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Abstract A spherical particle-laden blast wave, generated
by a sudden release of a sphere of compressed gas–particle
mixture, is investigated by numerical simulation. The present
problem is a multiphase extension of the classic finite-source
spherical blast-wave problem. The gas–particle flow can be
fully determined by the initial radius of the spherical mixture
and the properties of gas and particles. In many applications,
the key dimensionless parameters, such as the initial pressure
and density ratios between the compressed gas and the ambi-
ent air, can vary over awide range. Parametric studies are thus
performed to investigate the effects of these parameters on
the characteristic time and spatial scales of the particle-laden
blast wave, such as the maximum radius the contact discon-
tinuity can reach and the time when the particle front crosses
the contact discontinuity. A scaling analysis is conducted to
establish a scaling relation between the characteristic scales
and the controlling parameters. A length scale that incorpo-
rates the initial pressure ratio is proposed, which is able to
approximately collapse the simulation results for the gas flow
for a wide range of initial pressure ratios. This indicates that
an approximate similarity solution for a spherical blast wave
exists, which is independent of the initial pressure ratio. The
approximate scaling is also valid for the particle front if the
particles are small and closely follow the surrounding gas.
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1 Introduction

Whenacompressedgas–particlemixture is suddenly released
to a low-pressure atmosphere, a particle-laden blastwavewill
be generated. Blast phenomena that involve a high-speed
particle-laden flow are seen in nature and industrial appli-
cations, such as volcanic eruptions [1], dusty explosions [2],
and metallic explosive detonations [3,4]. Understanding the
physics of a particle-laden blast wave and being able to pre-
dict the motions of the gas and the particles are critical to
these applications.

In the present study, a blast wave in a simple geometry
is considered, i.e., a spherical capsule that contains a gas–
particle mixture of high pressure is suddenly released, see
Fig. 1. The single-phase analog of the present problem is a
classic problem in the literature. The problem of a spheri-
cal blast wave generated from a compressed gas sphere was
first studied numerically by Brode [5]. The problem has also
been referred to as the “spherical shock-tube blast” [6] (due
to similarity with the planar shock-tube problem) and also
as the “bursting-sphere blast” [7], and was later investigated
extensively by many others, including an experimental study
by Boyer [8], numerical studies by Brode [9] and Liu et al.
[10], and (approximately) analytical investigations by Fried-
man [11] and McFadden [12].

When the sphere of compressed gas is released, a shock
wave (the so-called main shock), an expansion fan, and a
contact discontinuity are generated, see Fig. 2. The main
shockwave and the contact discontinuity travel outward with
decreasing speeds due to the radial expansion effect. Due to
the over-expansion arising from the radial effect, a secondary
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Fig. 1 Schematic of particle dispersal by a spherical blast wave
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Fig. 2 A representative x–t diagram of spherical particle-laden blast
wave. Characteristic time and spatial scales for the gas and particle
motion are indicated by filled and unfilled circles. G1: when the sec-
ondary shock reaches its maximum radial distance; G2: when the gas
contact discontinuity reaches its maximum radial distance; G3: when
the secondary shock reaches the origin; P1: when the particle front
reaches its maximum velocity; P2: when the particle front crosses the
secondary shock; P3: when the particle front crosses the contact discon-

tinuity. Here the initial radius of the spherical mixture, Rs, and
√
pg0/ρ

g
0

serve as typical length and velocity scales, respectively

shock wave is formed at the outer boundary of the expansion
fan. The secondary shock wave is an imploding shock in
nature, yet due to the large initial gas velocity, the secondary
shock is initially swept outward before eventually turning
inward. The secondary shock wave is reflected at the ori-
gin and will move outward again. The reflected secondary
shock will interact with the inward-propagating contact dis-
continuity and pushes the latter outward again. During the
interaction, a reflected and a transmitted shock wave are gen-
erated. Then a similar cycle starts, with the transmitted shock
playing the role of the main shock and the reflected shock
playing the role of the secondary shock. This interaction pro-
cess continues to create a system of reflected and transmitted

shocks that become weaker with each interaction. Through
these interactions, the gas bounded by the contact discontinu-
ity continues to expand and compress until it asymptotically
approaches a stationary state [9].

The present problem can be considered as the multiphase
extension of the classic spherical blast-wave problem, where
the sphere of compressed gas is now replaced by a mixture
of compressed gas and particles. With the addition of parti-
cles, the problem becomes more complex [7,13]. Once the
compressed gas–particle mixture is released, the particles are
driven by the gas flow and are dispersed outward rapidly. In
the limit of zero inertia, the particles remain in a mechanical
equilibrium with the gas initially inside the sphere, and as a
result, the surface separating regions with and without par-
ticles (hereafter referred to as “particle front”) will overlap
with the gas contact discontinuity. However, as long as the
particle inertia is finite, then the particle front will first lag
behind but later catch up and overtake the contact disconti-
nuity. Furthermore, the particles will also interact with the
secondary shock wave since the latter initially move outward
butwill eventually turn back. These interactions between par-
ticles and characteristic waves in a blast make the particle
motion complex and hard to predict.

