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Abstract
The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments
were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary
channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations
were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction.
It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional
unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the
solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement.
Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that
define the bifurcation was changed from 90◦, 45◦, 20◦, and 0◦. We found that the angular displacement does not significantly
affect the overpressure experience in either of the two channels and that the area of the expansion region is the important
variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

Keywords Shock wave · Shock tube environment · Shock wave propagation · Reflection · Attenuation

1 Introduction

In the search for protection from explosions, a variety of
underground shelters were studied to minimize the risks
related to the propagation of shock waves in closed areas
as shown by Ben-Dor et al. [1] and Igra et al. [2]. An impor-
tant feature in designing such protection is the knowledge
of shock or blast wave propagation in ducts leading to the
shelter. This knowledge is also of importance for safety pre-
cautions in mines, tunnels, or corridors after an explosion
for protecting humans and materials in case of sudden explo-
sions.

It is therefore not surprising that numerous studies regard-
ing ways to attenuate oncoming shock or blast waves have

Communicated by R. Bonazza and A. Higgins.

B A. Marty
antoine.marty@univ-amu.fr

1 Aix Marseille Univ, CNRS, IUSTI, Marseille, France

2 DGA/Techniques Navales, Avenue de la Tour Royale, 83050
Toulon Cedex, France

been published during the past 50years. The propagation
of a planar shock wave in a complex ducts system can
create serious personal injury and property damage due to
numerous reflections that generate local zones of dangerous
high-pressure. Thus, the knowledge of the generated flow
field and evolution of the shock wave is essential for engi-
neering treatment of explosion-related phenomena.

As stated above,many studieswere conducted in the 1950s
on the propagation of shock waves through ducts having
small area changes, e.g., Chester [3], Laporte [4], Chis-
nell [5], and Whitham [6]. A detailed theoretical treatment
is given concerning the diffraction of plane shock waves and
its impact on the shock strength and the shocked flow. We
learn that the wave pattern of the transmitted shock wave in a
contraction or an expansion is dependent on various factors
like the ratio of the areas or the incident shock wave Mach
number. These studies show somemajor differences between
the behavior of the transmitted shock wave depending on
whether there is supersonic or subsonic flow behind the inci-
dent shock wave. Straight-duct investigations with changing
areas were continued by Nettleton [7], Salas [8], and Igra et
al. [9]. Further studies of propagation of shockwaves through

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00193-017-0797-6&domain=pdf


286 A. Marty et al.

Fig. 1 Scheme of the
experimental setup: the T80
shock tube, the Y-shaped test
section and the pressure
transducer arrangement

ducts having significant direction changes were carried out
by Heilig [10], Skews [11] and Igra et al. [12,13]. Impos-
ing significant direction changes along the way of the shock
wave leads to significant shock attenuation due to losses
through the numerous reflections and diffractions applied to
the shock. All these experimental and numerical investiga-
tions show that the flow developed behind an initially planar
shock wave propagating through a tunnel system is com-
plex two-dimensional unsteady and non-uniform. In such
closed area systems subjected to an explosion, the induced
shock wave inevitably meets numerous bifurcations. Thus,
the understanding of shock wave propagation through a split
channel is needed. The present paper provides an experimen-
tal and numerical investigation of shock wave propagation
through a Y bifurcation having a constant cross section as
shown in Fig. 1. The study focuses on the shockwave evolve-
ment and pressure histories recorded and computed along the
Y device.

The first part of this work is experimental and provides
a qualitative explanation on the propagation of the incident
shock wave and the flow field behavior behind it for the three
Mach numbers investigated and gives a qualitative analysis
of the attenuation generated by the Y-shaped configuration.
Indeed, one major objective of the study is to reduce the
risks related to the shock wave propagation so as to minimize
pressure levels along the branches and reflecting on the end
wall.

The second part is based on numerical calculations, it
completes the experimental investigation of the flow field
in the device by adding some main physical mechanisms
that only a numerical analysis could afford. This analy-
sis includes a numerical shadowgraph of the flow field
behind the shock which highly depends on the incidentMach
number.

Finally, a numerical parametric study on the bifurcation
angle α, from 90◦ to 0◦, and its impact on the end-wall
reflected pressure in the domain is also conducted.

