

In (19) and (20), the source terms QT,k and QT,ω are given
as follows:

QT,k = P̃ − β∗
Tρωk, (23)

QT,ω = Cωρ

μT
P̃ − βTρω2 + 2ρ(1 − F1)

σω2

ω

∂k

∂x j

∂ω

∂x j
. (24)
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Here, P̃ represents the production term for k, F1 is the blend-
ing function, and μT is given by

μT = a1ρk

max(a1ω, f2
√
2Si j Si j )

. (25)

More details and the values of each coefficient in the k − ω

SST model can be found in Ref. [21].

2.5 System preconditioning

In general, numerical methods for compressible flows pos-
sess good stability and convergence characteristics in high-
speed compressible flow regimes. At low speeds, however,
the convergence rates are known to be significantly dete-
riorated by system stiffness resulting from the disparate
convective and acoustic velocities. The convergence rates
can be made independent of the Mach number by altering
the acoustic speed of the system such that all eigenvalues are
of the same order and thus the condition number approaches
unity. In order to precondition the governing equations (1),
we pre-multiply the time derivative term by the precondition-
ing matrix of Weiss and Smith [22] as follows:

ΓΓΓ
∂

∂τ

∫
Ω

QdΩ +
∮

∂Ω

[F − Fv] dS =
∫

Ω

QpcdΩ. (26)

Here, Q indicates the primitive variable vector given by

Q = [p u v T yv yg k ω
]T

, (27)

and the preconditioning matrix ΓΓΓ is

ΓΓΓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β

0 0 ∂ρ
∂T

∂ρ
∂ yv

∂ρ
∂ yg

0 0
u
β

ρ 0 ∂ρ
∂T u

∂ρ
∂ yv

u ∂ρ
∂ yg

u 0 0
v
β

0 ρ
∂ρ
∂T v

∂ρ
∂ yv

v
∂ρ
∂ yg

v 0 0

H∗ ρu ρv
∂ρ
∂TH+ρ ∂h

∂T
∂ρ
∂ yv

H+ρ ∂h
∂ yv

∂ρ
∂ yg

H+ρ ∂h
∂ yg

0 0
yv
β

0 0 ∂ρ
∂T yv

∂ρ
∂ yv

yv+ρ
∂ρ
∂ yg

yv 0 0
yg
β

0 0 ∂ρ
∂T yg

∂ρ
∂ yv

yg
∂ρ
∂ yg

yg+ρ 0 0
k
β

0 0 ∂ρ
∂T k

∂ρ
∂ yv

k ∂ρ
∂ yg

k ρ 0
ω
β

0 0 ∂ρ
∂T ω

∂ρ
∂ yv

ω
∂ρ
∂ yg

ω 0 ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

with

H∗ = H

β
+ ρ

∂h

∂p
− 1. (29)

If 1/β becomes ∂ρ
∂p , thenΓΓΓ reverts to the Jacobianmatrix ∂W

∂Q ,
resulting in the non-preconditioned system in the primitive
form. The eigenvalues of the preconditioned system in (26)
are given by

λ

(
ΓΓΓ −1 ∂F

∂Q

)
= U ′ − D,U ′ + D,U,U,U,U,U,U. (30)

Here,

U ′ = 1

2

(
1 + c′2

c2

)
U, (31)

D = 1

2

√(
1 − c′2

c2

)2

U 2 + 4c′2. (32)

The terms 1/β and c′ are related by

1

β
= 1

c′2 −
∂ρ
∂T

(
1 − ρ ∂h

∂p

)

ρ ∂h
∂T

. (33)

The preconditioned speed of sound c′ is then given by

c′ = min
(
c,max

(√
u2 + v2, Vco

))
. (34)

In (34), Vco is a cutoff value that prevents the local velocity
from zero in the vicinity of the stagnation region. The cutoff
parameter Vco is generally specified as Vco = kV∞. We set
k = 1 in every computation of low-speed flow or flow where
incompressible and compressible regions coexist. In super-
sonic flows, the preconditioned speed of sound becomes the
local speed of sound, meaning that the preconditioning is
turned off.

In low-Mach-number unsteady flows, the unsteady pre-
conditioned speed of sound is given by

c′
un = min

(
c,max

(√
u2 + v2, Vco, Vun

))
. (35)

Here, the unsteady preconditioning parameter Vun accounts
for the effect of the Strouhal number [23] as follows:

Vun = L

π�t
= L

π�tV
× V = St × V, (36)

where L is a characteristic length scale and�t is the physical
time step. The characteristic length scale is typically taken as
the problem domain size, a representative length scale of the
lowest wave number. Equation 36 is derived for single-phase
gas flows, but it is applicable to multiphase flows because the
multiphase effects described by the homogeneous mixture
equations simply change themagnitudeof the speedof sound.

3 Numerical methods

We introduce the flux schemes for homogeneous multiphase
real-fluid flows over a wide range of speeds. Robust and
accurate shock-capturing schemes originally developed for
single-phase gas dynamics,AUSMPW+ [24] andRoeM[25],
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have been extended to AUSMPW+_N and RoeM_N, respec-
tively, for multiphase real-fluid flows with general EOSs.
The extended schemes have proven to be robust and accurate
without compromising the accuracy of the original schemes.
Detailed derivation and discussion on the features of both
schemes can be found in Ref. [11].

3.1 AUSMPW+_N

Within the framework of standard finite volume discretiza-
tion, the numerical flux of AUSMPW+_N at a cell-interface
is given by:

F1/2 = M̄+
L c1/2ψL + M̄−

R c1/2ψR + p1/2. (37)

Here, ψ and p1/2 are given by

ψ = [ρ ρu ρv ρH ρyv ρyg ρk ρω]T, (38)

p1/2 = [0 nx p1/2 ny p1/2 0 0 0 0 0]T. (39)

The pressure flux is

p1/2 = P+
L pL + P−

R pR + pu . (40)

From the AUSM+-up scheme [26], the velocity-difference
flux term is given by

pu = −2KuP
+
L P−

R ρ1/2c1/2 (UR −UL) . (41)

Here, 0 ≤ Ku ≤ 1, and we set Ku = 0.5 in all calculations.
In (37), M̄±

L,R are defined as follows:
if M1/2 ≥ 0,

M̄+
L = M+

L + M−
R [(1 − w)(1 + fR) − fL], (42)

M̄−
R = M−

R w(1 + fR). (43)

If M1/2 < 0,

M̄+
L = M+

L w(1 + fL), (44)

M̄−
R = M−

R + M+
L [(1 − w)(1 + fL) − fR], (45)

where M1/2 = M+
L + M−

R . The Mach number and pres-
sure splitting functions at a cell-interface, M±

L,R and P±
L,R,

are obtained using the Mach number of each side ML,R =
UL,R/c1/2 as follows:

M± =
{

± 1
4 (M ± 1)2 |M | ≤ 1

1
2 (M ± |M |) |M | > 1,

(46)

P± =
{

± 1
4 (M ± 1)2 (2 ∓ M) ± αM

(
M2 − 1

)2 |M | ≤ 1
1
2 (1 ± sign (M)) |M | > 1.

