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Abstract
The reflection of a two-dimensional cylindrical shock wave segment on a concave-cylindrical wall segment was investigated
from an experimental and numerical perspective. Qualitatively, the experimental results show that a cylindrical shock behaves
similarly to a plane shock when propagating up a concave-cylindrical wall segment. Thus, whatever differences exist must
be quantitative. The length of the cylindrical shock’s Mach stem was plotted against the subtending angle. From the plots,
two limits are highlighted, one where the shock’s radius is much larger than the wall’s radius and another where the wall has
the larger radius. The former being akin to a plane shock interacting with a cylindrical wall segment. An increase in initial
shock Mach number was observed to affect the type of Mach reflection that is formed (whether it is an inverse or stationary
Mach reflection) as well as the transition point to a transitioned regular reflection. An expression which relates the shock’s
Mach stem to the subtending angle was derived. Comparisons between the expression’s predictions, experimental and CFD
data were completed, and they showed good correlation. Further, the expression was shown to reduce to that derived by Itoh
et al. when the shock’s radius was much larger than the wall’s radius.
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List of symbols
M0 Initial shock Mach number
Ms Plane shock Mach number
Mw Wall shock Mach number
M1 Mach stem Mach number
u1 Fluid velocity behind the shock
a1 Sound speed behind the shock
a0 Sound speed ahead of the shock
Rw Wall radius
Rs Initial shock radius
r Shock radius
λ Mach stem length
ds Arc length element
φ Angle subtended by the Mach stem
θF Angle when Mach reflection first forms
θ Shock orientation
θw Shock orientation at the wall
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η(M) Modification to Whitham’s theory
φ∗ Angle when the shock transitions from MR to RR
u(r) Gas speed behind the shock
a(r) Speed of sound behind the shock
us(r) Shock speed

1 Introduction

The reflection of plane shock waves on plane and curved
walls has been extensively covered. Ben-Dor [1] gives a
detailed review on the reflection of plane shock waves
on inclined plane walls as well as convex and concave-
cylindrical walls. In general, this behaviour is well under-
stood in the context of plane shockwaves.However, introduc-
ing curvature to the shock front changes the shock’s dynamic
behaviour.

Consider a cylindrical shock wave segment; Guderley [2]
showed that the shock’s Mach number is a function of the
shock’s radius unlike a plane shock whose Mach number of
the undisturbed portion remains constant. Furthermore, at
any point in time, the cylindrical shock’s orientation varies
along the shock front. This is illustrated in Fig. 1 that shows
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1186 B. B. Ndebele, B. W. Skews

Fig. 1 A schematic of a cylindrical shock segment illustrating varia-
tions in shock orientation (θ)

the orientation of two arbitrary points P1 and P2. If an appeal
is made to Whitham’s theory [3], then any disturbance that
emanates from the wall will behave differently for a cylindri-
cal and plane shock owing to Mach number and orientation
variation.

Cylindrical shockwaves also have an inherent spatial con-
straint that is dictated by the shock’s span. Span refers to the
angle that cylindrical segment subtends at the shock’s centre.
While this angle is entirely arbitrary, upon definition it spa-
tially constrains the shock between the two walls that define
the angle. This is in contrast to a plane shock, which can
be assumed to extend indefinitely. The existence of this con-
straint implies that any disturbances propagating along the
cylindrical wall must reflect off of the opposing wall because
such a wall necessarily exists.

In this paper, we investigate the reflection of a converg-
ing cylindrical shock wave segment on a concave-cylindrical
wall segment. The wall and the shock are oriented such that
the wall’s leading edge is perpendicular to the shock wave
at their point of coincidence. Unless specified otherwise, the
shock waves in question have a span of 55◦ and an initial
radius of 165mm. An experimental approach in conjunction
with CFD simulation was taken.

2 Literature review

2.1 Plane shock reflection

Ben-Dor and Takayama [4,5], Itoh et al. [6] and Gruber and
Skews [7] have investigated the interaction of plane shock
waveswith concave-cylindricalwalls. Thefirst twowere ana-
lytical, while the last was experimental. When a plane shock
interacts with a concave-cylindrical wall, the first reflection
that forms is of the Mach reflection (MR) type; this then

Fig. 2 An illustration of plane shock wave reflection on a concave-
cylindrical wall [7]

transitions into a regular reflection (RR), often called a tran-
sitioned regular reflection (TRR) to distinguish it from the
case where regular reflection forms first.