2 Experimental setup

Experiments were conducted at the IUSTI (CNRS/AMU)
laboratory using a horizontal shock tube having a constant
square cross section (80 × 80mm2). Details regarding this
shock tube can be found in Jourdan et al. [14]. At the end
of the shock tube a Y-shaped duct was added as shown in
Figs. 1 and 2. One of the original aspect of this study is
the modularity of the device. It was designed using a block
technology allowing for a modular assembly. In this way,
we can realize different ducting systems by using the same
set of blocks as illustrated in Fig. 2. We point out that in
the present work only the Y-shaped duct is explored but that
other configurations will be the object of further research.

The test gas in the driven sectionwas air at standard condi-
tions, 298K and 1bar. Different shock wave Mach numbers
were tested, a weak one (M = 1.12), a shock of medium
strength (M = 1.36) and a stronger one (M = 1.69). High-
pressure and low-pressure sections are initially separated by
an aluminumdiaphragmand the driver section is further filled
with air (M = 1.12 and 1.36) or helium (M = 1.69) to
burst the diaphragm. The incident shock wave Mach num-
ber was experimentally deduced from pressure records (PCB
113B26) taken at two different locations along the shock tube
wall (see C6 and C1 in Fig. 1). The Y-shaped duct was also
equipped with six piezo-electric pressure transducers (PCB
113B28) numbered from M1 to M6 which are connected
to a multichannel digital oscilloscope (Tektronix DPO4054)
through PCB amplifiers (482A22 type). The schlieren sys-
tem used here is a standard Z-type schlieren setup with two
concave mirrors on either side of the test section. A 400 W
Tungsten lamp (from a Dedolight Daylight HMI Spotlight)
combined with a condenser is used as a bright source of
white light. The beam of light passed through a horizontal
slit (5mm width) which is located at the focal point of the
first mirror such that the reflected light from the mirror forms
parallel rays that pass through the test section. On the other
side, the parallel rays are collected by the second mirror and

123



Experimental and numerical investigations of shock wave propagation through a bifurcation 287

Fig. 2 Schemes and photography showing the modularity of the test
section in (a) Y-shaped, (b) 90◦ bend, (c) cross-sectional enlargement,
(d) 45◦ angular deviation, and (e) abrupt area change configurations

focused to its focal point at a horizontal knife edge (sensitive
to density gradients in the vertical direction). The rays con-
tinue on to a FastcamSA1video camera. This light source is a
continuous-wave (CW) light source not well-suited for short-
duration use. However, with the camera having an electronic
shutter operating independently of the frame rate selected,
it is possible to impose an exposure time of 1/1,000,000s
and to minimize the motion blur. The flow field was moni-
tored with a frame rate of 40,000 frames per second (fps) and
a spatial resolution of 512 × 256 pixels which corresponds
approximately to about 0.625mm/pix.

During each run, a sequence of schlieren pictures and
some pressure histories were recorded at a pre-set time delay
in order to cover the entire flow duration of about 3ms.
Triggering of the measuring instruments was done when the
incident shock wave reached the sensor located in station C6.

The 300mm diameter viewing area focuses on the bifurca-
tion point. Other details including pressure gauge locations
are shown inFig. 1. Itmust be noted the presence in the device
of the parameter called α corresponding to the angle between
the shock tube main channel axis and the bifurcation. That
parameter is fixed in the experimental case but varies from
90◦ to 0◦ in the numerical study.

3 Numerical modeling

The flow field can be modeled by the Euler equations that
express the conservation of mass, momentum and energy for
an inviscid compressible fluid obeying a perfect gas equation
of state. For a two-dimensional non-stationary flow, the con-
servation equations, expressed in Cartesian coordinates, are:

∂U (
−→x , t)

∂t
+ −→∇ · F(U (

−→x , t)) = 0 (1)

where

U =
⎛
⎝

ρ

ρ
−→u
ρe

⎞
⎠ , and F(U (
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⎛
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ρ
−→u

ρ
−→u −→u + pI

(ρe + p)−→u

⎞
⎟⎠ (2)

e = ε +
−→u 2

2
(3)

p = (γ − 1)ρε. (4)

U is the vector of conservative variables at location x and time
t, F is the flux vector, and I is the identity tensor. u, ρ, p, e,
ε are velocity components (along the x and y directions),
density, pressure, specific total energy and internal energy,
respectively. γ > 1 is the ratio of specific heats.