(47)

Fig. 2 Interface of a two-dimensional cell

In order to prevent unwanted near-wall oscillations and
overshoots behind a strong shock, AUSMPW+_N invokes
pressure-based weighting functions that provide a numeri-
cal dissipation proportional to the local pressure difference.
The pressure-based weighting functions f andw (originally,
symbolized as ω, but here w is used not to be confused with
the turbulent dissipation rate) in (42)–(45) are defined as

fL,R =
(
pL,R + ρ1/2c21/2

ρ1/2c21/2
− 1

)
(1 − w)

ρ1/2

ρL/R
, (48)

w = max(w1, w2), (49)

where

( )L/R =
{

( )L M1/2 ≥ 0

( )R M1/2 < 0.
(50)

Here, w1 = 1 − Π3
1/2, and w2 is given by

w2 = 1 −
(
min ( p̄L+1, p̄R+1, p̄L−1, p̄R−1)

max ( p̄L+1, p̄R+1, p̄L−1, p̄R−1)

)2

. (51)

Figure 2 shows the computational stencil of w2. The
weighting functions include a shock-discontinuity-sensing
term Π1/2 which plays a crucial role in capturing the multi-
phase shock discontinuity. The shock-discontinuity-sensing
term Π and modified pressure p̄ in the above equations are
formulated as follows:

Π1/2 = min

(
p̄L
p̄R

,
p̄R
p̄L

)
(52)

with

p̄L,R = pL,R + 0.1 × min
(
ρLc

2
L, ρRc

2
R

)
. (53)

To accurately capture the shock discontinuity, an AUSM-
type scheme requires prudent choice of the numerical speed
of sound at a cell-interface c1/2. The Prandtl relation in gas
dynamics does not hold in general two-phase flows, so the
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speed of sound in the original AUSMPW+ scheme is not
applicable. In AUSMPW+_N, the interfacial speed of sound
is evaluated from (5) using the Roe-averaged pressure, tem-
perature, and mass fractions. The resultant c1/2 is consistent
with the physical speed of sound in mixture flows [27].

For unsteady low-Mach-number flow calculations, the
velocity- and pressure-difference dissipation fluxes should
be independently scaled. The velocity-difference pressure
flux (41) is scaled by the velocity scaling function (φu) as
follows:

p∗
1/2 = P+

L pL + P−
R pR + p∗

u, p∗
u = φu pu (54)

with α required in (47) given by

α = 3

16

(
−4 + 5φ2

u

)
∈
[
−3

4
,
3

16

]
. (55)

Here,

φu = θu (2 − θu) , (56)

and θu is defined by

θu = min

⎛
⎝1,max

⎛
⎝
√
u21/2 + v21/2

c1/2
,
Vco
c1/2

⎞
⎠
⎞
⎠ . (57)

Next, the pressure-difference term (48) is scaled by the pres-
sure scaling function (φp) as follows:

f ∗
L,R = 1

φp
fL,R, (58)

with

φp = θp
(
2 − θp

)
. (59)

Here, θp is given by

θp = min

⎛
⎝1,max

⎛
⎝
√
u21/2 + v21/2

c1/2
,
Vco
c1/2

,
Vun
c1/2

⎞
⎠
⎞
⎠ . (60)

The numerical flux (37) scaled with (54) and (58) yields the
correct asymptotic behavior in the sense that theAUSMPW+_N
scheme stably approaches the incompressible limit, as ML,R

(or equivalently, the free stream Mach number) → 0.

3.2 RoeM_N

The RoeM_N scheme for multiphase real-fluid flows at a
cell-interface is expressed as follows:

F1/2 = b1FL − b2FR

b1 − b2
+ b1b2

b1 − b2

×
⎛
⎝�W′ − g

1 +
∣∣∣M̃
∣∣∣
B�W′

⎞
⎠ . (61)

Here, �W′ and B�W′ are, respectively, given by

�W′ = [�(ρ) � (ρu) � (ρv) � (ρH)

� (ρyv) �
(
ρyg
)

�(ρk) � (ρω)]T, (62)

B�W′ = �ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
û
v̂

Ĥ
ŷv
ŷg
k̂
ω̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− f �p

ĉ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
û
v̂

Ĥ
ŷv
ŷg
k̂
ω̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ρ̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�u
�v

�H
�yv
�yg
�k
�ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ρ̂�U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−nx
−ny
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (63)

In (61), M̃ is given by

M̃ = sign

(
Û

ĉ

)
× min

(
1,

∣∣∣∣∣
Û

ĉ

∣∣∣∣∣
)

, (64)

where the caret ( ˆ ) denotes the Roe-averaged value.
To prevent an expansion shock without diffusing contact

discontinuity, the following signal velocities are introduced:

b1 = max
(
0, Û + ĉ,UR + ĉ

)
, (65)

b2 = min
(
0, Û − ĉ,UL − ĉ

)
. (66)

The Mach-number-based control functions f and g to cure
the shock instability are then introduced as follows:

f =
{
1 û2 + v̂2 = 0

|M̂|h elsewhere,
(67)
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g =
{
1 M̂ = 0

|M̂|1−Π1/2 M̂ �= 0.
(68)

Here, M̂ = Û/ĉ, and h is given by

h = 1 − min
(
Π1/2,ΠL+1/2,ΠR+1/2,ΠL−1/2,ΠR−1/2

)
.

(69)

The computational stencil for h is the same as in Fig. 2,
and the same shock-discontinuity-sensing term (Π1/2, 52) is
used for the RoeM_N scheme. Based on the linear perturba-
tion analysis [25], f is designed to damp out the feeding rate
of the pressure perturbation into the density field, and g is
designed to control the damping rate of the density and the
pressure perturbation. Themultidimensional dissipation pro-
vided by f and g prevents the shock instability triggered by
the pressure-difference term in the mass flux of the original
Roe scheme.

Similar to the AUSMPW+_N scheme, the velocity-
and pressure-difference dissipation fluxes are independently
scaled for unsteady low-Mach-numberflowcalculations. The
pressure-difference dissipation term (the second term on the
right-hand side in (63)) is scaled by the pressure scaling func-
tion (59) as follows:

f �p

ĉ2
→ 1

φp

f �p

ĉ2
. (70)

Next, the speed of sound associated with the velocity-
difference dissipation term (the last term on the right-hand
side in (63)) is scaled by the velocity scaling function (56)
as follows:

b1u = max
(
0, Û + φu ĉ,UR + φu ĉ

)
, (71)

b2u = min
(
0, Û − φu ĉ,UL − φuĉ

)
, (72)

M̃u = sign

(
Û

φuĉ

)
× min

(
1,

∣∣∣∣∣
Û

φu ĉ

∣∣∣∣∣
)

. (73)

The resulting RoeM_N is then given by

F1/2 = b1FL − b2FR

b1 − b2
+ b1b2
b1 − b2

⎛
⎝�W′− g

1+
∣∣∣M̃
∣∣∣
B�W′

1

⎞
⎠

− b1u b2u
b1u − b2u

g

1 +
∣∣∣M̃u

∣∣∣
B�W′

2. (74)

In (74), B�W′ (61) has been split into two parts to high-
light the velocity-difference term (B�W′

2) and the other part
containing the pressure-difference term (B�W′

1) as follows:

B�W′
1 = �ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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û
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− 1

φp
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ĉ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
û
v̂

Ĥ
ŷv
ŷg
k̂
ω̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ρ̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�u
�v

�H
�yv
�yg
�k
�ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (75)

B�W′
2 = ρ̂�U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−nx
−ny
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (76)

Like the AUSMPW+_N scheme, the RoeM_N scheme (74)
scaled with (70)–(73) stably approaches the incompressible
limit, as M̂ (or equivalently, the free stream Mach number)
→ 0.