The MR does not always form immediately upon the
shock’s interaction with the cylindrical wall.When the wall’s
leading edge has an angle of 0◦ such that it is perpendicular to
the shock, compression waves propagate up along the shock
before they coalesce to form a MR on the shock. Thus, the
MR forms further along the cylindrical wall. This is clearly
illustrated by Gruber and Skews’ experiments [7].

Figure 2 shows a schematic of the shock with a con-
cave wall. When the shock is incident on the leading edge
of the wall, the first disturbance that is generated is called
the corner signal. Were the wall angle nonzero, this corner
signal would have been in the form of a reflected wave. It
is this corner-signal concept that Hornung et al. [8] uses
to explain transitions between MR and RR. Ben-Dor and
Takayama used this concept to model the MR–RR transition
on a concave wall. A reference to Fig. 2 shows an immediate
weakness; on a cylindrical wall with 0◦ wall angle, the corner
signal is not involved in the formation of the MR. Similarly,
the corner signal does not play a role in the transition to RR
as observed in Gruber and Skews’ experiments [7].

Ben-Dor andTakayama [4] argue that theMRwhich forms
persists for as long as the corner signals can reach the incident
shock. Furthermore, information about the corner signals
propagates in the region bound by the reflected wave, Mach
stem and the wall. However, the path taken by the corner
signals is unknown; therefore, they postulated two paths: a
straight line joining the corner to the triple point and a path
along the slipstream (Fig. 3). Based on these two postulates,
two expressions (1, 2) for calculating the angle φ∗

w when the
MR transitions to TRR were derived.

sin φ∗
w

φ∗
w

= Ms

U10 + A10
(1)

cos

(
1

2
φ∗
w

)
= Ms

U10 + A10
(2)
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The reflection of cylindrical shock wave segments on cylindrical concave wall segments 1187

Fig. 3 Using Hornung’s corner-signal concept to model MR–RR tran-
sition [4]. a and b are the two postulated paths of the corner signal. b is
the path along the slip stream, while a is the shortest distance path

Fig. 4 A geometric approach for determining the triple-point locus

In (1) and (2), U10 = u1/a0 and A10 = a1/a0. An unex-
pected consequence of the two expressions is the implication
that the transition point is independent of the wall radius.

Itoh et al. [6] approached the problem from a geometric
perspective. With reference to Fig. 4, they derived an expres-
sion for the variation of shock’s Mach stem length (3). The
transition from MR to TRR is then taken as the angle (φ)
when the Mach stem length becomes zero.

dλ

dφ
= 1 − λ

tan (θF + φ)
− M0a

sin (θF + φ)

(
dt

dφ

)
(3)

In both expressions above, it was assumed that the Mach
stem has a straight profile. This is not strictly true—as can
be seen in some of the experimental images of Gruber and
Skews [7]. The curvature is, however, small when compared
to the wall’s such that the stem and the wall’s radial line are
almost coincident and justifying the assumption.

For closure, (3) requires initial conditions (λ = λ0, φ =
φ0). This initial condition can only be obtained from experi-
ment bymeasuring the anglewhen theMach stemfirst forms.
This is likely a process prone to error as a result of limitations
in shock visualisation techniques. For example, high-speed
cameras have limited frame rates and resolution, implying the
inevitability of missing some frames. In addition to the initial
condition, the strength of theMach stem (M1) is unknown. To
resolve this, Itoh et al. relied on Whitham’s theory [9]. Their
final result is shown in (4), whichmust be solved numerically
to obtain M1 (the strength of the Mach stem).

All three expressions, highlighted above, were compared
to experimental data. Itoh et al. showed good correlation
between their expression (3) and experiment for shocks up to
Mach1.4, beyondwhich theirmodel predicted slightly higher
transition angles than observed. They cited the exclusion of
real gas effects—which become significant as shock strength
increases—for the discrepancies at higher Mach numbers.
However, a more plausible reason for the discrepancy could
be the implicit assumption they made that the Mach stem is
almost straight. It is this assumption that allows them to use
simple geometric constructions to derive (3).