For particle-laden blast waves arising from detonation of
multiphase explosives, the gaseous detonation products and
particles are substantially accelerated by the detonation wave
[14–17]. As a consequence, at the completion of detonation
when the blast wave is generated, the initial velocity of gas
and particles is not zero within the sphere. Scaling relations
for the particle dynamics due to the interaction with the det-
onation wave have been developed by Tanguay et al. [18]. In
the present problem, the gas–particlemixture is considered to
be initially quiescent; therefore, the early-term blast dynam-
ics will not be fully represented. Nevertheless, the present
problem is expected to capture the long-term dynamics of a
particle-laden blast and is also relevant to other blast phe-
nomena such as volcanic eruptions.

In the present study, the spherical particle-laden blastwave
is investigated by numerical simulations. Since a large num-
ber of particles are involved and the scales of interest are
generallymuch larger than the particle size, the point-particle
approach, in which particles are modeled as point masses, is
employed here. As flows at the particle scale are not resolved,
the interphasemomentum and energy couplingmust be accu-
rately represented by particle force and heat-transfer models,
see [19].

In the present problem, since particles interact with the
secondary shock wave, the interphase coupling models used
in simulation must be able to rigorously capture shock–
particle interaction. (In some particle-laden blast applica-
tions, the particles have even been observed to overtake even
the main shock wave [3,4].) Significant research progress
has been made in particle force modeling in compressible
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flows involving shock–particle interaction in recent years.
Parmar et al. [20,21] have derived an analytical expression
of the particle force in compressible flows at the asymptotic
limit of zero Reynolds and Mach numbers. More recently,
Annamalai and Balachandar [22] extended the theory to
viscous compressible flows and provided a general Faxén
form of the particle force. These studies provide a theoreti-
cal base to develop physics-based interphase force models at
finite Reynolds and Mach numbers. Extensions of the inter-
phase coupling models to finite Reynolds andMach numbers
have been proposed by Parmar et al. [23,24] and Ling et
al. [25,26]. The new model is validated against experiments
and direct numerical simulation of shock interaction with
a single particle [14,27] and with a dense particle curtain
[26]. Compared to the conventional models like standard
drag [28] and heat-transfer [29] correlations, a significant
improvement of the new model is that the unsteady forces
and heat-transfer contributions are accounted for in the inter-
phase momentum and energy transfer. Detailed discussions
on the importance of different interphase force and heat-
transfer contributions are systematically discussed in Ling
et al. [30,31]. The unsteady contributions have been shown
to be critical to accurate prediction of motion of particles
subjected to an incident shock wave [25,26].

The problem of a spherical particle-laden wave has been
investigated numerically by Ling et al. [13]. The focus of the
previous work is on testing the interphase coupling model
and evaluating the importance of unsteady force and heat-
transfer contributions on predicting the particle dispersal by
a spherical blast wave. As an extension of our previous work
[13], the goal of this paper is to conduct a parametric study
of the initial conditions and the particle properties and to
investigate the effects of these key parameters on particle
dispersion in response to the blast wave. The present prob-
lem involves multiple parameters that can vary over a wide
range, e.g., pressure and temperature of the compressed gas,
particle diameter and density, and the initial radius of the
spherical mixture. It is difficult to cover each combination
of these parameters by simulations even for this simplified
setup. A scaling analysis is therefore conducted aiming at
reducing the number of independent parameters. Due to the
complexity of the present problem, universal scaling or exact
similarity solutions do not exist. Nevertheless, it is found that
for some region in the parameter space, we are able to col-
lapse solutions for different initial conditions approximately.

Anumerical investigationof a similarmultiphasebursting-
sphere problem has also been reported by Zarei and Frost
[32]. The focus of their work was on the effect of secondary
energy release from reactive metal particles on the propaga-
tion of the blast front. In the present study, we consider only
inert particles and are mainly interested in the dispersion of
the particles and the scaling behaviors of the compressible
multiphase flows generated.

The physical model and numerical methods are to be pre-
sented in Sect. 2. The results of the present simulations and
the scaling analysis are shown in Sect. 3.Wewill first address
the general scaling results and the approximate ones. Finally,
we will conclude the main findings in Sect. 4.

2 Governing equations and numerical methods

2.1 Assumptions

In the present study, the particles are assumed to be spher-
ical, rigid, and inert. The particles are initially uniformly
distributed inside the spherical container and are in thermal
equilibrium with the compressed gas. The blast wave is con-
sidered to occur in an unbounded domain. The gravity effect
is neglected. Therefore, the particle-laden flow in the present
problem is strictly spherically symmetric at all times.

The gas is assumed to obey the ideal gas law. The gas
flow at the macroscale is considered as inviscid, while for
the interaction between a particle and the surrounding gas at
the microscale (particle scale) viscous effects are included
through appropriate models discussed below. For simplicity,
the thermal and transport properties of the gas are assumed
to be constant.

According to the scaling analysis on interphase momen-
tum and energy coupling [30,31], the mass fraction of
particles can serve as a measure of the backward effect of
the particles to the gas. In the present study, we focus on
the dilute regime where the particle mass fraction is small.
Therefore, the gas and particles can be considered to be one-
way coupled. We further assume the particle volume fraction
to be small, so that particle collisions can be ignored.

It should be mentioned that for many particle-laden blast
applications, the initial particle mass fraction is substantial
and thus the backward coupling effect cannot be neglected.
The particle mass fraction will decrease rapidly when the
particles are dispersed outward, and as a consequence, the
influence of particles to the gas flows will also drop very
fast. For such cases, the one-way coupling approximation
adopted here will only be proper for the long-term behavior.