4 Validation

The accuracy and robustness of the AUSMPW+_N and
RoeM_Nschemes are validated by six test cases showing var-
ious aspects of multiphase flow physics. The performances
of AUSMPW+_N and RoeM_N are compared with those
of the Roe’s flux difference splitting (FDS) [28], precondi-
tioned Roe’s FDS (p-Roe) [22], and AUSM+-up schemes.
Section 4.1 is computed with an explicit Euler method and
first-order flux schemes. Elsewhere, unsteady calculations
are performed by the third-order total-variation-diminishing
(TVD) Runge–Kutta scheme [29], and steady-state calcu-
lations are performed by the preconditioned lower–upper
symmetric Gauss–Seidel (LU-SGS)method [30]. TheMLP5
limiter [31] is employed to obtain accurate monotonic solu-
tions. The turbulent problems in Sects. 4.5 and 4.6 are solved
by the k − ω SST turbulence model.

Table 1 summarizes the basic flow characteristics and the
primary rationale for each validation problem.

4.1 Quirk’s test

The Quirk’s odd–even decoupling test [32] is well known
for examining the basic shock stability characteristics of a
numerical scheme. A planemoving shock wave withMs = 6
is simulated with a grid perturbed along the centerline.
Whereas the AUSMPW+ and RoeM schemes in gas dynam-
ics are known to be stable in this test, Roe’s FDS suffers
from a carbuncle phenomenon [24,25].We conduct the same
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Table 1 Summary of validation problems (liq: liquid, vap: gas phase of the same fluid, gas: non-condensable gas)

Sections Flow regime Convective flux EOS Validation rationale

4.1, 4.2, 4.4 High Mach, unsteady AUSMPW+_N, RoeM_N,
Roe (except Sect. 4.2)

Liq (water): stiffened EOS
Gas (air): ideal gas law

Robustness of
AUSMPW+_N and
RoeM_N in multiphase
shock problems

4.3 Low Mach, steady AUSMPW+_N, RoeM_N,
p-Roe, AUSM+-up

Liq (water): stiffened EOS
Gas (air): ideal gas law

Accuracy and convergence
in low-Mach-number flow

4.5 All Mach, steady AUSMPW+_N, RoeM_N Liq, vap (N2): SBTL fromNIST Accuracy in cryogenic
cavitating flow

4.6 High Mach, steady AUSMPW+_N, RoeM_N,
Roe, AUSM+-up

Liq, vap (water): IAPWS97 Accuracy of flux schemes
with nucleation model in
phase change process
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Fig. 3 Density contours in Quirk’s test (yg = 0.1). a Roe’s FDS. b AUSMPW+_N. c RoeM_N

test in two-phase mixture flows in order to confirm that the
same robustness of AUSMPW+ and RoeM is preserved in
their multiphase extensions, AUSMPW+_N and RoeM_N
schemes. We set �t = 1 × 10−5 s. A uniform, unit-spacing
grid of 800 × 20 cells has the centerline perturbation as fol-
lows:

yi, jmid =
{
y jmid + 10−4, for i even,

y jmid − 10−4, for i odd.

Figure 3 shows the results for yg = 0.1. As observed
in gas dynamics (yg = 1.0), the Roe’s FDS destroys the
original planar shock profile by amplifying the numerical
error as the shock propagates. Both AUSMPW+_N and
RoeM_N capture the monotonic shock profile and remain
stable throughout the simulation. Table 2 summarizes the
results of Quirk’s test for a range of gas mass fractions.
The Roe’s FDS becomes stable as the two-phase mixture
approaches a pure liquid. This result is attributed to the fact
that the mixture density is great enough not to be disturbed
by the pressure field. Both AUSMPW+_N and RoeM_N are
stable at any mass fraction, confirming their robustness in
two-phase flows.

Table 2 Results of Quirk’s test for various yg

Gas mass fraction (yg) Roe AUSMPW+_N RoeM_N

1.0 (gas) Unstable Stable Stable

1.0 × 10−1 Unstable Stable Stable

1.0 × 10−2 Unstable Stable Stable

1.0 × 10−3 Stable Stable Stable

1.0 × 10−4 Stable Stable Stable

1.0 × 10−5 Stable Stable Stable

1.0 × 10−6 Stable Stable Stable

1.0 × 10−7 Stable Stable Stable

1.0 × 10−8 Stable Stable Stable

0.0 (water) Stable Stable Stable

4.2 Two-phase shock-tube

In order to examine the capability to handle stiff problems,
two-phase shock-tube test cases are considered.Air andwater
are initially separated, and water is driven by air according
to the initial conditions that are the same as in Ref. [33].
The opposite case at which air is driven by water is also
computed with the initial condition in the same reference
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Fig. 4 Solutions of air-to-water shock-tube problem at t = 2 ms.
a Pressure and temperature distribution. bVolume fraction and velocity
distribution

paper. Since this test case does not consider the phase change
phenomenon, the vapor phase is not included. Each problem
is computed up to 2.0× 10−3 s with �t = 2.0 × 10−6 s for
N = 500 grid (CFL ≈ 0.2).

To demonstrate grid convergence, additional computa-
tions are carried out on N = 2500 and 5000 grids. For the
purpose of brevity and avoiding untidiness, the results with
N = 500 and 5000 are presented. Figures 4 and 5 show the
profiles of the velocity, pressure, temperature, and volume
fraction for the air-to-water andwater-to-air shock-tube prob-
lems, respectively. The solution of N = 500 grid is plotted
for every third point for clarity. All flow features includ-
ing shock waves, rarefaction waves, and phase interface are
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Fig. 5 Solutions of water-to-air shock-tube problem at t = 2 ms.
a Pressure and temperature distribution. bVolume fraction and velocity
distribution

resolved sharply, and the computed solutions remain stable
as the grid system is refined. In the case of the air-to-water
shock-tube, a strong shock is transmitted into the liquid phase
and rarefaction waves are reflected back into the air phase. In
the other case, a shock is transmitted into the gas phase and
rarefaction waves are reflected back into the liquid phase.

4.3 Inviscid mixture flow around a cylinder

As a test of checkerboard instability at low-Mach-number
flows, an air–water mixture flow around a cylinder is solved.
The computations are performed on a 72× 100 O-type grid.
The initial gas volume fraction is set to 0.1. The free stream
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Fig. 6 Results of mixture flow around a cylinder. a Pressure over a cylinder surface (V∞ = 0.5 m/s). b Convergence history (V∞ = 0.5 m/s).
c Fluctuation of static pressure. d Fluctuation of gas volume fraction

velocities are varied as V∞ = 0.5, 1, 2, 4, 5 m/s at
P∞ = 101,325 Pa, T∞ = 300 K, so the free stream Mach
number ranges roughly from 2 × 10−3 to 2 × 10−2. For the
purpose of comparison, we solve the same problem with the
p-Roe and AUSM+-up schemes which are known to perform
successfully in steady low-Mach-number flows.

