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Abstract
In this study, we present the results of an investigation of the propagation of cylindrical shock wave segments in converging–
diverging channels. Three planar-symmetric channels were used: two formed from a pair of walls with circular wall profiles
(radii 150 mm and 225 mm) and a third following a third-order-polynomial profile. In contrast to the circular walls, which are
convex, the polynomial wall has both convex and concave curved sections. A plane shock was generated using a conventional
shock tube after which a 165-mm-radius cylindrical shock segment was formed by allowing the plane shock to pass through a
circular arc-shaped annular space. This shockwas then allowed to propagate in the converging–diverging channel formed from
the two walls described earlier. The resulting shock evolution was captured using a z-type schlieren technique. Whitham’s
geometric shock dynamics (GSD) and computational fluid dynamics (CFD) were used to create numerical models of the
shock’s propagation. Comparisons between the threemethods (experiment, CFD, andGSD)weremade. In general, qualitative
agreements between the three methods were observed (with slight discrepancies). For example, a shock with an initial Mach
number of 1.37 interacting with a 150-mm-radius wall exhibited high curvature at the shock’s central position towards the
channel’s throat (as observed in experiment), an observation which was not replicated by either CFD or GSD. Quantitatively,
there were significant differences (before accounting for experimental errors). On comparing centreline shock Mach numbers
between the three methods, CFD results were closer to experimental results, while GSD results were consistently higher but
within the experimental data error bounds. However, the general trend was the same in all three, i.e., the shock strengthens
and weakens in the converging and diverging sections, respectively.
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List of symbols
(α, β) Coordinates on a curvilinear coordinate system
(x, y) Coordinates on a Cartesian plane
εM, εP Error in shock Mach number and position, respec-

tively
η(M) Modification factor of Whitham’s theory
γ Ratio of specific heat capacities
θ Shock orientation
ni Normal on the shock front
A Channel cross-sectional area
a0 Speed of sound ahead of the shock
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f1, f2 Property value (e.g., density) for a fine and course
mesh (relatively), respectively

M Shock Mach number
M0 Initial shock Mach number
p Position of probe point
r Shock radius, or ratio between course and fine mesh

sizes
t Time
u, v x and y component of velocity
GCI Grid Convergence Index

1 Introduction

Shockwaves propagating in channels occur in different areas
of our environment. These may be accidental or by design.
Consider underground gas pipelines; in the event of an acci-
dent, earthquake or any incident that causes inadvertent
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explosions, shockwavesmaypropagate in these underground
channels. A similar example can be made of coal dust in
mines where the dust acts as a fuel. Stray sparks from min-
ing equipment may act as an ignition source, resulting in an
explosion.

Several researchers have investigated the propagation of
plane shock waves under different conditions [1]. Here, we
consider the propagation of a cylindrical shock wave seg-
ment in a converging–diverging channel. Further to that,
Whitham’s geometric shock dynamics (GSD) and CFD are
used to model the said propagation and results compared to
experimental investigations.

2 Geometric shock dynamics

Consider a shockwave propagating in a channelwith a slowly
varying cross-sectional area. Chester [2], Chisnell [3], and
Whitham [4] showed that the shock Mach number and the
cross-sectional area can be related by (1). This relation is
called the CCW relation. In general, the expression shows
that an increase in the channel’s cross-sectional area (dA>0)
results in a decrease in shock Mach number (dM < 0).

2MdM
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+ dA

A
= 0 (1)
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Amajor assumption thatwasmade by all three researchers
in deriving (1) is the so-called free propagation assumption
stating that the behaviour of the shock front was independent
of post-flowconditions.While this assumptionworkswell for
relatively strong shocks (M > 2), it is not plausible for weak
shocks where re-reflectedwavesmay catch upwith the shock
front [4]. Skews [5] and Bryson and Gross [6] illustrated this
in their experiments. In light of that weakness, Milton [7]
accounted for post-shock condition in strong shocks and Itoh
et al. [8] generalised this over the whole range of shockMach
numbers (2) by inclusion of the η(M) term. On integrating
(1) or (2), the explicit form of the area–Mach number relation
(A = A(M)) is arrived at.
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Fig. 1 Curvilinear coordinate system for deriving Whitham’s model
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Following on the CCW relation, Whitham considered an
arbitrarily shaped shock propagating in a channel with arbi-
trarily shaped walls. Whitham modelled the shock using a
curvilinear coordinate system (α, β) (Fig. 1). Lines of con-
stant α represent successive shock fronts, while constant
β represents rays; hence, Fig. 1 is called a ray-shock dia-
gram. Terminal rays are thewalls’ profile, while intermediate
rays can be viewed as pseudo-walls. Using Fig. 1, Whitham
showed that the geometric relations governing the shock are
(3) and (4) which translate to (5) in characteristic form.
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θ represents the shock’s orientationwith respect to the x-axis.
An important predictionmade by (5) is that as the shock prop-
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Fig. 2 Reflection and diffraction on walls with slowly varying gradient