θw =
∫ M1

M0

(
2

(M2 − 1)K (M)
+ η

M2

) 1
2

dM

K (M) = 2(2μ + 1 + M−2)

(
1 + 2

λ + 1

1 − μ2

μ

)−1

μ =
(

(λ − 1)M2 + 2

2λM2 − (λ − 1)

)0.5

η =
(
1 − M2

0

M2

)
(F + 2B)E

(M2 − 1)BD

+ 1

2
ln

A0

A

(
D

3
2 (M2 + 1) + 4(M2 − 1)2F

)
(M2 − 1)DE

B = 2λM2 − (λ − 1)

C = (λ − 1)M2 + 2

D = BC

E = 2(M2 − 1) + √
D

F = (λ − 1)(1 + λM4) (4)

Ben-Dor and Takayama did more comprehensive com-
parisons. Their results showed that (1)–(3) are each accurate
within limited domains. Equation (1) was found to be accu-
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rate for Mach numbers in the range 1.1 < Ms < 4, while
(2) was accurate in the range 1 < Ms < 1.1. With respect
to Itoh et al.’s expression, Ben-Dor and Takayama’s exper-
iments broadened the accuracy range to 1.25 < Ms < 2;
indeed, between this range (2) and (3) were found to over-
lap.

2.2 Cylindrical shock segment reflection

In comparison with plane shock reflection, cylindrical shock
reflection has received less attention—both theoretical and
experimental.Gray andSkews [10] investigated the reflection
and transition of cylindrical shocks on plane wedges. Unlike
a plane shock that exhibits a direct Mach reflection (DiMR)
only upon encountering a plane wedge, cylindrical shock
reflection transforms from DiMR to stationary Mach reflec-
tion (StMR) and finally to inverse Mach reflection (InMR).
Each of these is characterised by an increasing, constant and
decreasing Mach stem length, respectively. With an InMR,
the Mach stem length eventually vanishes at which point the
reflection type transforms into a transitioned regular reflec-
tion (TRR).

The type of reflection that forms upon encountering a
wedge depends on the wedge’s angle. Using the sonic cri-
terion [11], Gray and Skews found that the cylindrical shock
exhibited a Mach reflection for angles where the sonic cri-
terion predicted an RR. If corroborated, this implies that the
shock’s curvature (which the sonic criterion does not account
for) has an effect on the type of reflection that results from
the wedge–shock interaction.

On the transition from MR to TRR, Gray and Skews
state that the existing criteria cannot be applied to cylin-
drical shocks owing to the assumptions made in those
criteria. The criteria assume the shock to be planar, with
uniform post-shock conditions and uniform shock Mach
number. As stated in Sect. 1, none of these assumptions
hold in relation to cylindrical shocks. Thus, new criteria are
needed.

3 Current study

In this paper,wepresent experimental results on the reflection
of cylindrical shock segments. Owing to the limited Mach
number range in the experiments, the results are augmented
by numerical simulation results so that a widerMach number
range is considered. Following on Itoh et al., an expression is
derived for the locus of the triple point and hence the transi-
tion point from MR to TRR. This expression is shown to be
a generalisation of Itoh et al., when the shock’s radius grows
without bound.

4 Experimental facility

The facility used for the generation of cylindrical shockwave
segments follows the design by Skews et al. [12]. A plane
shock of some Mach number M0 is generated in the shock
tube. This plane shock then passes through an annular region
with a cylindrical profile, thus forming a cylindrical shock.
The shock wave so generated has a span of 55◦ and radius
of 465 mm. It then propagates a distance of 300 mm before
interacting with the test piece (the concave-cylindrical wall)
(Fig. 5). Schlieren imaging was used to visualise the reflec-
tion process.

At point A in the sketch in Fig. 5 the shock’sMach number
is determined by the pressure ratio in the shock tube. Between
points A and B, the shock accelerates with decreasing radius.
ThefinalMachnumber at pointB can be determined byuse of
Guderley’s relation [1] or the area-Mach number relation [9].

Four wall radii were investigated: 82.5, 100, 140 and
180mm. Each of the walls was designed such that the wall’s
leading edge and the shock were perpendicular at their point

Fig. 5 Rig for experiments with cylindrical shock reflection
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The reflection of cylindrical shock wave segments on cylindrical concave wall segments 1189

of coincidence. Thus, this study examines only one aspect
of shock reflection—the other case is when the wall forms
an initial nonzero angle. The Mach number range of the
shocks generated in the shock tube was 1.2 < Ms < 1.4;
as already stated, this was expanded by use of computational
fluid dynamics. ANSYS Fluent was used (Fig. 6).

5 Results and discussion

5.1 Experimental results

The experimental results are shown in Figs. 7, 8, 9 and 10
for walls of radius 180, 140 and 82.5mm. It is clear that the

Fig. 6 Results of aCFDsimulation illustrating features developedwhen
the cylindrical shock reflects on a cylindrical wall

behaviour of the cylindrical shock segment is qualitatively
similar to that of plane shocks. In all results, the cylindrical
shock goes through three phases: first, the deformation of the
foot of the shock as it accelerates along the wall, then an MR
ensues which later transforms into a TRR.