Figure 6a plots the normalized pressure distribution along
the cylinder surface when V∞ = 0.5 m/s. The curves are
smooth, indicating the absence of numerical instabilities.
AUSMPW+_N andRoeM_Nproduce slightlymore accurate
solutions than p-Roe and AUSM+-up at the rear stagnation
point (θ = 0◦, 360◦). The convergence behaviors are plot-
ted in Fig. 6b, showing that the residual decreases faster
in RoeM_N and AUSMPW+_N. Figure 6c, d displays log–
log plots of the pressure fluctuation (≡ (pmax − pmin)/p∞)

and the fluctuation of the gas volume fraction (≡ (αg,max −
αg,min)) in terms of the inflow Mach number. As the spa-
tial pressure distribution is related to the p2 field [34] in
the low-Mach-number limit, the pressure fluctuation should
exactly scale with M2∞ . The proposed schemes match the
theoretical asymptotic prediction, and the fluctuation of the
gas volume fraction also scales with M2∞ as seen in the low-
Mach-number two-phase channel flows in Ref. [35].

4.4 Inviscid interaction between a shock and a water
column

Next, we demonstrate the capability of the proposed schemes
in intricate compressible two-phase flows. We model the
interaction between a shock in air and a water column (i.e., a
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Fig. 7 Grid convergence study for the interaction between a shock and
a water column: centerline pressure at t = 3.0 µs

2-D droplet). A cylindrical water column of diameter 6.4mm
centered at the origin is struck by a moving air shock of
Ms = 1.47.

The grid convergence study is conducted using four differ-
ent grids. The fine grid is uniformly refined to �x = �y =
0.025mmnear thewater column ([−5mm, 5mm]×[−5mm,
5mm]), and it stretches outward to cover the whole domain
([−15mm, 20mm]×[−15mm, 15mm]) with 900 × 840
cells. Similarly, the coarse/medium/very fine grids are gener-
ated, respectively, using 450×420, 675×630, 1350×1260
cells. Figure 7 shows the centerline pressure near the water
column after the impact of shock at t = 3.0 µs. As the fine
and very fine grids yield the almost similar pressure peaks
inside the water column, the fine grid is used throughout
computations. The initial conditions are those in Ref. [33].

QL = (235438 Pa, 225.86 m/s, 0 m/s, 381.85 K, 0, ε1L)

x ≤ −4 mm,

QR =
(
1 × 105 Pa, 0 m/s, 0 m/s, 293.15 K, 0, ε1R

)

x > −4 mm,

Qdroplet =
(
1 × 105 Pa, 0 m/s, 0 m/s, 293.15 K, 0, ε2

)

R < 3.2 mm.

Here, ε1L = 0.99616269796, ε1R = 0.99101366252, and
ε2 = 1.10282248889 × 10−8 are the gas mass fractions
corresponding to the gas volume fractions of 0.99999 and
1×10−5, respectively. At the water column interface, a tran-
sition region with a width of ±2�xmin is specified by the
blending function, which imposes a smooth change in the
gas volume fraction across the phase interface. Computa-
tions are then executed up to 96 µs with �t = 2 × 10−9 s
(CFL ≈ 0.3).

The pressure evolution during the early stage is presented
in Fig. 8. When the incident shock hits the water column, it

splits into a reflected shock which retracts and a transmitted
shock which accelerates inside the water column. At the rear
end of the water column, the transmitted shock reflects as
expansion waves (Fig. 8b). The waves inside the water col-
umn constantly propagate back and forth and interact with
one another, forming a complex flow structure (Fig. 8c).
Both the AUSMPW+_N and RoeM_N schemes successfully
capture the detailed wave patterns. In particular, the shock-
discontinuity-sensing term (52) detects the two-phase shock
discontinuity without confusing it with the phase interface.
Note that Roe’s FDS is unable to compute this problem. At a
later stage, the water column is deformed and a Richtmyer–
Meshkov instability is observed (Fig. 8d).

Furthermore, the effect of an EOSon the solution behavior
across a contact discontinuity is examined. It is known that
spurious pressure oscillations across a contact discontinuity
(or a phase interface) may appear in the conservative form
of finite volume discretization. When a contact discontinu-
ity is away from a cell-interface, the cell-averaged pressure,
which is obtained via the EOSwith the cell-averaged density,
specific energy, and mass fraction, conforms to the physi-
cal pressure at a contact discontinuity only when the EOS is
linear. If there are two different EOSs across a contact discon-
tinuity within a computational cell, oscillations are in general
unavoidable due to the finite volume cell average process.

In this test case, even if each EOS for the liquid and gas
phase is linear (say, the ideal gas EOS for the gas phase, and
the stiffened gas model for the liquid phase), the combined
EOS for the mixture at the phase interface is not linear. As
shown in Fig. 9, however, the computed results do not seem to
show any noticeable oscillations across the phase interface. If
we change the EOS for water with the SRK (Soave–Redlich–
Kwong) EOS [36], a nonlinear cubic EOS, weak wiggles are
visible near the left phase interface as in Fig. 10. Research to
cure this behavior have been carried out bymany researchers,
but each is limited to its target EOS formulation [37–39]. At
the same time, however, it should be noted that incorrect
wave speeds and pressure wiggles inside the water column
in Fig. 10 partly arise from inaccurate prediction of liquid
properties by the SRK EOS, indicating that the choice of an
EOS suitable to the problems of interests is important. As
shown in Fig. 9, if an EOS for each phase gives physically
reasonable fluid properties for the problem, and if the com-
bined EOS behaves almost linearly within a computational
cell, the major flow features do not seem to be impeded by
the spurious oscillations.

4.5 Cryogenic cavitating turbulent flow around a
hydrofoil

To validate the proposed methods in flows with real fluids,
we simulate Hord’s experiments [40] of cryogenic cavitat-
ing flows around a hydrofoil. The widths of the tunnel and
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Fig. 8 Time evolution of interaction between an air shock and a water column. a Pressure contour at t = 5.2 µs. b Pressure contour at t = 7.2 µs.
c Pressure contour at t = 14.2 µs. d Numerical schlieren at t = 96 µs

hydrofoil are 25.4 and 7.92 mm, respectively. The compu-
tational domain is shown in Fig. 11. The whole flow field is
divided into over 51,500 cells, and the grid near the hydro-
foil wall is refined to emulate the wall effect. The value of
y+ along the hydrofoil wall is approximately 1. The mass
flux and free stream temperature are imposed at the tunnel
inlet. At the tunnel outlet, the pressure outlet boundary con-
dition is used. The CFL number is set to 5. Among various
test cases, we calculate run number 289C in which the work-
ing fluid is liquid nitrogen under the free stream conditions
T∞ = 88.64 K, V∞ = 23.5 m/s, and the cavitation number
σ∞ = 1.55. The phase change is taken into account by the
Schnerr–Sauer cavitation model.