agates along the channel, waves, with speed c, also propagate
up or down along the shock. It is these waves that transfer
information for the shock’s shape and strength to change.

Consider Fig. 2a, b which shows plane shock reflection
and diffraction, respectively. In both cases, the upper wall
is plane and perpendicular to the shock. Because the upper
wall is straight, there are no waves propagating down along
the shock. However, the curvature of the bottomwalls causes
wall disturbances to propagate up along the shock.According
to Whitham, these waves propagate at a speed given by (6),
fromwhichwe see that the speed depends on both the channel
cross-sectional area and the shock Mach number.

Figure 2a, b is akin to an accelerating and decelerating
piston, respectively. In line with this analogy, the disturbance
waves generated in Fig. 2a, b are, correspondingly, compres-
sive and expansive. If it is imagined that these waves are
discrete, then c1 < c2 < · · · < cn and c1 > c2 > · · · > cn
for Fig. 2a, b, respectively,where c1 is the first disturbance, c2
the second, and so on. Consequently, for Fig. 2a, successive
waves grow stronger and eventually may coalesce to form a
shock–shock, a discontinuity on the shock front. In Fig. 2b,
a non-centred expansion fan results in curving the shock into
a smooth continuous profile.

Henshaw et al. [9] presented a numerical technique for
calculating the evolution of the shock front using GSD. The
solution scheme relies on a transformation from the curvilin-
ear coordinate system to the rectangular system along a ray.
Whitham [4] showed that this transformation results in (7).

∂x

∂α
= M cos θ,

∂ y

∂α
= M sin θ (7)

For brevity, (7) are written in vector form as (8), with
x = (x, y) and α = a0t . The partial derivative is then discre-
tised as in (9) where i refers to the different β coordinates.

∂x(β, t)

∂t
= a0M(β, t)n(β, t) (8)

xi (t + Δt) = xi (t − Δt) + 2ΔtMi (t)ni (t),

i = 1, . . . , N (9)

The shock’s Mach number is solved for, using a discretised
form of (1) (or 2). Equation (2) was used in this investiga-
tion. The index i refers to the shock discretisation on the β

axis. Complementing (7) and (1) (or 2) are the initial condi-
tions (the initial shock Mach number and shock front shape)
and the boundary conditions (that the shock front is always
perpendicular to the bounding walls). The leap-frog numer-
ical scheme can then be used to determine the shock front’s
shape and shock Mach number and their variation with time.
In this investigation, Henshaw et al.’s numerical scheme was
implemented inMATLAB. The leap-frog schemewas imple-
mented, with a time step of 10−8 s. Henshaw et al.’s criteria
for point deletion and addition were used in order to main-
tain sufficient shock resolution in compressive and expansive
regions, respectively.

3 Current problem

Of concern in this paper is the propagation of cylindrical
shock waves in converging–diverging channels. Because the
wall shape changes, Whitham’s theory predicts that there
will be disturbance waves propagating up and down along
the cylindrical shock front. Further to that, since the shock’s
Mach number depends on the shock’s radius, the speed of
these disturbance waves will also be variable [10]. It is not
clear how these effects together with channel area variation
will affect the shock’s behaviour and the evolution of the
shock front.