Figures 8 and 9 show, clearly, the leading corner signal.
Unfortunately, it does not extend all the way to intersect with
the shock. An extrapolation of it (Fig. 9c, f) shows its nonin-
volvement with the formation of the MR. In all the figures,
the curvature of the Mach stem’s profile is hardly noticeable;
compared to the unperturbed portion of the shock, the Mach
stem is essentially straight.

Figure 6 shows the results of a numerical simulation that
when compared to the experimental results help identify
the features observed in experiment. Evidently, an unlimited
number of shock–wall combinations are possible. Thus, for a
quantitative description, the shock–wall ratio was considered
(rs/rw). As will be illustrated in Sect. 6.2, a large shock–wall
ratio is akin to a plane shock interacting with a cylindrical
wall; conversely, a small shock–wall ratio is analogous to the
interaction between a cylindrical shock and a plane wall.

Figure 11 shows the variation in the shock’s Mach stem
length. There is considerably more uncertainty in relation
to when the MR starts as illustrated by the beginning of the
curve in Fig. 11. The variations in shockMach number do not
show any conclusive trend owing to the small range at play.
However, correspondence with CFD was used as a basis to
continue the investigation at higher Mach numbers.

5.2 CFD settings

ANSYSFluent version 15.0.0was used for the simulations in
this paper. A rectangular dominant mesh with size 0.25mm
was used. The simulations were density based, using the
inviscid viscosity model with air modelled as an ideal gas.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Reflection of a 165-mm-radius shock with Mach number 1.32 on a 180-mm-radius wall
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Reflection of a 165-mm-radius shock with Mach number 1.43 on a 140-mm-radius wall

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Reflection of a 165-mm-radius shock with Mach number 1.42 on a 82.5-mm-radius wall

RoeFDS flux splitting scheme was used, and all discretisa-
tion schemes were second-order upwind. Dynamic gradient
adaptation was used to refine regions of high-density gradi-
ents.

5.3 Numerical results

Figure 6 shows the structure behind a reflecting shock.
Indeed, the qualitative behaviour of the shock (in CFD simu-
lations)was found to be similar to experimental observations.
This is also the same structure that would be observed behind
a plane shock wave. A slight curvature can be seen in the
Mach stem, but this is trivial when compared to the curva-
ture of the unperturbed shock.

The variation of the shock’sMach stem lengths—as found
in CFD simulations—is shown in Figs. 12, 13 and 14 for
Mach numbers 1.5–3. The Mach stem length is nondimen-
sionalised by the wall radius and scaled by an arbitrary factor

(100) for a more aesthetic scale. Different wall–shock radii
are plotted in each case for comparison.

In each case, the point where the Mach stem length van-
ishes indicates a transition from MR to TRR. As would be
expected, an increase in shock strength leads to an increase
in this transition angle. What cannot be anticipated is that
increasing the shock–wall ratio at a constant Mach number
also increases the transition angle as shown in the figures.

Each curve starts at the moment that an MR was deemed
discernible; therefore, these are the best estimates. Based on
these estimates, it follows that an increase in shock–wall ratio
increases the angle of MR formation (θF), while an increase
in shock strength reduces θF. A more intuitive result is that
increasing shock strength also increases the length of the
initial Mach stem, unexpectedly so does increasing shock–
wall ratio.

The curvatures of the curves in Figs. 12, 13 and 14 increase
with increasing Mach number. Generally, the gradient of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 Reflection of a 100-mm-radius shock with Mach number 1.37 on a 82.5-mm-radius wall

Fig. 11 Mach stem length variation on a 180-mm-radius wall. Compar-
ison between experiment and CFD data. The error estimate in angular
displacement measurement was ± 0.4◦, while Mach stem height error

estimate is± 0.7mm(experimental data). The line of best fit is described
by h = −0.0059(θF + φ)2 − 0.1354(θF + φ) + 12.7276 and was fit
to CFD data

curves in Fig. 12 is constant, while Fig. 14 increases from a
relatively low rate of growth. As depicted in Fig. 15, further
extrapolation shows that increasing shock strength decreases
the rate of change in Mach stem length—from a decreasing
to an increasing rate of change. Each of these implies a par-
ticular type of MR: an increasing stem length implies DiMR,
decreasing implies InMR and in-between is the StMR. Thus,
shock strength determines the initial type of MR that forms
on a cylindrical wall (Fig. 16).