Figure 12 presents the numerical results of the AUS-
MPW+_N and RoeM_N schemes. As shown in Fig. 12b,
a locally supersonic flow region exists in the cavity, while
the entire flow field outside the cavity is incompressible.
This demonstrates the effectiveness of AUSMPW+_N and
RoeM_N in dealingwith two-phase real-fluid flows spanning
from subsonic to supersonicMach numbers. Figure 13 quan-
titatively compares the computed surface pressure depression(
p − psat,∞

)
and temperature results with experiment and

another computation [7,40]. The pressure depression in
Fig. 13a reveals the thermal effect of the cryogenic cavi-
tating flows. A working fluid with negligible thermal effect
(such as water) would yield a minimum pressure depres-
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Fig. 9 Centerline plots (black solid line: density; color symbols: pressure) and pressure distribution at t = 20.4 µs (stiffened gas EOS for water).
a AUSMPW+_N. b RoeM_N. c Pressure distribution
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Fig. 10 Centerline plots (black solid line: density; color symbols: pressure) and pressure distribution at t = 11.4 µs (SRK EOS for water).
a AUSMPW+_N. b RoeM_N. c Pressure distribution

sion of zero. In cryogenic fluids, the thermal effect decreases
the local temperature, and hence the local vaporization pres-
sure. Consequently, a negative pressure depression appears
in Fig. 13a.

4.6 Steam-condensing turbulent flow in a nozzle

Two-phase steam-condensing problems are chosen to exam-
ine the capability to handle non-equilibrium phase change
flows of water and steam. We simulate the nozzle B and noz-
zle C cases in the 2-D experiments of Moore et al. [41]. The
computational domain is shown in Fig. 14. Cases B and C are
simulated on 180×70- and 150×70-sized grids, respectively.
The total pressure and temperature of the subsonic flows at
the nozzle inlets are summarized in Table 3. At the nozzle
outlet, a supersonic outlet boundary condition is applied. We

adopt the nucleation-theory-basedmodel to capture the phase
change phenomenon.

Figure 15 compares the computed and experimental pres-
sures along the nozzle centerlines. The computational predic-
tions obtained by AUSMPW+_N and RoeM_N excellently
agree with experimental results in both cases. The pressure
rise downstream of the nozzle throat behaves similarly to an
aerodynamic shock and is often called a condensation shock
as it occurs during phase change. Unlike an aerodynamic
shock in which the post-shock condition is usually subsonic,
the post-shock condition of a condensation shock is sonic at
most. Since this test case dealswith a fully compressiblemix-
ture flowwithout strong shock or phase interfaces, the results
of Roe and AUSM+-up are quite similar. Figure 16 com-
pares the computed droplet radius along the axial distance
with another computational result [42] and experimental data
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Fig. 11 Computational domain andgrid distribution for cryogenic cav-
itating flow around a hydrofoil

measured at the nozzle outlet [41]. Judging from the uncer-
tainty in measurement at this scale [42], the computational
prediction is quite acceptable. This problem is a typical non-
equilibrium phase change phenomenon, so employing the
nucleation-theory-based model is essential.

5 Applications

In Sect. 4, the multiphase solver with the proposed numer-
ical schemes and physical models was validated by various
inviscid/turbulent test problems. The multiphase solver is
applicable to a broad spectrum of multiphase phenomena.
This section focuses on realistic applications with turbulent
multiphase flows.

5.1 Flow inside a thermal vapor compressor

The thermal vapor compressor (TVC) improves the effi-
ciency of thermal desalination plants by recycling the vapor-
ized steam. Figure 17 is the schematic of a TVC system.
The desalination process releases steam at low pressure and
temperature, which is entrained into the TVC through the
suction nozzle (called the suction steam). The suction steam
is then entrained and repressurized by mixing with the pri-
mary steam at high pressure and temperature. Therefore, the
suction performance of a TVC is generally evaluated by the
entrainment ratio (ER), defined as the mass flow rate ratio
between the suction and the primary nozzle.

For the droplet-condensing flow inside a thermal vapor
compressor, surrounding steam vapor and the small liquid
droplets generated can be regarded as a carrier phase and

Fig. 12 Numerical results of cryogenic cavitating flowaround a hydro-
foil. a Density contour. b Mach number contour

suspended particles, respectively. In that case, the velocity
difference between phases is hardly substantial, and thus, the
assumption of the velocity equilibrium is acceptable. Since
the droplet size is very small, the temperature equilibrium
is also acquired. Within the homogeneous mixture frame-
work, a robust and accurate numerical scheme is essential
when computing flows inside a TVC. Roe’s FDS turns out to
be unsuitable for TVC computations, because it often fails in
computations due to the shock instability and positivity prob-
lems. On the contrary, both AUSMPW+_N and RoeM_N
produce stable and accurate results (see Fig. 18).
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distribution. a Surface pressure depression. b Surface temperature
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Table 3 Inlet boundary conditions for steam condensing flow in a noz-
zle

Inlet total pressure (Pa) Inlet total temperature (K)

Moore B 25,000 357.6

Moore C 25,000 358.6
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Fig. 15 Comparison of computed and experimental pressure distri-
butions along the centerlines for steam-condensing flow in a nozzle.
a Nozzle B. b Nozzle C

The modeling of the phase change process is also impor-
tant, because liquid droplets form and decay depending on
the position of the shock and expansion fan in the shock-
train region. To accommodate such flow physics, we adopt
the nucleation-theory-based model and the Hertz–Knudsen-
equation-based model. The accommodation coefficients in
the Hertz–Knudsen-equation-based model are set to 0.1. The
properties of the working fluid, steam and water, are evalu-
ated by the IAPWS97 formulation. The LU-SGS method is
adopted for an efficient time integration, and the turbulence
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Fig. 17 Schematic of a TVC system
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Fig. 18 Comparison of computed Mach number distributions along
the centerline for TVC configuration #2

effects are taken into account by the k−ω SSTmodel. The tar-
get TVCs are experimentally tested by Doosan Heavy Indus-
tries, and their flow conditions are summarized in Table 4.
The compression ratio in Table 4 is defined as the pressure
ratio between the discharge outlet and the suction steam.

Table 4 Operating conditions for TVC

Configuration Primary pressure (bar) Compression ratio

#1 2.5 1.796

#2 3.4 1.8

#3 5.968 2.437

#4 9.6 1.853

#5 13.3 1.936
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Fig. 19 Grid convergence study for TVC: pressure fluctuation around
shock-train region

To demonstrate the grid convergence behavior, computa-
tions are carried out for configuration #2 by changing the
number of cells in four different grids. Figure 19 shows the
centerline pressure fluctuation. Since the results of the fine
and very fine grids are almost indistinguishable, the fine grid
is used throughout the computations.

5.1.1 Phase change phenomena and ER

Table 5 compares the computed ER in single- and two-phase
computations. Note that the values of ER and mass flow
rate in Table 5 are normalized by the experimental data. The
entrainment ratio error (ER error) denotes the percent devi-
ation between computed and experimentally measured ER
values as follows:

ER error =
∣∣∣∣ERexperimental − ERcomputed

ERexperimental

∣∣∣∣× 100 (%) .