2.2 Governing equations

The governing equations for the one-way coupled compress-
ible particle-laden flows are presented below. The details of
the force and heat-transfer models can be found in our pre-
vious works [13,14,25,26].

The gas flow is governed by the Euler equations, which
can be written as

∂ρg

∂t
+ ∂ρgug

∂x
+ 2

ρgug

x
= 0, (1)
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∂ρgug

∂t
+ ∂ρg(ug)2

∂x
+ 2

ρg(ug)2

x
= −∂pg

∂x
, (2)

∂ρgEg

∂t
+ ∂ρgHgug

∂x
+ 2

ρgHgug

x
0, (3)

where ρg, ug, pg, Eg, and Hg represent the density, velocity,
pressure, total energy, and total enthalpy of gas, respectively.
Throughout the paper, the superscripts “g” and “p” indicate
quantities associated with the gas and the particles, respec-
tively.

The Lagrangian point-particle approach is employed to
simulate the particulate phase [19,25,33,34]. Different from
fully resolved simulations [14,35–37], the particles are
modeled as point masses and the corresponding position,
momentum, and energy equations of which are given as

dxp

dt
= up, (4)

dup

dt
= f = fqs + fpg + fam + fvu, (5)

dT p

dt
= q = qqs + quu + qdu, (6)

where xp, up, and T p represent position, velocity, and tem-
perature of an individual particle, respectively. The force
per unit mass and heat transfer per unit heat capacity are
denoted by f p and qp, respectively. In the above expres-
sions, fqs, fpg, fam, and fvu represent the quasi-steady,
pressure gradient, added-mass, and viscous-unsteady contri-
butions to the force, respectively. Similarly, the quasi-steady,
undisturbed-unsteady, and diffusive-unsteady contributions
to the overall heat transfer are denoted by qqs, quu, and qdu.

The expressions for the force contributions are

fqs = ug
s − up

τ p

CDRep

24
, (7)

fpg = − 1

ρp

D(ρgug)

Dt

v

, (8)

fam = CM

ρp

(
−D(ρgug)

Dt

v

− d

dt
(ρgup)

v

)
, (9)

fvu =
√

ρg

ρp

√
τvu

τ p

3√
2πρg

∫ t

−∞
Kvu

(
t − ξ

τvu
,Rep

)

(
−D(ρgug)

Dt

s

− d

dt
(ρgup)

s

)
dξ

τvu
, (10)

where the quasi-steady drag coefficient CD is a function of
the particle Reynolds number Rep and Mach number Mp

[24]. The definitions of Rep and Mp are given as

Rep = ρg|up − ug
s|dp

μg , (11)

and

Mp = |up − ug
s|

ag
. (12)

For one-way coupled simulations, D(ρgug)/Dt is approxi-
mated by ∂pg/∂x . Bars with a superscript “s” or “v” denote
gas quantities averaged over the particle surface Sp or volume
V p [22], respectively, i.e.,

ug
s = 1

Sp

∮

Sp
ugdS, (13)

ug
v = 1

V p

∫

V p
ugdV . (14)

In (7) and (10), τ p is the particle response time, expressed as

τ p = ρp(dp)2

18μg . (15)

The effective added-mass coefficient CM is a function of
Mp as [14]

CM = CM,0

(
1 + 1.8(Mp)2 + 7.6(Mp)4

)
, (16)

where CM,0 = 1/2 is the added-mass coefficient for a spher-
ical particle at Mp = 0.

The viscous-unsteady force kernel is denoted by Kvu, and
here the finite-Reynolds-number model of Kvu suggested by
Mei and Adrian [38] is employed,

Kvu(t/τvu) = 1

[(t/τvu)1/4 + t/τvu]2 . (17)

where τvu is the particle viscous-unsteady time scale, defined
as [31]

τvu = (dp)2

νg

(
4

π

)1/3 (
0.75 + 0.105Rep

Rep

)2

. (18)

The expressions of the heat-transfer contributions are

qqs = T gs − T p

τ
p
θ

Nu

2
, (19)

quu = 1

ρpCp

∂qg

∂x

v

, (20)

qdu = τdu

τ
p
θ

Pep

2ρg

∫ t

−∞
Kdu

(
t − ξ

τdu
,Pep

)

(
1

Cg

∂qg

∂x

s

− d

dt
(ρgT p)

s

)
dξ

τdu
, (21)
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where Nu is the Nusselt number. The empirical correlation
of Fox et al. [39] is used to calculate Nu at finite Rep and Mp.
In (19) and (21), τ pθ is the particle thermal response time,

τ
p
θ = ρpCp(dp)2

12kg
. (22)

Since here the gas flow at macroscale is considered as
inviscid, ∂qg/∂x = 0. As a result, quu = 0. The diffusive-
unsteady thermal kernel is denoted by Kdu, and the model of
Feng and Michaelides [40] is employed,

Kdu(t/τdu) = exp(−t/τdu)√
π(t/τdu)

− erfc(
√
t/τdu) , (23)

where τdu is the diffusive-unsteady timescale, defined as

τdu = (dp)2

αg

4

(Pep)2
. (24)

It is noted that the interphase heat-transfer model [(19)–(24)]
is shown here just for completeness, but the thermal behav-
ior of the particles in a blast wave will not be discussed in
this work. The present study is focused on the mechanical
response of particles in a spherical blast wave.