The discretization of this problem is a volume finite dis-
cretization which integrates (1) on a volume Vi . The contour
C defined by this volume is made up of N faces defined by
their contourCk , their area Ak and the normal vector−→nk . The
flow values, U and F, are considered to be constant on each
area Ak .

With the definition Un
i = 1

Vi

∫
U (

−→x , t)dv, we can write
the Godunov numerical scheme:

Un+1
i = Un

i − �t

Vi

∑
N

Ak
−→
Fk · −→nk . (5)

The calculation of thefluxvector Fk is based on the resolution
of the Riemann problem betweenUn

i andUn+1
i . This scheme

is extended to a second order using the method of MUSCL-
Hancock [15]. It is subjected to a stability criterion which
allows to define the time stepping:

�t <
dL

‖−→u ‖ + c
. (6)
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Fig. 3 A sequence of schlieren photographs showing an initial planar
shock wave, of Mach number of 1.12, propagating from left to right
through the Y bifurcation

‖−→u ‖ corresponds to the local flow velocity, c is the local
sound velocity, and dL is the minimal length characterizing
the volume V. Details regarding this numerical scheme and
its extensions are given in Thevand et al. [15].

4 Results and discussion

4.1 Pattern of waves in experiments

Sets of experiments have been conducted under three differ-
entMach numbers, and the results are compared with numer-
ical simulations. The representative experimental schlieren
sequences showing the propagation of shock waves hav-
ing, respectively, a Mach number of 1.12, 1.36, and 1.69
through the Y-shaped bifurcation are presented in Figs. 3,
4, and 5. The incident shock wave initially generated in the

Fig. 4 A sequence of schlieren photographs showing an initial planar
shock wave, of Mach number of 1.36, propagating from left to right
through the Y bifurcation

main channel of 80 × 80mm2 square cross section propa-
gates from left to right in the Y closed device. The time (in
milliseconds) appearing on each picture indicates the time
that has passed since the incident shock wave reached the
C6 station (Fig. 1) in the main channel. It should be noted
that only the incident shock is represented in the different
schlieren sequences, from the area visualization beginning to
the end (300mm diameter circle). That means the two end-
wall reflected shocks cannot be seen. Finally, note that we
used two plates of Plexiglas of 40mm thick as the windows,
as shown in Fig. 2. Then, the optical quality, the thickness,
and the imperfect parallelism of the plates can be the origin
of the dark region in the upper right corner. About horizontal
lines visible in Figs. 3, 4, and 5, they are probably due to the
noise present on the camera sensor and not corrected with
the shading procedure.
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Fig. 5 A sequence of schlieren photographs showing an initial planar
shock wave, of Mach number of 1.69, propagating from left to right
through the Y bifurcation

In Fig. 3, during the investigated time, about 1.5ms,we see
the early part of the interaction between the transmitted and
the reflected shock waves through the bifurcation. Specifi-
cally, at t = 2.875 ms, the incident shock wave reached the
peak of the Y-shaped duct. Upon its exit from the shock tube,
the incident shock loses its planar shape due to its interac-
tion with the expansion waves, located at the two corners of
expansion zone, and turns to a curved shock. The expansion
zone corresponds to the area between the end of the shock
tube main channel and the peak of the Y-shaped duct bifur-
cation. The expansion waves referred to here are generated
in this location by the diffraction of the shock wave which
leads to the formation of two recirculation zones and expan-
sion waves because the pressure decreases locally. These
phenomena will be detailed further. In the considered case
(M = 1.12), the flow deflection angle, caused by the Y-
shaped duct, results in a regular reflection; see Fig. 3 at
t = 2.925, 2.975, and 3.025ms. Thiswill not be the case once

the incident shock waveMach number increases. Finally, the
reflected shock wave from the bifurcation propagates back
upstream in the main channel shock tube.