Two-phase computations provide a remarkable improve-
ment over single-phase computations which yield substan-
tially incorrect results in several configurations.

Two-phase computations consider the latent heat during
the phase change process which is ignored in single-phase
computations. If phase change is excluded, the thermody-
namic energy reduction by the flow expansion is completely
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Table 5 Comparison of entrainment ratios of phase change models in TVC

Configuration Computational approach Primary mass flow rate Suction mass flow rate Entrainment ratio Entrainment ratio error (%)

#1 Single-phase 1.017 0.538 0.529 47.1

Two-phase (nucleation) 1.017 0.922 0.906 9.40

Two-phase (Hertz–Knudsen) 0.978 0.910 0.930 7.00

#2 Single-phase 1.022 0.544 0.532 46.8

Two-phase (nucleation) 0.995 0.973 0.978 2.15

Two-phase (Hertz–Knudsen) 0.985 0.958 0.972 2.76

#3 Single-phase 0.931 0.974 1.047 4.67

Two-phase (nucleation) 0.945 0.991 1.048 4.84

Two-phase (Hertz–Knudsen) 0.921 0.986 1.070 7.02

#4 Single-phase 0.972 0.904 0.930 7.03

Two-phase (nucleation) 0.975 0.942 0.967 3.34

Two-phase (Hertz–Knudsen) 0.954 0.934 0.980 2.02

#5 Single-phase 0.995 0.379 0.381 61.9

Two-phase (nucleation) 1.009 0.952 0.943 5.68

Two-phase (Hertz–Knudsen) 0.982 0.951 0.968 3.19

Fig. 20 Comparison of Mach number contours in single- and two-
phase flow computations. a Configuration #1. b Configuration #3.
c Configuration #4

converted into the kinetic energy.Conversely, if phase change
is considered, a portion of this thermodynamic energy is
released as the latent heat during condensation, and only the
remnant converts into the kinetic energy. Meanwhile, across
the shock, a portion of the kinetic energy is absorbed by
vaporization. Owing to this latent heat exchange, the com-
pressiblewaves tend to beweaker in two-phase computations
than in single-phase computations. The results of single- and

Fig. 21 Comparison of temperature distributions of configuration #1,
computed by the single- and two-phase flow models

two-phase computations compared in Fig. 20 confirm that the
Mach number contours varymore vigorously in single-phase
than in two-phase computations.

Figure 21 compares the temperature distributions of
single- and two-phase computations. The gray-marked area
in Fig. 21 indicates the region that the local temperature is
below the triple point of water (273.16K). Although the local
temperature is decreased by flow expansion, it does not fall
below the triple point. Two-phase computations are consis-
tent with this physical constraint because the strength of the
expansion fan is weakened by the latent heat exchange. On
the contrary, a single-phase computation yields unphysical
results around the shock-train region.

Single-phase computations fail to replicate the flow
physics in the shock-train region, but the ER unexpectedly
matches well the experimental measurements in configura-
tions #3 and #4 (see Table 5). The reason for these results is
clarified in Fig. 20, which compares configurations #3 and
#4 with configuration #1. The black solid line in Fig. 20
represents the sonic line. We observe that single-phase com-
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putations reduce the shock-train region in all configurations.
This does not produce a noticeable error in configurations #3
and #4 because the main nozzle is choked despite the short-
ened shock-train region. In configuration #1, however, the
choking condition is not achieved with the shortened shock-
train, while the choked flow is experimentally observed in all
configurations. Since deviation from the choking condition in
the main nozzle drastically reduces the ER, the entrainment
ratio error becomes enormous in single-phase computation
of configuration #1. Thus, we conclude that the modeling
of phase change is indispensable for accurate prediction of
TVC suction performance, regardless of the flow conditions.

5.1.2 Phase change models and local flow physics

The phase change models based on the nucleation theory
and Hertz–Knudsen equation predicts reasonable ER (see
Table 5), but the local flowphysics differs as shown in Fig. 22.

In the converging part of the primary nozzle, the satura-
tion pressure (which is a function of the local temperature)
drops more quickly than the local pressure. Since the Hertz–
Knudsen-equation-basedmodel determines the phase change
rate by the difference between the local and saturation pres-
sures only, the condensation process starts to occur around
the first expanding corner of the primary nozzle throat. On the
other hand, the nucleation-theory-based model additionally
considers the droplet size and distribution for phase change.
Thus, the nucleation-theory-based model yields a delayed
onset of the condensation process around the second expand-
ing corner (seeFig. 22a).Due to the liquid phase formed at the
nozzle throat in the Hertz–Knudsen-equation-based model,
the mixture speed of sound is lowered significantly, and an
expansion fan followed by a reflected shock (or a shock-
train) is developed (see Fig. 22b). As the reflected shock is
very weak, it impinges merely as a compression wave on the
wall. Nevertheless, the compression wave increases the local
pressure and this pressure increment is propagating to the
upstream region through the boundary layer. This pressure
increment reduces the Mach number at the primary inlet in
the Hertz–Knudsen-equation-based model, because the inlet
boundary condition keeps the stagnation properties constant
throughout the computations. Reduction in the inlet Mach
number eventually decreases the inlet mass flow rate.

The nucleation-theory-based model does not show the
aforementioned compressible mechanism around the pri-
mary nozzle throat, since the flow is gradually expanded
without any compression mechanism. As a result, the pri-
mary mass flow rates of the nucleation-theory-based model
are larger than those of the Hertz–Knudsen-equation-based
model and closer to the experimental data (see Table 5).

For more rigorous comparison, additional experimental
data might be necessary such as the local pressure or tem-
perature distributions along the centerline, or the overall

Fig. 22 Comparison of phase changemodels inside the primary nozzle
of configuration #2. a Mass fraction. b Mach number

ER curve. Nonetheless, the Hertz–Knudsen-equation-based
model can be an attractive choice from the viewpoint of com-
putational cost because it does not require the conservation
law for the droplet number density in the governing equa-
tions.

5.2 Active pressurization in a cryogenic tank

Propellant and oxidizer in the cryogenic tank of a liquid
rocket experience varying temperature and pressure from the
initial filling process to the end of the flight. The cryogenic
tank environment is greatly influenced by heat leakage from
the tank wall, change of gravity in the rocket acceleration,
injection of the pressurizing agent, and the accompanying
phase change. Analyzing the pressure rise and rate of the
phase change inside the tank is important for the economic
management of cryogenic liquids and the design of the tank
system. This section focuses on the active pressurization
phase, in which the tank pressure is raised by the injection
of the pressurizing agent.

We simulate the E-1 high-pressure LOX tank fromNASA
Stennis Space Center [43], a spherical 2600-gallon, vacuum-
jacketed tank that is pressurized with superheated nitrogen.
The initial conditions of the simulations are listed in Table 6.
The simulations are run on an axisymmetric grid. The pres-
surizing agent enters radially through a diffuser at amass flow
rate of 453.64 kg/s. The injected pressurizing agent immedi-
ately slows down to a quasi-stationary state due to the sudden
expansion at the inlet, which substantially reduces the drag
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Table 6 Initial conditions of the active pressurization simulation

Liquid Ullage Pressurant

Initial fill level (%) 90 10 –

Fluid type O2 liquid O2 vapor Gas (O2, N2)

Temperature (K) 90.18 135.16 288

Pressure (MPa) 2.24 2.24 –
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Fig. 23 Grid convergence study for active pressurization problem

force at the phase interface. Thus, the effect of the veloc-
ity non-equilibrium is relieved. A pressure wave is instantly
propagating inside the tank, and the mixing between phases
is vigorous enough to reach temperature equilibrium.