As such, Whitham’s theory is used to model the evolution
of the shock front as it interacts with the channel’s walls. The
results of the model are then compared to experimental data.
Figure 3a, b shows the two types of channel walls that were
investigated. The tangents in Fig. 3a illustrate the variation in
wall angle from the shock’s perspective, i.e., the cylindrical
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Fig. 3 Types of walls used to define the channels through which the shock propagates

Fig. 4 Shock dimensions: R = 165mm, θspan = 55◦

channel walls are similar to the case illustrated by Fig. 2b.
The hybrid wall is a mixture of concave and convex walls
(Fig. 2a, b). Equation (10) (in mm) defines the hybrid wall
profile.

y =

⎧⎪⎨
⎪⎩
1.5 × 10−3x2 + 3.933 × 10−1x + 70.006, x < 38.5

−1 × 10−5x3 − 1.7 × 10−3x2 + 1.05x + 38.40,

1.1 × 10−3x2 − 9.582 × 10−1x + 245.64, x > 221.5

(10)

The dimensions of the cylindrical shock investigated are
shown in Fig. 4. Motivating these dimensions are the exper-
imental apparatus, to be discussed in Sect. 4.2.

4 Investigationmethods

Three methods were used to investigate the interaction
between a 165-mm-radius shock segment and a converging–
diverging duct: CFD, experiments, and Whitham’s GSD. In

Fig. 5 Typical mesh on a 150-mm-radius channel

the next two sections, we present details for the CFD and
experimental set-up. Whitham’s GSD was applied following
the method described by Henshaw et al. [9].

4.1 CFD set-up

ANSYS Fluent 15.0.0 was used for all CFD simulation. This
section summarises the settings used. All simulations were
two dimensional with a plane of symmetry along the channel
centreline. This symmetry was used to halve the simulation
domain.

ANSYS meshing was used to create a rectangular dom-
inant mesh (Fig. 5) with an element size of 0.15 mm. For
the specific case shown in Fig. 5, the result was a grid with
46,733 cells, 94,094 faces, and 47,362 nodes. Edges A, B, C,
and D were defined as a pressure inlet, a wall, outlet, and a
symmetry plane, respectively.

In Fluent, a density-based solver was implemented on the
mesh created (typically as in Fig. 5). Typical solver settings
are shown in Table 1 for a Mach 1.5 incident shock. The
fluid domain was initialised to ambient conditions. Custom
field functions (11) were created for the inlet conditions and
patched accordingly, to the pressure-inlet boundary condi-
tion.
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Table 1 Fluent settings for the simulation of a 165-mm-radius cylin-
drical shock interacting with a 150-mm-radius wall

Energy On

Viscous model Inviscid

Material Air (as an ideal gas)

Boundary conditions

Pressure inlet

Total pressure 378,511.3 Pa

Supersonic gauge pressure 256,400 Pa

Total temperature 475.72 K

Methods

Formulation Implicit

Flux type Roe-FDS

Spatial discretisation

Gradient Least squares cell based

Flow Second-order upwind

Transient formulation Second-order implicit

Courant number 1

All residuals 1 × 10−5

Time step 1 × 10−8 s

Initial shockMach number is 1.7; ambient pressure and temperature are
80,000 kPa and 291.85 K, respectively

u = 314.26 cos θ

v = 314.26 sin θ

θ = tan−1
(

Y

X − 0.165

)
(11)

A density-based adaptive refinement method was imple-
mented in order to achieve fine shock front resolution. The
solver was set to refine the mesh where the spatial density
gradients are greater than 0.015 kgm4 and coarsen when less
than 0.01 kg m4. Should the density gradient be intermedi-
ate, the mesh remains unmodified. The maximum level of
refinement was set to four, which means that the concerned
cell is split by a factor of 24.

Mesh independence

A grid independence study was performed using the
150-mm-radius wall. Two meshes with nominal sizes of
1 mm and 0.5 mmwere used for this study. Roache’s method
[11] for analysing grid convergence was followed. The Grid
Convergence Index (GCI) is shown in (12) where the grid
ratio, r , is determined based on the dynamically adapted
mesh, and p = 2 for a second-order simulation.