2.3 Numerical methods

The numerical approach for theEuler equation is based on the
cell-centered finite-volume methodology. The inviscid flux
for the gas is calculated by the approximate Riemann solver
of Roe [41]. The face-states are obtained by a simplified
second-order accurate weighted essentially non-oscillatory
scheme, see, e.g., Jiang and Shu [42], which modifies the
gradients computed using the least-squares reconstruction
method of Barth [43]. The time-integration method for the
gas and particle equations is the fourth-order Runge–Kutta
method. The solution method has been extensively verified
and validated for gas and gas–particle flowswith and without
shock waves. For brevity, the results from these studies are
not reproduced here. For more details, see Haselbacher [44],
Haselbacher et al. [45], and Ling et al. [46].

2.4 Simulation setup

The computational domain is one dimensional in the radial
direction. The spherical symmetric boundary condition is
invoked at x = 0. Thanks to the low computational cost
of one-dimensional simulations, the outer boundary is made
sufficiently large, so that the main shock wave never reaches
the outer boundary. The cell size is taken to be 0.1mm,which
has been verified for yielding grid-independent results. The
time step is calculated based on the CFL condition, with the
CFL number equal to 0.3.

3 Simulation results and scaling analysis

3.1 Characteristic time and spatial scales

Before showing the simulation results, we first introduce the
characteristic time and spatial scales of interest for a spheri-
cal particle-laden blast wave. Figure 2 shows a representative
particle-laden flow field in a x–t diagram. The trajectories
of the main shock wave, the contact discontinuity, and the
secondary shock wave are shown along with the trajectory
of the particle front. Different from the main shock wave
that continues to propagate outward, the contact discontinu-
ity and the secondary shock wave first move outward and
then turn back toward the origin. As a consequence, three
points in the x–t diagram are chosen to characterize the gas
flow:

– G1: the time and radial location for the secondary shock
reaching the maximum distance

– G2: the time and radial location for the contact disconti-
nuity reaching the maximum distance

– G3: the time for the secondary shock reaching the origin.

As described above in Sect. 1, after the reflected secondary
shock wave interacts with the contact discontinuity, subse-
quent wave interaction cycles follow. Though the later wave
interactions are also interesting, here we focus on the early
behavior before the reflected secondary shock wave interacts
with the contact discontinuity.

Another three characteristic points are picked in the x–t
diagram to characterize the dynamics of the particle front:

– P1: the time and radial location when the particle front
reaches its maximum velocity

– P2: the time and radial location when the particle front
crosses the secondary shock

– P3: the time and radial location when the particle front
crosses the contact discontinuity.

The volume fraction, velocity, and temperature profiles of
particles within the particle front have been studied exten-
sively in the previous work [13]; here, we mainly focus on
the motion of the particle front. The reasons for choosing
these three points to characterize the particle front motion
are given as follows. The particle front typically accelerates
very fast initially and then slows down gradually, so P1 rep-
resents the peak velocity that the particle front can reach.
Though the instability of the contact discontinuity is out of
the scope of this study, the decelerating contact discontinu-
ity is indeed unstable due to the Rayleigh–Taylor instability
(RTI) [47]. When the particle front overtakes the contact dis-
continuity, the particles further perturb the unstable contact
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discontinuity and influence the development of RTI. There-
fore, the intersection point between the particle front and the
contact discontinuity (P2) is important to many blast appli-
cations. Similarly, the secondary shock wave is a spherical
imploding shock, which is also unstable, see [48]. Therefore,
the intersection between the particle front and the secondary
shock (P3) is also of great interest in terms of stability of
the converging secondary shock. Furthermore, it has been
reported that the particle front in a blast is also unstable,
see [49,50]. Therefore, the interactions of the particle front
with the contact discontinuity and the secondary shock wave
may also in turn influence the instability development at the
particle front.

In the present study, the particles will not influence the
instability due to the one-way coupling approximation. Nev-
ertheless, being able to predict the interaction time and the
flow properties when the particle front interacts with the
secondary shock or the contact discontinuity is critical to
estimating the growth rate of perturbation. Application of the
present results to stability analysis is deferred to our future
work.

3.2 Scaling for the gas flow

Due to the one-way coupling assumption, the gas phase is
independent of the particle phase, and thus, a gas-related
quantity q can be expressed as a function of independent gas
properties that define the problem as

qg = qg
(
pg4, ρ

g
4 , γ4, p

g
0, ρ

g
0 , γ0, Rs, x, t

)
, (25)

where pg4, ρ
g
4 , γ4, and pg0, ρ

g
0 , γ0 denote the initial pressure

and density, and specific heat ratio of the compressed gas
and ambient air, see Fig. 1. The initial radius of the spherical
gas–particle mixture is denoted by Rs.

If pg0, ρ
g
0 , and Rs are chosen as to be repeating variables,

then (25) can be written into dimensionless form by applying
the Buckingham Π theorem:

Qg = Qg

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,
x

Rs
,
t
√
pg0/ρ

g
0

Rs

⎞
⎠ , (26)

where Qg is the dimensionless form of qg. Note that Rs and√
pg0/ρ

g
0 serve as typical length and velocity scales, respec-

tively. For example, if we considered the location of the gas
contact discontinuity, denoted by xgc, as the dependent vari-
able, then xgc can be expressed as

xgc
Rs

= ξ

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,
t
√
pg0/ρ

g
0

Rs

⎞
⎠ . (27)

It should be noted that since Rs is the only length scale,
for a given initial condition (pg4/p

g
0 and ρ

g
4ρ

g
0 ) and material

properties (γ4 and γ0), the trajectories of the gas contact dis-
continuity, the main shock wave, and the secondary shock all
scale linearly with Rs.