In order to obtain accurate monotonic solutions, the
AUSMPW+_N scheme with the MLP5 limiter and the third-
order TVD Runge–Kutta scheme are used for spatial and
temporal discretizations, respectively. The effects of the
phase change and turbulence are included via the cavitation
model byMerkle and the k−ω SSTmodel, respectively. The
accommodation coefficients in the Merkle cavitation model
are set to 10, and the time scale is determined as Rtank/Vin.
Asmentioned byHaselmaier et al. [44], active pressurization
in this tank is a challenging CFD problem because it covers
the entire regime of thermodynamic states from superheated
gas and compressed liquids to supercritical mixtures. As the
present multiphase solver fully couples the density and tem-
perature in the energy equation and incorporates efficient
and accurate real-fluid EOSs based on NIST data, the active
pressurization in the LOX tank is successfully simulated.

Before actual computations, we firstly conducted the grid
convergence study. Four different grids are used with equal
wall spacing: coarse (17,000 cells), medium (26,000 cells),
fine (34,000 cells), and very fine (42,000 cells). Figure 23
shows the initial pressure rise after the injection of non-
condensable oxygen gas (i.e., incoming oxygen gas is not
allowed to liquefy). Only the result of the coarse grid is quite

Fig. 24 Time evolution of the non-condensable N2 injection. a t =
0.05 s. b t = 0.1 s. c t = 0.2 s. d t = 0.3 s

distant from other results. If the result of the very fine grid
is assumed as standard, the RMS error of the coarse grid is
0.042MPa, while the RMS errors of the medium and fine
grid are 0.024 and 0.022MPa, respectively. Since the RMS
error of 0.027MPa corresponds to the average 1% deviation
from the result of the very find grid, we adopted the medium
grid for computations.
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Fig. 25 Pressure, temperature, and liquid mass change inside the tank with different types of pressurant. a Pressure rise. b Liquid temperature
rise. c Liquid mass change

5.2.1 Effect of pressurant type

In order to evaluate the effect of pressurant type on the
pressure rise rate in the tank and to simulate realistic exper-
imental scenarios, we consider three types of pressurant:
non-condensable nitrogen, non-condensable oxygen, and
condensable oxygen. The computations are then performed
until t = 0.3 s in a zero-gravity environment.

Figure 24 displays the temperature distribution during the
injection of non-condensable N2. The flow injection gen-
erates a vortical flow, causing vigorous mixing inside the
ullage. The liquid curls up along the vortex. The vortex grows
until it reaches the tank wall, and then dissipates, distorting
the liquid surface. As the numerical scheme is originally
designed to capture contact discontinuities with low dif-
fusion [24], it vividly portrays the mixing of the different
species.

The other pressurants (non-condensable O2 and condens-
able O2) yield qualitatively similar flow patterns, but the
pressure, temperature, and liquid/ullage mass are quantita-
tively different (see Fig. 25). The pressure and temperature
increase rapidly inside the tank because the high-temperature
gas is injected at a high mass flow rate. The supercritical
ullage condenses into the liquid at the interface as it is cooled
by the low-temperature liquid, thereby increasing the liquid
mass. Although condensation decreases the amount of the
vapor in the ullage, the ullage mass is increased by the high
influx of mass from the diffuser (see Table 7).

Condensable O2 yields the most condensation as in
Fig. 25c and Table 7. This result is not surprising at all
because condensable O2 increases the amount of the vapor
that can condense in the ullage. The difference between non-
condensableN2 and non-condensableO2 can be explained by
the lower molecular weight of N2. Under the samemass flow
rate condition, N2 will be injected with higher velocity. The
pressure increases more rapidly during the injection of non-
condensable N2 because N2 gas molecules move faster than

Table 7 Mass increments during 0.3 s divided by the initial mass of
each phase

Pressurant type Liquid (%) Ullage (%)

Non-condensable N2 0.60 95.32

Non-condensable O2 0.55 101.58

Condensable O2 0.64 96.32

O2 within the same confined volume (Fig. 25a). At the same
time, ρCp of N2 is mostly lower than that of O2 within the
pressure and temperature range in this simulation, leading to
a more rapid rise in the ullage temperature and thereby more
energy exchange with the liquid (Fig. 25b). Near the cold
liquid, the ullage containing N2 gas with lower heat capacity
condenses faster than the ullage containing non-condensable
O2 gas. Accordingly, among the three pressurants, non-
condensable O2 yields the highest mass increment in the
ullage.

This comparative analysis of different pressurant types
is rendered possible by the present numerical framework,
which considers transport equation for the non-condensable
gas phase in the governing equations.

5.2.2 Effect of gravity

Although the test facility is on the ground, we also investigate
the effect of gravity on the active pressurization. For this
purpose, the gravity is varied as 0, 0.01, and 1g. The tank is
then injected with non-condensable O2, and the simulations
are run up to 1.0 s.

Figure 26a, b shows the density distributions at t = 1.0 s
under 0 and 0.01g, respectively. The initially flat phase inter-
face has been totally deformed. The interface is slightly
more distorted under zero gravity than under microgravity.
Figure 26c–e is the snapshots of the simulation under nor-
mal gravity at t = 0.4, 0.8, and 1.0 s, respectively. Unlike
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Fig. 26 Evolution of phase interface under different gravity condi-
tions. a 0g at t = 1.0 s. b 0.01g at t = 1.0 s. c 1g at t = 0.4 s. d 1g at
t = 0.8 s. e 1g at t = 1.0 s
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Fig. 27 Pressure rise under different gravity conditions

the results of zero gravity and microgravity, the vortex near
the tank wall cannot penetrate the liquid phase; rather, the
phase interface mostly regains its flatness at t = 0.8 s. This
is attributed to the large hydrostatic pressure in the liquid
region.

The flattened interface area in Fig. 26e is smaller than the
distorted interface in Fig. 26a, b. The condensation occurs
when the temperature of the supercritical ullage is lowered
to the subcritical state by the contact with low-temperature
liquid. Less condensation occurs under normal gravity due
to the smaller phase interface area. Consequently, the ullage
volume should be filled with a dense mixture of gases, which
would increase the pressure inside the tank. The higher tank
pressure under normal gravity at 1.0 s is confirmed in Fig. 27.

5.3 Unsteady cavitating flow around a 2-D wedge

Finally, we simulate the unsteady cavitating flows around a
2-D wedge. Similar to Sect. 5.1, the bulk liquid flow and
small vapor bubbles play the roles of carrier and suspended
phase. Thus, the homogeneous mixture approach is reason-
able. The wedge shape can be modeled as the cross section
of a control fin installed in high-speed underwater vehicles
such as torpedoes.By analyzing the unsteady cavitatingflows
around a 2-D wedge, we can predict flow characteristics and
hydrodynamic forces around the control fins of a high-speed
underwater vehicle.