GCI = 3|ε|
r p − 1

where ε = f2 − f1
f1

(12)

Table 2 Solution details at 310 µs

Case Δ # Elem∗ # Elem Velocity (m s−1) GCI

A 0.5 46,733 162,566 322.420 –

B 1.0 11,735 15,590 321.582 0.26%

Flow Mach number was extracted at the arbitrary coordinates
(125, 0)mm.Δ is the nominal mesh size in mm, # Elem∗ is the number
of elements in the mesh before adaptation, and # Elem is the number of
elements at 310 µs

Table 3 Solution details at 200 µs

Case Δ # Elem∗ # Elem Velocity (m s−1) GCI

A 0.5 46,733 106,010 364.703 –

B 1.0 11,735 14,303 363.592 0.30%

Flow Mach number was extracted at the arbitrary coordinates
(125, 0)mm.Δ is the nominal mesh size in mm, # Elem∗ is the number
of elements in the mesh before adaptation, and # Elem is the number of
elements at 200 µs

Tables 2 and 3 show the results of the GCI calculation.
The results show negligible difference between the results
using a 1-mm grid and a 0.5-mm grid. It can, therefore, be
assumed that the solutions that follow are independent of the
grid.

4.2 Experimental set-up

The Large-Scale Diffraction Shock Tube (LSDST) designed
byLacovig [12]was used for the experimental investigations.
The tube uses air as a working fluid, with the driven section
open to ambient temperature and pressure. Its dimensions are
shown in Table 4. The LSDST produces plane shock waves
which, for the purposes of this study, must be transformed
into cylindrical shocks. This is achieved by use of a modular
rig designed by Skews et al. [13]. Because the rig is modular,
it can be used to investigate various channels by swapping
test pieces.

Figure 6 shows an image and schematic of the said test
rig. The cylindrical shock generated by the test section has
a radius of 465 mm and a span of 55◦. With a propagation
chamber of 300mm, the effective shock radius, on interaction
with the test-piece, is 165mm.Twopressure transducers con-
nected to the LSDST allow for the estimation of the shock’s
Mach number on entering the test rig. Using (1) (or 2), the
shock’s initial Mach number when it interacts with the test-
piece can be calculated. We used (2).

A standard schlieren system was used for flow visualisa-
tion. Figure 7 is a schematic of the set-up. A Photron camera,
set at 60,000 frames per second and a shutter speed of 1 µs,
was used to capture the images. A Megaray MR2175LAB
light source was used for providing light. Two parabolic mir-
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Fig. 6 Experimental apparatus for the production of cylindrical shock waves

Table 4 Shock tube dimensions

Driver section length 2 m

Driven section length 6 m

Channel cross section 450 mm × 100 mm

rors with focal lengths of 1840 mmwere used to produce the
required parallel light beam.

5 Results and discussion

5.1 CFD results

Figure 8 shows a qualitative summary of the CFD results
illustrated using the 150-mm-radius case. In the converging
section of the channel, the shock is seen to diffract along the
convex wall (Fig. 8a, b); this results in a shock front that is
partitioned into three sections (Fig. 9). The middle section
maintains its cylindrical profile and continues to converge
on itself. The result is the formation of a multi-wave system
(Fig. 8c, d) which is similar to a Mach reflection. In Fig. 8e,
f, the wave system reflects off of the bounding walls. Sim-
ilar behaviour can be observed in the experimental results
that follow. In Sect. 5.3, CFD and experimental results are
compared.

5.2 Experimental results

Figures 10, 11, 12, 13, and 14 show some of the experimental
results from the shock tube experiments. The shock waves
investigated had initial shock Mach numbers between 1.25
and 1.37. In all the cases investigated, the shock front main-
tains a uniform profile. In general, the convex-cylindrical
shock transforms to a planar shock close to the channel throat
and then becomes concave curved in the diverging section.

As illustrated in Fig. 9, the shock front is split into three
regions by disturbancewaves propagating up and down along
the shock (as has already been noted in Sect. 5.1). The mid-
dle portion (which maintains a converging cylindrical shape)
continues to accelerate towards its focal point. It was thought,
therefore, that this would result in the formation of discon-
tinuities on the shock front owing to the strengthening of
disturbances propagating on the shock front. This null result
is possible if the disturbance waves from the channel walls
deform the shock front such that it no longer is cylindrical
when the focal point is reached.