Results shown in Fig. 4 are for M = 1.36 and it is clear
from t = 2.40 to 2.50ms; the reflection from the Y-shaped
duct is aMach reflection.More specifically, as shown in Ben-
Dor’s work [16], such a reflection is called a single-Mach
reflection. The triple point linking the reflected shock wave
from the peak of bifurcation, the transmitted shock wave
which propagates in the branch and the Mach stem can be
seen. Furthermore, in this case, we can observe on the two
last pictures the interaction of the shock wave reflected from
the Y-shaped duct with the walls. The strong flattening of the
reflected shockwave observed from t = 2.5ms to 2.6ms can
be explained by the fact that the shock wave is moving into
the oncoming flow.Moreover, it is approaching the flow from
different angles, which affects its velocity, slowing it down at
the symmetry line because of approaching the incoming flow
directly, whereas this effect is not observed in both corner.
Thus, the shock wave is stretched out becoming more planar.
At t = 2.6ms, as for the lowMach number case, the reflected
shock wave from the Y-shaped duct is just about to enter the
shock tube main channel, while the shocks reflected from the
upper wall of the Y-shaped duct are progressing toward the
lower wall. These three shocks collide with the two centered
rarefaction waves creating a zone of highly non-steady and
turbulent flow. Such multiple interactions reduce the energy
contained in the flow and eventually will reduce the pressure
acting on the secondary channel end-wall as will be shown
subsequently.

Increasing the incident shock wave Mach number will
further intensify the observed flow field as evident in Fig. 5,
where the incident shockMach number is 1.69.Again aMach
reflection is observed (see at t = 1.95ms and t = 2ms).
Thereafter, the wave pattern is amplified with respect to that
observed in the previous case (in Fig. 4). We have to note
that, while in the previous two cases both the driver and the
driven gases were air, in the present case (M = 1.69) the
driver gas is helium. Consequently, the sound speed being
almost three times greater in helium than in air, the expansion
waves reflected from the driver’s end wall overtake the inci-
dent shock wave before it enters the test section. The usual
constant pressure plateau triggered behind a normal shock
wave is different and more resembles a blast wave signal
with a peak of pressure followed by a decrease (see Fig. 6).
Indeed, the constant pressure case is a special case for flow
in shock tubes with constant cross-sectional area where the
expansion fan has not yet overtaken the incident shock wave.

Figure 6 represents the superposition of the entire shock
tube and the pressure distribution for three different times.
The red, green andpurple lines correspond to the pressure dis-
tribution along the shock tube: the instant of the diaphragm
rupture, when the shock wave has travelled halfway along
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Fig. 6 Numerical signal pressure along the shock tube with helium as
driver gas for M = 1.69

(a)

(b)

Fig. 7 Schematic representation of the reference (a) and the Y-shaped
duct (b) geometries

the driven section, and when it reaches the C6 gauge sta-
tion, respectively. We can clearly see the drop of pressure
behind the shock wave during its propagation. The present
case, which required helium as the driver gas to experimen-
tally reach a Mach number of 1.69, will not numerically be
repeated in the following, where the driver and the driven
gases are air.

4.2 Evolution of pressure signals

When choosing a special duct geometry for reducing the
strength of the transmitted shock, a good way to assess its
performance is by comparing the overpressure acting on the
closed end wall (�P1 and�P4 at stations M1 andM4) of the
considered geometry with a reference defined as that pre-
vailing in a similar straight duct as schematically shown in
Fig. 7.

In the investigated channels, pressure gauges M1 and M4

recorded the closed end-wall pressure; obtained results are
shown in Fig. 8 (black and red line for �P1 and �P4). From
this figure where the incident shock wave Mach number was
either 1.12 or 1.36, the constant pressure behind the reflected
shock is constant as expected. This is no longer the case
when the incident shock wave uses helium as the driver gas
(M = 1.69).

Fig. 8 Overpressure histories recorded behind the reflected shockwave
off the end wall for each branch of the Y-shape section (M1 and M4)
compared to that recorded at the end wall of the main channel (�PR)
without the test section for Mach numbers of a 1.12, b 1.36, and c 1.69
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However, whatever the considered case, it is clear that the
pressure acting on the endwall of a Y-shaped duct is less than
half of that acting in a similar end wall of a straight duct.