3.3 Scaling of the particle motion

When particles are added, the particle parameters need to
be included to define the dependence of a particle-related
quantity qp:

qp = qp
(
pg4, ρ

g
4 , γ4, p

g
0, ρ

g
0 , γ0, Rs, d

p, ρp, xp0 , μ
g, x, t

)
,

(28)

where xp0 is the initial location of a particle. Themotion of the
particles can be fully determined by dp, ρp, and xp0 . For the
gas flow at macroscale, μg is irrelevant and does not appear
in (25). However, viscous effects have to be considered in
computing the drag force on a particle.

Similarly, (28) can be written in dimensionless form by
applying the Π theorem:

Qp = Qp
(
pg4
pg0

,
ρ
g
4

ρ
g
0

, γ4, γ0,
dp

Rs
,
ρp

ρ
g
0

,
xp0
Rs

,Res,
x

Rs
,

t
√
pg0/ρ

g
0

Rs

)
, (29)

where Res is the Reynolds number based on the initial radius
of the gas–particle mixture sphere, which is defined as

Res =
ρ
g
0

√
pg0/ρ

g
0 Rs

μg . (30)

For the particle initially located at the edge of the spherical
mixture, namely xp0 = Rs, then the trajectory of that parti-
cle represents that of the particle front. The location of the
particle front at any later time, xpf , thus can be expressed as

xpf
Rs

= η

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,
dp

Rs
,
ρp

ρ
g
0

,Res,
t
√
pg0/ρ

g
0

Rs

⎞
⎠ ,

(31)

where xpf is a function of Res, which in turn depends on Rs.
As a consequence, the particle front location does not scale
linearly with Rs as the gas contact [see (27)].
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3.4 Scaling of the particle front in asymptotic limits

There exist limiting cases where we can simplify the scaling
of the particle front.

Inviscid limit It has been shown in [13,31] that inviscid-
unsteady forces are dominant at early time after the blast
is induced and the early-time acceleration of particles are
mainly due to inviscidmechanisms. If only the inviscid forces
fpg and fam are active in the particle equation of motion (5),
then Res can be eliminated from (29), and we obtain

xpf
Rs

= ηinv

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,
ρp

ρ
g
0

,
t
√
pg0/ρ

g
0

Rs

⎞
⎠ . (32)

For given initial conditions of the gas andmaterial properties,
the particle front location in the inviscid limit turns to scale
with Rs again.

Stokes limit When the particle diameter is very small (dp →
0), it is shown in [13,31] that the overall influence of the
unsteady forces on particlemotion becomes small. Since Rep

is also small, the particle force reduces to the Stokes drag. In
this limit, the viscous effect on the gas–particle interaction
can be represented by the particle response time τ p. As a
result, (29) can be simplified as

xpf
Rs

= ηSt

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,St
p,

t
√
pg0/ρ

g
0

Rs

⎞
⎠ , (33)

where Stp is the particle Stokes number, defined as

Stp =
τ p

√
pg0/ρ

g
0

Rs
= ρp

18μg

√
pg0
ρ
g
0

(dp)2

Rs
. (34)

It is noted that in the Stokes limit, xpf will scale linearly with
Rs if Stp is a constant. For given gas property and particle
density, it can be seen that Stp ∼ (dp)2/Rs.

Inertial limit For a spherical particle, there exists an inertial
regime 750 < Rep < 3.5 × 105 in which the quasi-steady
drag coefficient CD is almost constant (CD ≈ 0.42), which
is referred to as Newton’s drag law (see [51]). In this regime,
the particle diameter is finite, so the contributions of all forces
in (5) need to be taken into account. In this inertial limit, (29
can be simplified as

xpf
Rs

= ηiner

⎛
⎝ pg4

pg0
,
ρ
g
4

ρ
g
0

, γ4, γ0,
ρp

ρ
g
0

,
Stp

Rep
,
t
√
pg0/ρ

g
0

Rs

⎞
⎠ . (35)

Table 1 Simulation cases to examine the scaling of xpf related to of Rs

Case Rs (mm) ρp (kg/m3) dp (µm)

1-1 25.4 1410 1

1-2 25.4 1410 100

1-3 25.4 141 1000

1-4 254 1410 3.162

1-5 254 1410 1000

1-6 254 14,100 1

For all cases here pg4/p
g
0 = 121, ρg

4/ρ
g
0 = 121, and γ4 = γ0 = 1.4

It can be observed that the ratio Stp/Rep replaces Stp in (33)
to take the finite Reynolds number effect into account, which
can be also written in terms of dimensionless variables as:

Stp

Rep
= ρp/ρ

g
0

ρg/ρ
g
0

⎛
⎝ ug − up√

pg0/ρ
g
0

⎞
⎠

−1
dp

Rs
. (36)

In this inertial limit, xpf will scale linearly with Rs when
dp/Rs is a constant.