While maintaining a uniform shock front, in the channel
defined by 150-mm walls, waves can be observed protrud-
ing behind the shock—consider Figs. 11d and 12d–l which
exhibit signs of a possible discontinuity forming. Figure
12h shows a multi-wave system; here, we avoid calling it
multi-shock (or discontinuity) as it is possible that they are
compression waves instead. Furthermore, Figs. 10, 11, and
12 also illustrate that the shock’s Mach number plays a role
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Fig. 7 Plan view of the schlieren set-up and auxiliary connections for the shock tube

Fig. 8 CFD simulation of a shock propagating in a 150-mm-radius channel

in the formation of this multi-wave system, i.e., the waves
forming this system become stronger with increasing shock
Mach number.

In Fig. 12i, this multi-wave system reflects off the chan-
nel’s walls. This reflection shows that the two features behind
the shock should be classified as two distinct features. On
reflection, one of the features remains attached to the shock
front, while the other remains behind (Fig. 12j, k).

In the channel formed from hybrid walls, the shock has
both compressive and expansive disturbance waves propa-
gating on its front. The concave and convex sections of the
profile induce compressive and expansive disturbancewaves,

respectively. That, combined with a converging cylindrical
shock and a narrower channel throat, results in similar but
sharper effects compared to the channel with 150-mm walls.

The effect ofwall radius can be seen by comparingFigs. 10
and 12. The difference in incident Mach number between
the two cases is 0.2, yet the differences in outlet shock cur-
vature are significant. The 225-mm-radius wall produces a
more planar-looking shock compared to the 150-mm-radius
wall. A decrease in wall radius corresponds to a reduction
in the minimum channel cross-sectional area and inversely
an increase in Mach number as illustrated by the area
Mach number relation. It follows therefore that the channel
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Fig. 9 Shock front partitioned into three regions

with 150-mm-radius walls produces stronger wall distur-
bance waves than the channel defined by 225-mm-radius
walls (compare Figs. 10c and 12e). As a consequence, the
150-mm-radius channel produces a more curved shock with

its three sections well defined. However, a more apt com-
parison would have been made if the perimeter of the test
pieces’ circular profile had the same in both the 225-mm and
150-mm pieces.

5.3 Comparison between CFD and experiment

Figure 15 is a comparison of shock profiles derived from
CFD and experiment. Figure 15a–c corresponds to shocks
at times 140 µs, 200 µs, and 160 µs, respectively. Of the
three cases, the shock in the polynomial wall channel shows
major discrepancies; the experiment-derived profile has high
curvature towards its centre (see also Fig. 13g), which CFD
does not adequately reproduce.

ShockMachnumbers along the symmetryplane are shown
in Fig. 16a–c. The error estimates associatedwith experimen-
tal measurements are as a result of apparent shock thickness
(Sect. 5.4).Within experimental uncertainty, CFD and exper-
imental values are consistent with each other except for the
polynomial wall profile. The reason behind this discrepancy

Fig. 10 Propagation of a shock with an initial shock Mach number of 1.37 in a channel with 225-mm-radius walls

Fig. 11 Propagation of a shock with an initial shock Mach number of 1.25 in a channel with 150-mm-radius walls
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Fig. 12 Propagation of a shock with an initial shock Mach number of 1.39 in a channel with 150-mm-radius walls

Fig. 13 Propagation of a shock with an initial shock Mach number of 1.39 in a channel with hybrid walls

is not clear; the only difference between the circular and
polynomial wall profiles is the initial convex section in the
latter. Owing to this convex section, the polynomial wall pro-
file causes compressive wall disturbances to propagate along
the shock front. However, this alone cannot account for the
discrepancy observed.

5.4 Error analysis

In this section, we determine the error associated with the
centreline shock Mach numbers illustrated in Fig. 16 and
later on in Sect. 5.6. An elementary method was employed
in calculating shock speed, i.e., the ratio of shock displace-
ment with time. Shock positions were extracted from the
captured images (Figs. 10, 11, 12, 13, and 14), for which it
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Fig. 14 Propagation of a shock with an initial shock Mach number of 1.30 in a channel with hybrid walls

Fig. 15 Comparison between CFD and experimental results at 140 µs, 200 µs, and 160 µs, respectively

was necessary to zoom into the images in order to estimate
shock position. The consequence of zooming in was that the
shock’s thickness was magnified making the shocks location
uncertain within the bounds of shock thickness. This uncer-
tainty in shock position translates into errors in the shock’s
Mach number.