It is alluded in Sect. 5.1 that as the shock–wall ratio grows,
the behaviour of a cylindrical shock on a cylindrical wall
approaches that of a plane shock on a cylindrical wall. This
assertion is also suggested inFigs. 11, 12 and13.Consider the
angle when the stem length vanishes; it can be seen that the
spacing between these vanishing points varies nonuniformly
with increasing shock–wall ratio. The transition points clus-
ter together as the ratio increases. This implies an approach
to a limit, which is the plane shock limit.
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Fig. 12 Mach stem length variation for cylindrical shocks with an initial Mach number of 1.5
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Fig. 13 Mach stem length variation for cylindrical shocks with an initial Mach number of 2.5

6 Analytical derivation

Aside from the uncertainty in the path followed by the corner
signal, Ben-Dor and Takayama’s approach requires knowl-
edge of the flow field behind the incident shock. Further, they
assume that conditions behind the reflected shock are simi-
lar to those behind the incident shock, which simplified their
analysis. On the other hand, the Mach number of a cylin-

drical shock continuously varies as a function of its radius,
which makes the conditions behind the shock variable as
well. Itoh et al.’s approached the problem from a geometric
perspective in which they assumed that the shockMach stem
is straight. From a geometric construction, they were able to
derive an expression for the variation of Mach stem length
with angular displacement. Drawing inspiration from both
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Fig. 14 Mach stem length variation for cylindrical shocks with an initial Mach number of 3
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Fig. 15 Mach stem length variation for cylindrical shocks with an initial Mach number of 1.5 on a 180-mm-radius wall. The Mach stem forms at
an angle θF = 6◦ with stem length of 2.8mm

articles, expressions for the variation of Mach stem length
and transition angles are derived in the following sections.

6.1 Mach stem length variation

Following on the work of Itoh et al., here we derive an
equation for the variation of the cylindrical shock’s Mach

stem with the subtending angle (θF + φ) using Fig. 17. It is
assumed that theMach stemhas a straight profile as discussed
in the sections above.

With the origin set at the leading edge of the wall, the
coordinates of points A and B—the triple points—are:
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Fig. 16 Mach stem length variation for cylindrical shocks with an initial Mach number of 1.5 on a 180-mm-radius wall. The error estimate in
angular displacement measurement was ± 0.4◦, while Mach stem height error estimate is ± 0.7mm

Fig. 17 Variation in the length of the Mach stem

A: ((Rw − λ) sin (θF + φ), Rw − (Rw − λ) cos (θF + φ))

B: ((Rw − λ − �λ) sin (θF + φ + �φ),

Rw − (Rw − λ − �λ) cos (θF + φ + �φ))

Using these coordinates, the radius of the shock at points
A and B (RA and RB) is:

R2
A = (Rw − λ)2 − 2(Rw − λ)(Rs sin (θF + φ)

+ Rw cos (θF + φ)) + R2
s + R2

w (5)

R2
B = (Rw − λ − �λ)2 − 2(Rw − λ − �λ)

(Rs sin (θF + φ + �φ) + Rw cos (θF + φ + �φ))

+ R2
s + R2

w (6)

The change in the shock’s radius from point A to point B
is found from (5) and (6) as (7) below where higher-order
terms in �λ and �φ have been neglected.

�R2 = 2(λ − Rw + Rs sin (θF + φ)

+ Rw cos (θF + φ))�λ + 2(Rw − λ)

(Rw sin (θF + φ) − Rs cos (θF + φ))�φ (7)

�R2 is recast in terms of the shock’s radius r as shownbelow:

�R2 = R2
B − R2

A

= (r − �r)2 − r2

= −2r�r (8)

Using (7) and (8), the equation governing the variation of the
Mach stem is found:

dλ

dφ
= − (Rw − λ)(Rw sin (θF + φ) − Rs cos (θF + φ))

λ − Rw + Rs sin (θF + φ) + Rw cos (θF + φ)

− r

λ − Rw + Rs sin (θF + φ) + Rw cos (θF + φ)

dr

dφ
(9)

For closure, (9) requires an initial condition that is the angle
θF when the shock first forms an MR. In addition, another
expression for (dr/dφ) is required. To find the shock’s radial
change with respect to angular displacement, we note that

�s = Rw�φ = Mwa0�t (10)
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where Mw is the Mach number of the shock’s foot on the
wall. The change in shock radius (�r ) can be expressed in
Cartesian coordinates as:

�r =
√

�x2 + �y2 (11)

with

�x = M(r)a0Nxa0�t = M(r)a0 cos θ�t

�y = M(r)a0Nya0�t = M(r)a0 sin θ�t (12)

Using (10), (11) and (12), then dr/dφ is given by (13) below.

dr

dφ
= Rw

M(r)

Mw
(13)

The wall–shock and the unperturbed shock’s Mach number
are calculated using Whitham’s theory [9] and area-Mach
number relation (15) [6], respectively. Alternatively, Guder-
ley’s relation (14) can be used, bearing in mind that it applies
only when we are considering a cylindrical shock close to its
focus.

M(r) = M0

(
r

r0

) z
z−1

where z = 0.835249 (14)

(
2M

(M2 − 1)K (M)
+ η(M)

M

)
dM + dA

A
= 0 (15)

In (15), one notes that in a two-dimensional context the area
of a cylindrical shock is akin to the exposed arc length rθ .
Thus, (15) canbe recast to calculate the shock’sMachnumber
as

∫ M

M0

(
2M̃

(M̃2 − 1)K (M̃)
+ η(M̃)

M̃

)
dM̃ +

∫ r

r0

dr̃

r̃
= 0 (16)

Equations (4), (14) and (16) together with the initial condi-
tion λ = λ0 when φ = 0 allow for the calculation of the
shock’s Mach stem length. The parameter θF and the stem’s
initial length are found from experimental results. However,
as highlighted before, these experimental values are impos-
sible to measure accurately owing to the limitations in shock
visualisation; therefore, best estimates must suffice.

6.2 Generalisation to Itoh et al.

Consider the case where Rs � Rw, then we can neglect all
terms (Rw/Rs). This case is akin to a cylindrical shock with
a large radius of curvature compared to the wall, i.e., a plane

shock interacting with a cylindrical wall segment.

dλ

dφ
= −

(Rw − λ)

(
Rw
Rs

sin (θF + φ) − Rs
Rs

cos (θF + φ)

)

λ
Rs

− Rw
Rs

+ Rs
Rs

sin (θF + φ) + Rw
Rs

cos (θF + φ)

−
rM(r)a0

Rs

λ
Rs

− Rw
Rs

+ Rs
Rs

sin (θF + φ) + Rw
Rs

cos (θF + φ)

dt

dφ

(17)

After simplifying (17) we get (18), which is the same as Itoh
et al. expression.

dλ

dφ
= (Rw − λ) cos (θF + φ)

sin (θF + φ)
− M0a0

sin (θF + φ)

dt

dφ
(18)

To show that rM(r)/Rs → M0 for large shock radius con-
sider (19) and recall (16):

0 < r ≤ Rs (19)

We rewrite (16) as follows:

dM

dr
= − 1

f (M)

1

r
(20)

Thus, for very large shock radii

lim
r→∞

dM

dr
= lim

r→∞ − 1

f (M)

1

r
= 0 (21)

Above, the equality to zero follows on the assumption that
the shock’sMach number is finite. The implication is that the
shock’s Mach number is constant for shocks with unbound
radii (r → ∞). Thus, from Whitham’s shock dynamics it
follows that

A = A0
F(M)

F(M0)
(22)

r = Rs (23)

From (20) and (23) conclusion (18) follows. Thus, subject to
best estimates of the initial conditions, Itoh et al.’s equation
has been extended to cylindrical shock segments.

6.3 Transition angle

Hornung et al.’s [8] corner-signal concept states that a Mach
reflection exists for as long as the corner signal (generated
at O in Fig. 18) can catch up to the incident shock. As
pointed out by Ben-Dor and Takayama [4], the path taken
by the corner signal to reach the incident shock is unknown.
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Fig. 18 Sketch used for deriving the expression for the transition angle
on a concave wall segment

Thus, suppose that the corner signal propagates along the slip
stream that is very close to the arc OA. Then we can write

Rwφ∗ =
∫ t∗

0
(u(r) + a(r))dt (24)

where we note that u and a are functions of the shock’s radius
and dt = −dr/us(r). Further, we can relate the shock radius
(r = r(φ)) as a function of φ by considering Fig. 18 where
the coordinates of point A are given as: A(Rw sin φ, Rw −
Rw cosφ) from which it follows that the radius is given by,

r(φ)2 = 2R2
w + R2

s − 2Rw(Rs sin φ + Rw cosφ) (25)