3.4.1 Simulation results for the particle front

Numerical simulations are performed to examine the scaling
analysis given above. Here, we only focus on the particle
front. A summary of cases is given in Table 1. For cases 1-1 to
1-3, Rs = 25.4mm, and for cases 1-4 to 1-6, Rs = 254mm.

Relation between dp and Rs. The particle density in cases
1-1, 1-2, 1-4, and 1-5 is the same. The particle diameter for
cases 1-1 and 1-4 is chosen to be small, so that they lie in
the Stokes limit. According to the scaling analysis above, we
have chosen (dp)2/Rs to be the same as 3.94×10−11 for cases
1-1 and 1-4. The evolutions of particle front position and
velocity for cases 1-1 and 1-4 are shown in Fig. 3, and it can
be seen that temporal evolutions of the particle front location
and velocity both collapse verywell for these two cases when

plotted in dimensionless variables x/Rs and t
√
pg0/ρ

g
0/Rs,

verifying the above scaling argument in the Stokes limit, i.e.,
(33). The particle fronts for the two cases reach themaximum

velocities, uP1 = 2.15
√
pg0/ρ

g
0 , at tP1 = 0.55Rs/

√
pg0/ρ

g
0 ,

when they cross the secondary shock (so P1 overlaps with
P2).

On the other hand, the particle diameter for cases 1-2 and
1-5 is fairly large, and the corresponding particle Reynolds
numbers at early time are both in the inertial regime. Then
according to the scaling analysis, we set dp/Rs to be the same
equal to 3.94 × 10−3 for these two cases. The evolutions of
particle front position and velocity for cases 1-2 and 1-5 are
shown in Fig. 3a, b, respectively. Again, it is observed that
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Fig. 3 Evolutions of particle position and velocity for different Rs and
dp with ρp fixed at 1410kg/m3 for cases 1-1, 1-2, 1-4, and 1-5. Note
that (dp)2/Rs is identical for cases 1-1 and 1-4, and dp/Rs is identical
for cases 1-2 and 1-5. a x–t diagram. b up evolution

the results collapse very well when plotted in dimensionless

variables x/Rs and t
√
pg0/ρ

g
0/Rs, affirming the scaling result

obtained for the inertial limit, (35) and (36). The velocity of
particle front for cases 1-2 and 1-5 reaches the maximum
peak at a later time, again when the particle front crosses

the secondary shock. For both cases, tP2 = 3.2Rs/

√
pg0/ρ

g
0 .

Furthermore, it is observed that the time for the particle front
to overtake the gas contact, tP3, for the two cases also agree

well in dimensionless form, i.e., tP3
√
pg0/ρ

g
0/Rs = 4.1.

Figure 4 shows the contour of maximum particle front
velocity upf,max as a function of dp and Rs. Wide ranges of
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Fig. 4 Maximum particle front velocity as a function of Rs and dp for
ρp = 1410 kg/m3. The reference values for Rs and dp are Rs,LB =
25.4mm and dpLB = 1µm, respectively

dp (1–1000µm) and Rs (25.4–254mm) are considered, and
Rs and dp are normalized by their lower bounds Rs,LB =
25.4mm and dpLB = 1µm, respectively, where the subscript
LB denotes the lower bound. The particle density is fixed at
1410kg/m3. Generally, upmax increases with decreasing dp.
For constant upf,max, dp increases with Rs. For large dp, par-
ticles are close to the inertial limit, and as a result the slopes
of the contours are about 1. In contrast, small particles lie in
the Stokes limit, and the slope is about 1/2. For intermediate
dp, the slope lies in between 1/2 and 1.

Relation between ρp and Rs Similar simulations are per-
formed for varying ρp, while dp is fixed, i.e., cases 1-1 and
1-6, and cases 1-3 and 1-5, to study the scaling relation-
ship between ρp and Rs. For cases 1-1 and 1-6, dp = 1µm.
According to (34), Stp is the same as 0.0975 for the two
cases, and thus, the particles lie in the Stokes limit. Based on
the scaling analysis, the particle fronts shall collapse when
plotted in terms of the dimensionless variables. This is con-
firmed by the simulation results of the position and velocity
of the particle front as shown in Fig. 5a, b. For larger dp,
as the unsteady force becomes important, the scaling rela-
tion (33) becomes invalid. As a result, though ρp/Rs are
the same for cases 1-3 and 1-5 (dp = 1mm), the position
and velocity evolutions of the particle front are quite differ-
ent even when they are plotted in terms of dimensionless
variables.

Similar observations can also be made in Fig. 6, which
shows contours of upf,max with regard to Rs andρp. In Fig. 6a,
dp = 0.1mm and it can be observed that the contour lines
are generally straight lines with a slope equal to 1. The linear
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ρp. dp = 1µm for cases 1-1 and 1-6, and dp = 1mm for 1-3, and 1-5.
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1-5. a x–t diagram. b up evolution

relation between Rs and ρp breaks down when ρp is small,
ρp/ρ

p
LB < 0.2, namely when the relative importance of the

unsteady force increases. In Fig. 6b, dp = 1mm. For this
large dp, the unsteady force is important in general; there-
fore, the linear scaling relation between Rs and ρp is invalid
in general. As a consequence, the contour lines in Fig. 6b
are not straight and the slopes of which change with ρp

and Rs.
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Fig. 6 Maximum particle front velocity as a function of Rs and ρp

for dp = 0.1 and 1mm. The reference values for Rs and dp are
Rs,ref = 25.4mm and ρ

p
ref = 141 kg/m3, respectively. a dp = 0.1mm.