Two types of wedge are considered: one for natural cavi-
tating flows and the other for ventilated cavitating flows. The
geometric parameters are indicated in Fig. 28 and Table 8,
respectively. Figure 29 shows the grid system and bound-
ary conditions. As a spatial/temporal discretization method,
we employ the RoeM_N scheme and the dual time-stepping
with LU-SGS subiteration, respectively. The physical time
step is�t = 1.0×10−5 s. TheMerkle cavitation model with
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Fig. 28 Schematic of the wedge parameters

Table 8 Two types of wedge geometries

Case Angle (α) (◦) Length (c) (mm) Width (d) (mm)

Natural cavitation 20 56.72 20

Ventilated cavitation 20 35 12.34
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Fig. 29 Grid and boundary conditions in the 2-D wedge simulation

Cvp = Ccd = 100 and time scale of d/V∞ is employed. For
the effects of turbulence, k − ω SST model is adopted.

5.3.1 Comparison with the experimental data

The computational results are compared with the experi-
mental data obtained from Chungnam National University
Cavitation Tunnel (CNU-CT). Table 9 presents the experi-
mental flow conditions for comparison. Cavitation numbers
vary according to the free stream pressure in natural cavi-
tating flows, while those in ventilated cavitating flows are
controlled by the ventilated mass flow rate (ṁ). It is noted
that the cavitation number for the ventilated cavitation (σv)
is calculated using the pressure inside the ventilated cavity
instead of the saturation pressure used in the original defini-
tion of the cavitation number (σ ).

σ = p∞ − psat
0.5ρ∞V 2∞

, (77)

σv = p∞ − pcavity
0.5ρ∞V 2∞

. (78)

Table 9 Experimental flow conditions

Natural cavitation

p∞ (kPa) 61.96 52.96 39.14 31.56

V∞ (m/s) 8.3 8.3 8.3 8.3

ṁ (g/s) – – – –

σ 1.75 1.49 1.09 0.87

Ventilated cavitation

p∞ (kPa) 89 89 89 89

V∞ (m/s) 6.0 6.0 6.0 6.0

ṁ (g/s) 1.66 2.10 2.32 4.7

σv 0.90 0.80 0.70 0.58

Figure 30 shows the snapshots of experiment and numer-
ical schlieren for the shedding vortices at each cavitation
number. Unlike the results of natural cavitating flows, non-
condensable gas ejected behind the wedge forms cavities,
and they last longer in ventilated cavitating flows. There is
a slight difference (about 2% difference) in the cavitation
number between computations and experiments, because it
is difficult to exactly match unsteady upstream pressure due
to random pressure fluctuations existing in the computational
domain.All results show similar patterns of the shedding vor-
tices between experiments and computations. As we show in
Fig. 30, characteristics of natural and ventilated cavitating
flows do not coincide with each other at similar cavitation
numbers. This is because the twowedges have different sizes
and shapes. However, Fig. 31 shows that the natural and
ventilated cavitating flows have analogous non-dimensional
length of cavities at the similar cavitation number. Again,
there is a good agreement between computational predic-
tions and experimental measurements for both natural and
ventilated cavitating flows.

5.3.2 Effect of cavitation on the drag coefficient

To examine the effect of cavitation on the drag force exerted
to the wedge, the drag coefficient in terms of the cavita-
tion number is shown in Fig. 32. As the flow unsteadiness
becomes stronger at higher cavitation number, the length of
error bar (or the degree of uncertainty) increases. For natu-
ral cavitating flows, the free stream pressure is lowered to
reduce the cavitation number (77), so the drag coefficient
based on the pressure difference between the front and back
of the wedge is also reduced (Fig. 32a). In the case of ven-
tilated cavitating flows, cavitation numbers are regulated by
the ventilated mass flow rate of air. As shown in Fig. 30b
and Table 9, a large amount of the ventilated mass flow rate
forms a streamlined cavity behind the wedge, reducing the
pressure drag and cavitation number (Fig. 32b).
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(a)

(b)

Fig. 30 Snapshots of cavitating flows at each cavitation number. a Natural cavitating flows. b Ventilated cavitating flows

Figure 33 represents the drag coefficient curve over the
free stream velocity. As the free stream velocity increases
without ventilation, natural cavitation starts to happen,
thereby reducing the drag coefficient. In the low-speed
region where natural cavitation does not occur, the drag
coefficient can be substantially reduced by the ventilated
air. In this case, the drag coefficients are obtained with-
out fluctuation because the ventilated mass flow rate is
large enough to form a steady cavity. This result can be
exploited to underwater vehicles; an underwater vehicle in
low-speed region can reduce its drag by the ventilated air
at the back of the control fins in order to achieve high
speed.

6 Conclusion

Numerical issues that must be settled for computing mul-
tiphase problems have been addressed. First, a proper
model for multiphase flows has been selected; the homoge-
neous mixture approach is computationally efficient without
sacrificing physical reality when the relevant equilibrium
assumptions are legitimate, and the extension of single-phase
numerical schemes to multiphase within the homogeneous
mixture framework is relatively tractable. Enhanced con-
vective flux schemes for multiphase real-fluid flows over a
wide range of flow speeds (the AUSMPW+_N and RoeM_N
schemes) have been developed with system preconditioning.
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Fig. 31 Non-dimensional length of cavities as a function of the cavi-
tation number
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Fig. 32 Drag coefficients as a function of the cavitation number.
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As a result, depending on the working fluid and operating
condition, a suitable EOS can be chosen for each problem.
Phase change phenomenon that also requires prudent choice
ofmodeling has been dealt with appropriate cavitationmodel
or nucleation model. The accuracy and robustness of the pro-
posed numerical methods and physical models have been
confirmed with extensive validation problems, ranging from
compressible air/water shock-tube tests to phase change in
real-fluid flows.

After validation, various application problems have been
computed with the same numerical framework. The exper-
imental measurement on the suction performance of TVC
has been accurately predicted. Complex flow physics asso-
ciated with multiphase shocks and phase changes have been
successfully simulated through accurate and robust numeri-
cal methods. Injection of a pressurizing agent in a cryogenic
tank has been computed, and the flow characteristics dur-
ing the pressurization process have been analyzed. Covering
the entire range of thermodynamic states inside the tank
is accomplished owing to the compressible homogeneous
mixture framework incorporated with the real-fluid EOS.
Finally, numerical simulations of unsteady cavitating flows
around a 2-D wedge have been carried out. The compu-
tational results have shown similar characteristics with the
experimental measurements for both natural and ventilated
cavitating flows, representing the accuracy of the numerical
schemes in unsteady multiphase flows where incompressible
and compressible regions coexist.

Accurate numerical methods with proper physical mod-
eling make it possible to explore a broad spectrum of
multiphase phenomena with computations. Unlike the cur-
rent commercial and/or open-source packages which are
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mostly based on pressure-based solvers, the proposed numer-
ical framework can provide the robust and accurate treatment
of multiphase shocks and phase interfaces. As the next
step, the proposed numerical methods will be extended to
three-dimensional multiphase flows with more complex and
realistic problems.
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