Upon zooming in, the shock has a thickness of 3.8 mm.
The scale of the zoomed-in images to the laboratory distances
was 123.1 mm: 58.07 mm, implying a shock thickness of
1.75mm. Shock position (i.e., pi ) wasmeasured at the centre
of the zoomed-in shock so that the shock position can be
stated as: pi±εP where εP = 0.9mm (one significant figure).

If we assume that the error in time and temperature
measurements are negligible compared to position measure-
ments, then the resulting shock Mach number is given as:

M = pi+1 − pi−1

2a0Δt
(13)

using the central difference method. The propagated error in
this calculation is then given as:

εM =
√

ε2P + ε2P

2a0Δt
(14)

For example, with Δt = 0.02 s and c = 342.48 s (here c
is the speed of sound ahead of the shock), the associated error
in shockMach number is: εM = 0.165 or 0.2 (one significant
figure).

5.5 GSD results

Henshaw et al.’s [9] method of solving Whitham’s equation
was used. The experimental results in Sect. 5.2 were used
to define the shock’s initial Mach number and shape. It was
assumed that the shock’s shape is still cylindrical when it is
first observed in the experimental images.
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Fig. 16 Comparison of centreline shock Mach number for experimental and CFD results

Fig. 17 Shock profiles calculated using Whitham’s GSD
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Fig. 18 Shock Mach number variations within the channels as calculated using GSD

Fig. 19 Experimental shock profiles compared to GSD shock profiles

In the experimental images, the shock thickness makes it
difficult to discern shock curvatures. This weakness is not
existent in the numerical solution as is seen in Fig. 17; note
that the time between discrete profiles is 12.5 µs. In these
numerical profiles, the cylindrical shocks show the parti-
tion of the shock front into three portions (the central region
between two diffracted portions). Furthermore, the three por-
tions are maintained beyond the channel throat, albeit with
gradual smoothing.

Even more expressive are the plots of the shock Mach
number variations within the channel (Fig. 18). The plots
show the shock Mach numbers frozen in time. In Fig. 18a–c,
tracks can be seen radiating from the channel throat’s centre
towards the walls. These correspond to the multi-wave sys-
tem observed in Fig. 11e and its propagation towards the
walls. Thus, while GSD ignores post-shock conditions, a
shock Mach number plot allows for those conditions to be
inferred.

In addition, the shock Mach number variation plots help
reinforce the mechanism causing the variation in shock pro-
file shape. The shock’s Mach number (initially uniform)
becomes non-uniform as the shock moves in, towards the
throat. It reaches a peak close to the channel throat (along the
centreline) and minimum shock Mach number at the walls.
This is consistent with a shock front with expansion waves

propagating up and down along it with the centre portion
converging towards the focal point.

Figure 18c shows a more complex pattern, with several
waves emanating from the walls at the channel entrance. We
recall that Fig. 18c corresponds to hybrid walls with both
concave and convex walls. Therefore, the tracks correspond
to the compressive disturbance waves produced by the con-
cave walls.

The results above illustrate that there is good correlation
between GSD and experiment from a qualitative perspective.
That is, using GSD, one can infer the pertinent mechanism
and estimate shock front shape and evolution thereof.

5.6 Comparison between GSD and experimental
results

Figure 19 shows a comparison between GSD and experi-
mental profiles for the three profiles investigated. Overall,
the shock profiles from both methods are reasonably similar
to each other. However, a slight difference in curvature can
be seen at points A and B of Fig. 19b, c, respectively. Pre-
sumably, that difference is as a result of the number of points
used to discretise the shock in GSD.

Centreline shock Mach numbers from both GSD and
experiment were plotted together in Fig. 20a–f. In all cases,

123



The interaction of a cylindrical shock wave segment with a converging–diverging duct 829

Fig. 20 Comparisons of centreline shock Mach numbers between that calculated using GSD and measured in experiments
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GSD predicts a higher peak shock Mach number than is
observed in experiments. However, variation in centreline
shock Mach number along the channel follows a similar pat-
tern in both GSD and experiments. This is consistent with
the qualitative view that the mechanisms concerned are well
described by GSD.