Moreover,

dr = R2
w sin φ − RwRs cosφ√

2R2
w + Rs − 2Rw(Rs sin φ + Rw cosφ)

dφ (26)

so that we can ultimately write

Rwφ∗ =
∫ φ∗

0
− (u(r) + a(r))

us(r)

R2
w sin φ − RwRs cosφ√

2R2
w + Rs − 2Rw(Rs sin φ + Rw cosφ)

dφ (27)

Equation (27) must then be solved for the transition angle
φ∗. Notice that taking the limit when Rs is much larger than
Rw results in (1), derived by Ben-Dor and Takayama.

lim
Rw/Rs→0

Rwφ∗ =
∫ φ∗

0

(u(r) + a(r))

us(r)
Rw cosφdφ

φ∗ = (u1 + a1)

us
sin φ∗ (28)

As shown in Sect. 6.2, u(r) → u1 and a(r) → a1 since for
very large shock radii, a cylindrical shock appears locally
planar.

If instead, it is assumed that the corner signal follows the
shortest path OT , then the transition angle is found by solv-
ing a slightly different expression where the left-hand side of
(24) is replaced by 2Rw sin φ∗

2 . The resulting equation that
must be solved for φ∗ is

2Rw sin
φ∗

2
=

∫ φ∗

0
− (u(r) + a(r))

us(r)

R2
w sin φ − RwRs cosφ√

2R2
w + Rs − 2Rw(Rs sin φ + Rw cosφ)

dφ

(29)

Like (27), (29) reduces to (2) when the shock radius is much
larger than the wall radius.

6.4 Model results

The generalised Itoh et al. equations were solved numeri-
cally. Figure 16 shows a comparison between experimental
data, CFD and the predictions of the current model; general
agreement can be observed. Figure 12 shows the results of a
cylindrical shock reflecting on a 180-mm-radius wall. This
illustrates the assertion made earlier that the shock’s strength
determines the type of MR that occurs. In this figure, the
shock goes from DiMR to StMR and finally to InMR.

Equations (27) and (29) were solved using Simpson’s
three-point quadrature combined with Newton–Raphson’s
method. The transition angles calculated are shown inTable 1
comparedwithmeasurements fromCFDsimulations.Agood
correlation can be seen for Mach 2.5 and 4 (Model A) with
no correlation at Mach 1.5. Model B, on the other hand, con-
sistently overshot the measured values for all Mach numbers
considered. This is somewhat consistent with Ben-Dor and
Takayama’s findings with regard to a plane shock.

One, however, notes that of the two paths that the corner
signal is assumed to follow, the signal follows only one. From
the results, Model A conforms best to measurements, which
therefore implies that the corner signal follows the path along
the shear layer.
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Table 1 A comparison of transition angles calculated using a modi-
fication of Ben-Dor and Takayama’s model with measurements from
CFD

Rs/Rw Mach
num-
ber

CFD (◦) Model A (◦) Model B (◦)

1 1.5 34 40.9 42.2

2 1.5 43 49.5 53.0

5 1.5 58 53.0 53.0

8 1.5 60 51.0 57.0

10 1.5 60 51.0 57.0

1 2.5 42 42.9 44.2

2 2.5 54 54.8 58.3

5 2.5 62 62.2 68.8

8 2.5 64 63.7 71.0

10 2.5 66 64.8 72.0

2 3 55 55.0 58.5

5 3 65 63.0 69.4

8 3 68 64.8 72.5

10 3 68 65.5 73.1

5 4 65 63.2 69.7

Model A uses the assumption that the corner signals propagate along
the shear layer, while in Model B, it follows the straight line path

7 Conclusion

The reflection of cylindrical shock segmentswas investigated
from an experimental and numerical perspective. Qualita-
tively, the reflection pattern behind the cylindrical shock was
observed to be similar to that behind a plane shock. On
encountering the cylindrical wall, wall disturbances prop-
agate up the shock and eventually lead to the formation of
a Mach reflection. Increasing wall angles leads to the trans-
formation of that Mach reflection into a regular reflection.
Qualitatively, it was found to be more effective to use the
shock–wall ratio (Rs/Rw) as a parameter for comparison. It
was observed that as the shock–wall ratio increases, the cylin-
drical shock’s behaviour approaches that of a plane shock.
This was shown by deriving an expression for the variation of
the shock’sMach stem length and considering the limitwhere
the shock’s radius grows without bounds. A similar limit
was inferred when Mach stem lengths were plotted with the
shock–wall ratio. Following onBen-Dor andTakayama, sim-

pler expressions were derived that give the transition angles
directly. The expression, so derived, was shown to generalise
back to their plane shock cases.