b dp = 1 mm

3.5 An approximate scaling that incorporates initial
pressure ratio

3.5.1 Approximate scaling for the gas flows

When Rs → 0, the present problem of a finite-size-source
blast reduces to a point-source blast considered bySedov [52]
and Taylor [53]. In the point-source blast, the initial condi-
tions that characterize the gas solution are the total energy
released Eg

tot. In [5], Brode employed Eg
tot to construct a

length scale for the finite-size-source blast. His considera-
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tion is mainly based on the argument that after a long enough
time, the main shock wave engulfs a mass of air which is
much larger than the initial mass of gas in the sphere, and
then, the finite-size-source blast wave will merge to that gen-
erated by a point source. Therefore, instead of using Rs, he
used (Eg

tot/p
g
0)

1/3 as the typical length scale. For the present
problem, we consider the particle mass loading is small, and
thus, the contribution of particles to the total energy is negli-
gible. Then, the total energy of the sphere is dictated by the
compressed gas as:

Eg
tot = 4π(Rs)

3 pg4
3(γ4 − 1)

. (37)

The corresponding length scale can be expressed as

(
Eg
tot

pg0

)1/3

=
[

4π

3(γ4 − 1)

]1/3 (
pg4
pg0

)1/3

Rs. (38)

It is important to point out that (38) introduces a length scale
that includes the initial gas pressure ratio pg4/p

g
0. (The corre-

sponding time scale is Rs(p
g
4/p

g
0)

1/3/

√
pg0/ρ

g
0 .) As will be

shown below through the simulation results, (pg4/p
g
0)

1/3 is a
very powerful scaling for the gas flow once we go pass the
early evolution (t � 0).

3.5.2 Simulation results

Numerical simulations are performed to investigate the scal-
ing of (pg4/p

g
0)

1/3. A summary of cases is given in Table 2.
The trajectories of the main shock wave, the contact

discontinuity, and the secondary shock wave in the x–t dia-
gram for cases 2-1 to 2-4 are shown in Fig. 7. For these
two cases, pg4/p

g
0 are different, while (pg4/p

g
0)/(ρ

g
4/ρ

g
0) =

T g
4 /T g

0 = 1. It can be observed from Fig. 7a that the trajec-
tories of the main shock, the contact discontinuity, and the
secondary shock for the two cases collapse very well when

Rs(p
g
4/p

g
0)

1/3 and Rs(p
g
4/p

g
0)

1/3/

√
pg0/ρ

g
0 are used to nor-

malize space and time. It should be highlighted that pg4/p
g
0

for case 2-2 is ten times of that for case 2-1, yet the scaled
results of the two cases agree remarkably well. Therefore,
we can rewrite (27) in an approximate form as

Table 2 Case summary for
Sect. 3.5.2. For all the cases
Rs = 25.4mm

Case pg4/p
g
0 T g

4 /T g
0

2-1 121 1

2-2 1210 1

2-3 121 10

2-4 1210 10

x/(Rs(p
g
4/p

g
0)

1/3)
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Fig. 7 Trajectories of the main shock wave, the contact discontinuity,
and the secondary shock wave in x–t diagram for different pg4/p

g
0 and

T g
4 /T g

0 . a T g
4 /T g

0 = 1. b T g
4 /T g

0 = 10

xgc
(pg4/p

g
0)

1/3Rs
≈ ξ

⎛
⎝T g

4

T g
0

, γ4, γ0,
t
√
pg0/ρ

g
0

(pg4/p
g
0)

1/3Rs

⎞
⎠ . (39)

Here the expression is written for the gas contact, but which
is applicable to themain shock and the secondary shockwave
as well.

Whenwe increase T g
4 /T g

0 from 1 (cases 2-1 and 2-2) to 10
(cases 2-3 and 2-4), the gas flow changes substantially. The
secondary shock reaches the origin much faster (as the sound
speed in the compressed gas increases) and the reflected sec-
ondary shock overtakes the gas contact at an earlier time. As
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a result, the gas contact does not bend much toward the ori-
gin compared to the cases with low T g

4 /T g
0 . Nevertheless, it

can be observed from Fig. 7b that wave trajectories still col-
lapse reasonably well when the new length and timescales
are applied. This indicates that the scaling by (pg4/p

g
0)

1/3

and (39) remain reasonably appropriate even when T g
4 /T g

0
changes.

Figure 8 shows the variation of the characteristic time and
spatial scales of gas flow (G1, G2, and G3) as functions of
pg4/p

g
0 and T

g
4 /T g

0 . As described in Sect. 3.1, tG1 denotes the
time for the secondary shock to reach themaximum distance,
represented by xG1; tG2 denotes the time for the gas contact
to reach the maximum distance, xG2; tG3 denotes the time for
the secondary shock to reach the origin. It can be seen that
when pg4/p

g
0 varies from 121 to 1210, all the characteristic

time and spatial scales obey the power law 1/3 quite well
for T g

4 /T g
0 = 1 and 10. Further tests are also performed,

showing that the scaling of (pg4/p
g
0)

1/3 is also valid for γ

different from 1.4. If we further ignore the effect of γ0 and
γ4, we obtain an asymptotic approximate similarity solution
for the gas wave trajectories such as for the gas. For example,
the time evolutionof the gas contact location canbe expressed
as

xgc
(pg4/p

g
0)

αRs
≈ ξ

⎛
⎝T g

4

T g
0

,
t
√
pg0/ρ

g
0

(pg4/p
g
0)

β Rs

⎞
⎠ . (40)

Here, the exponents α and β cannot be obtained by dimen-
sional analysis, and data are generally required to obtain the
values of α and β. In this study, we found that α = β = 1/3
based on the total energy contained in the initial sphere, fol-
lowing the point-source theory for a spherical blast wave
[5,53], which is then confirmed by simulation results.