As was alluded to in Sect. 2, the change in shock Mach
number is communicated by disturbance waves sent from the
wall. Further, these disturbance waves propagate at a finite
speed. It follows, therefore, that prior to the arrival of the dis-
turbance waves, the shock front should continue to behave as
the original cylindrical shock front. This is well modelled by
Whitham’s theory and exact correspondence between exper-
iment, and the theory was expected in the inlet section of
the channel. Allowing for experimental error, this correspon-
dence is seen in Fig. 20.

Figure 20a–d illustrates an accelerating shock front with
a peak at the throat and deceleration thereafter. Both GSD
and experiment show that the shock front experiences two
peaks. This can be understood by reference to the walls that
define the channel. In Fig. 20e, f, the channel is defined by
hybrid walls, and as has been alluded to, they result in com-
pressive and expansive disturbance waves in the concave and
convex wall sections, respectively. It is the arrival of the lat-
ter that causes the centreline shock Mach number to briefly
drop, resulting in the first peak. Further reductions in channel
cross-sectional area lead to further shock acceleration until
the second peak.

While the channel is symmetric about the throat, the
shock’s behaviour is not. After passing through the throat, the
centreline shockMachnumber does not exhibit the samedou-
ble peak as was observed in the converging portion; instead,
the shock’s Mach number monotonically decreases. This
illustrates the dominance of area increase over the walls’
profiles.

As far as these results show, there still remains quantitative
differences between Whitham’s GSD and experiment. This
is despite the modifications introduced by Milton and Itoh et
al. However, in conjunction with Figs. 17 and 18, GSD can
be useful in estimating the evolution of a cylindrical shock
in a converging–diverging channel.

Aside from the discussion above, a more subtle but
potential explanation for the discrepancies observed could
be the assumption that the shock and the wall are always
perpendicular to each other. This may be true for inviscid
flow, but not sound for the case considered here. Consider
Figs. 13o, p and 14o, p which show a well-developed bound-
ary layer behind the shock. The boundary layer introduces
either a negative or positive displacement, depending on
whether the wall is concave or convex, which results in a
displaced effective wall. This will have the effect of altering
the perpendicularity assumption to some other value [14].

6 A comment on CFD and GSD

Between CFD and GSD results, we observe that the for-
mer has better correlation to experimental data, especially
for the circular profiles (consider Fig. 16a, b vs. Fig. 20).
The polynomial profile, on the other hand, exhibits sim-
ilar discrepancies in both CFD and GSD (Fig. 16c vs.
Fig. 20c). Qualitatively, both methods produce the same cen-
treline Mach number variation: a monotonic acceleration
interrupted by a plateau up to a peak and then a monotonic
deceleration. Quantitatively, CFD and GSD consistently pre-
dict higher centreline Mach numbers, as has already been
discussed. However, CFD results are within the experimental
data error bounds, except in the plateau region. In compar-
ing the two methods, it must be borne in mind that CFD
solves for the complete fluid domain, while GSD primarily
accounts for the shock front (in spite of the Itoh et al. mod-
ifications).

7 Conclusion

The propagation of two-dimensional cylindrical shock wave
segments in converging–diverging channels was experimen-
tally and numerically investigated. The numerical investi-
gation was conducted from a geometric shock dynamics
perspective using Whitham’s theory and CFD. In general,
the subsequent shock front evolution was observed to be
dependent on the geometry of the walls defining the chan-
nel. With circular walls, expansive disturbance waves were
inferred in experimental observations and, to an extent, con-
firmed by the numerical method. A multi-wave system,
similar to a Mach reflection configuration, was observed
at the channel throat. Because of channel symmetry, this
multi-wave system was observed in both the top and bot-
tom halves of the channel, and this system propagated along
the shock front until it reflected off the channel walls;
however, one of the multi-wave system’s elements did not
reflect off the wall, implying that they are different phenom-
ena.

Comparisons between numerical and experimental data
showed good qualitative correlation. The calculated shock
profiles were similar to those captured in experiments; fur-
thermore, the subtle curvatures of the disturbed portions
of the shock front were clarified by thin calculated shock
fronts. A plot of shockMach numbers frozen in time showed
what seemed like weak discontinuities in the experimen-
tal images. Nevertheless, while qualitative correspondence
was good, quantitatively, GSD consistently produced higher
shock Mach numbers than were measured in experiments.
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