Acknowledgements This research was supported by the South African
National Research Foundation.

References

1. Ben-Dor, G.: Shock Wave Reflection Phenomena, pp. 249–
305. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
71382-1

2. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstösse
in de Nähe des Kugelmittelpunktes bzw de Zylinderachse. Luft-
fahrtforschung 19, 128–129 (1942)

3. Whitham, G.: On the propagation of shock waves through regions
of non-uniform area or flow. J. Fluid Mech. 4(4), 337–360 (1958).
https://doi.org/10.1017/S0022112058000495

4. Ben-Dor, G., Takayama, K.: Analytical prediction of the tran-
sition from Mach to regular reflection over cylindrical concave
wedges. J. Fluid Mech. 158, 365–380 (1985). https://doi.org/10.
1017/S0022112085002695

5. Takayama, K., Ben-Dor, G.: A reconsideration of the transition
criterion from Mach to regular reflection over cylindrical con-
cave surfaces. KSME J. 3, 6–9 (1989). https://doi.org/10.1007/
BF02945677

6. Itoh, S., Okazaki, N., Itaya, M.: On the transition between
regular and Mach reflection in truly non-stationary flows.
J. Fluid Mech. 108, 383–400 (1981). https://doi.org/10.1017/
S0022112081002176

7. Gruber, S., Skews, B.: Weak shock wave reflection from concave
surfaces. Exp. Fluid. 54, 1571–1585 (2013). https://doi.org/10.
1007/s00348-013-1571-x

8. Hornung, H., Oertel, H., Sanderman, R.: Transition toMach reflex-
ion of shock waves in steady and pseudosteady flow with and
without relaxation. J. Fluid Mech. 90(3), 541–560 (1979). https://
doi.org/10.1017/S002211207900238X

9. Whitham, G.: A new approach to problems of shock dynamics.
Part I. Two-dimensional problems. J. Fluid Mech. 2(2), 145–171
(1957). https://doi.org/10.1017/S002211205700004X

10. Gray, B.J., Skews, B.W. Kontis, K. (Ed.): Reflection transition
of converging cylindrical shock wave segments. In: 28th Interna-
tional Symposiumon ShockWaves, vol. 2, pp. 995–1000. Springer,
Berlin (2012). https://doi.org/10.1007/978-3-642-25685-1_151

11. Lock, G.D., Dewey, J.M.: An experimental investigation of the
sonic criterion for transition from regular to Mach reflection of
weak shock waves. Exp. Fluids 7, 289–292 (1989). https://doi.org/
10.1007/BF00198446

12. Skews, B., Gray, B., Paton, R.: Experimental production of two-
dimensional shock waves of arbitrary profile. Shock Waves 25,
1–10 (2015). https://doi.org/10.1007/s00193-014-0541-4

123

https://doi.org/10.1007/978-3-540-71382-1
https://doi.org/10.1007/978-3-540-71382-1
https://doi.org/10.1017/S0022112058000495
https://doi.org/10.1017/S0022112085002695
https://doi.org/10.1017/S0022112085002695
https://doi.org/10.1007/BF02945677
https://doi.org/10.1007/BF02945677
https://doi.org/10.1017/S0022112081002176
https://doi.org/10.1017/S0022112081002176
https://doi.org/10.1007/s00348-013-1571-x
https://doi.org/10.1007/s00348-013-1571-x
https://doi.org/10.1017/S002211207900238X
https://doi.org/10.1017/S002211207900238X
https://doi.org/10.1017/S002211205700004X
https://doi.org/10.1007/978-3-642-25685-1_151
https://doi.org/10.1007/BF00198446
https://doi.org/10.1007/BF00198446
https://doi.org/10.1007/s00193-014-0541-4

	The reflection of cylindrical shock wave segments on  cylindrical concave wall segments
	Abstract
	1 Introduction
	2 Literature review
	2.1 Plane shock reflection
	2.2 Cylindrical shock segment reflection

	3 Current study
	4 Experimental facility
	5 Results and discussion
	5.1 Experimental results
	5.2 CFD settings
	5.3 Numerical results

	6 Analytical derivation
	6.1 Mach stem length variation
	6.2 Generalisation to Itoh et al.
	6.3 Transition angle
	6.4 Model results

	7 Conclusion
	Acknowledgements
	References