3.5.3 Scaling and simulation results for the particle front

Due to the one-way coupling assumption, the particles here
are dictated by the gas flows. Then, the asymptotic scaling of
(pg4/p

g
0)

1/3 for the gas flow is ready to apply to the particle
front. Figure 9 shows the time evolution of the particle front
of two different particle sizes (dp = 1 and 100µm) for the
gas flow cases 2-1 and 2-2. For the cases with dp = 1µm
(Stp � 1), particles follow the surrounding gas closely. As
a result, the scaling of (pg4/p

g
0)

1/3 works very well for the
particles as well.

As the particle diameter increases, the particles fail to fol-
low the gas flow due to their finite inertia. The trajectories
of the particle front for the two different gas flows (cases
2-1 and 2-2) for dp = 100µm are quite different under the
scaling of (pg4/p

g
0)

1/3, as shown in Fig. 9.
Figure 10 shows the characteristic locations where the

particle front crosses the secondary shock (xP2) and the con-
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Fig. 8 Characteristic time and spatial scales of gas flow as functions of
pg4/p

g
0 for T g

4 /T g
0 = 1 and 10. Here, G1 denotes the time and location

for the secondary shock to reach the maximum distance; G2 denotes
the time and location for the gas contact to reach the maximum dis-
tance; G3 denotes the time for the secondary shock to reach the origin.
a Timescales. b Spatial scales

tact surface (xP3) (see Fig. 2), as function of p
g
4 and d

p with
ρp fixed as 141kg/m3. The pressure and particle diameter
are normalized by reference values as pref = 121 × 105 Pa
and dpref = 1µm, respectively. The results for xP2 and xP3
are similar. For small particles, the contour lines are roughly
straight lines, indicating the existence of the power-law rela-
tion between dp and pg4. Consistent with the gas flow scaling,
the slopes of the contour lines are about 1/3. As particle
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Fig. 9 Time evolution of particle front for cases 2-1 and 2-2 with
dp = 1 and 100µm

diameter increases, the contour lines are more complex, and
a unique power-law scaling does not exist. Nevertheless, in
general, 1/3 appears to be a quite good approximated scaling
for a wide range of particle diameters.

4 Conclusions

Numerical simulation and scaling analysis are performed for
a spherical particle-laden blast wave in the present study.
Themultiphase blast wave is generated by the sudden release
of a sphere of compressed gas–particle mixture. Parametric
studies are conducted to investigate the effects of the ini-
tial pressure and density ratios between the compressed gas
and the ambient air, the density and diameter of particles on
the time evolution of the main shock, the gas contact, the
secondary shock, and the particle front. Scaling arguments
are used to find the key dimensionless parameters. Under the
one-way coupling assumption, the gas solution in dimension-
less form can be fully determined by the initial pressure and

density ratios, when Rs and
√
pg0/ρ

g
0 are used as the typi-

cal length and velocity scales. Due to the complexity of the
drag force on the particles, additional dimensionless param-
eters arise, and as a result the particle front location does
not linearly scale with Rs in general. Three asymptotic limits
for the particles are then investigated, in which the parti-
cle front location becomes linearly scalable with Rs, as long
as the corresponding dimensionless parameters remain con-
stant. Following the point-source blast-wave theory, a length
scale that incorporates the initial pressure ratio is proposed,
i.e., Rs(p

g
4/p

g
0)

1/3. The simulation results show that the tra-
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Fig. 10 Contour of characteristic locations, where the particle front
crosses a the secondary shock (xP2) and b the contact surface (xP3) as
functions of pg4 and d

p with ρp fixed as 141kg/m3. The reference values
for pg4 and dp are pref = 121 × 105 Pa and dpref = 1µm, respectively.
a Crossing secondary shock. b Crossing contact

jectories of themain shock, the gas contact, and the secondary
shock for different pressure ratio collapse very well when
the results are scaled by this length scale. This indicates that
there exists an approximate similarity solution for the gas
flows which is independent of the initial pressure ratio. For
small particles, the particle front closely follows the gas con-
tact, and thus, the scaling relation with regard to the initial
pressure ratio is also effective in collapsing the particle front
trajectories.
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The present results are based on the one-way coupling
approximation, but the scaling analysis can be extended to
particle-laden blast waves with finite particle mass fractions.
In particular, for small particles that can be considered to be
in mechanical and thermal equilibrium with the surround-
ing gas, the two-way coupling effect can be incorporated by
treating the gas–particle mixture as a “dusty gas” with modi-
fied density and specific heat ratio [54]. Therefore, it will be
interesting to investigate the effect of the specific heat ratio
on the scaling relations for the main shock and the contact
discontinuity. Such an investigation is relegated to our future
work.
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