4.3 Numerical validation

The physical model previously presented is now compared
to the experimental results both qualitatively (wave patterns
in Fig. 9) and quantitatively (pressure signals in Fig. 10).
Figure 9 presents a comparison of schlieren pictures (experi-
mental versus numerical) taken at same time (corresponding
to Fig. 4 at t = 2.45ms). The schlieren variable calculated
in the present work is the magnitude of the density gradient
computed at each cell and visualized using the open-source
Paraview software. Specifically, the numerical schlieren is
calculated here as follows:

Sn = log10(1 + |−→∇ρ|). (7)

In view of the complexity of the present flow in the vicinity
of the bifurcation, we can reasonably consider the numerical
calculation in good agreement with the experimental obser-
vations. Figure 10 presents a comparison of pressure signals
obtained experimentally and numerically for an incident
shock wave Mach number of 1.36 is shown at several sensor
locations (M1, M2, and M4). Figure 10 shows that no signif-
icant difference (less than 5% on the recorded mean value)
exists between numerical and experimental pressure traces.
Only, the first peak of pressure shows a somewhat larger dif-
ference due to the slight error between the experimental and
numerical sensor location. Note that the experimental val-
ues of the end-wall reflected pressure are slightly below the
numerical ones and can be explained by the non-ideal experi-
mental conditions as calibration of sensors, parasitic losses in
the device, small leaks or uncertainty in initial experimental
conditions.

4.4 Numerical simulation results

As seen earlier, a flow analysis based on the experimental
schlieren photographs (see Sect. 4.1) has been established.
Nevertheless, the available experimental data do not provide
all the necessary information to properly understand the flow
field. Indeed, the viewing area is limited to 300mm and only
gives access to the wave patterns in the flow. In complement
to this description, a numerical map of the flow behind the
shock wave through the bifurcation has been established, in
order to show some complex phenomena that appear with
increasing velocity of the incident shock wave. Moreover, it
can help to answer questions such as, what happens when the
incident shock wave passes through the expansion zone? At
what incident Mach number does the flow behind the shock
wave become supersonic and does it change the flow behav-

Fig. 9 Numerical (top) and experimental (bottom) schlieren pictures
showing the expansion of a planar shock wave through a Y-shaped duct
for a Mach number equal to 1.36

Fig. 10 Comparison of the evolution of the pressure signal in the Y-
shape for an incident shock wave Mach number of 1.36 at stations M1,
M2,M3 (solid line) and their numerical equivalents notedwith∗ (dashed
line)

ior along the device? Does the incident shock wave become
planar again after the bifurcation? Numerical calculations
allow us to efficiently respond to these questions.

It is known that shock diffraction occurs when a plane
shock encounters an area increase (expansion) in a flow and
the details thereof. This can be found in some of the refer-
ences cited such as [3,5,7]. Thus, when the incident shock
wave reaches the expansion zone, the flow generates two
recirculation zones, located at the two corners, where the
pressure is locally reduced and the velocity increased. These
results are confirmed in this case in Fig. 11.

Now, we focus on the appearance of the first supersonic
zone in the flow field behind the incident shock wave to see
whether it has an impact on the flow behavior. The area of
the Y-shaped duct where the flow behavior is more com-
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Fig. 11 Flow pressure (top) and flow Mach number (bottom) behind
the shock wave in the expansion zone of the Y device, 2.30ms after
the incident shock wave reaches the C6 station, for a shock wave Mach
number of 1.36

Fig. 12 Scheme of the area studied with the line L along which the
flow field Mach number is calculated

plex is located between the expansion zone and the angle of
the bifurcation. Skews’ work [17] describes the behavior of
the disturbances produced in the region perturbed behind a
diffracting shock wave. The present case is a similar case of
diffraction but only in the very first instants after the inci-
dent shock wave enters in the expansion zone because of
the bifurcation point, acting like an obstacle. At the time
when the incident shock wave meets the bifurcation point,
the problem is no longer the same. As a similar manner,
we will focus on the appearance behind the incident shock
wave of supersonic and subsonic zones in the expansion zone
and the bifurcated branch by increasing the incident shock
wave Mach number. Thus, the decision has been taken to
study the evolution of the flow Mach number over time and
along a line across this zone as described in Fig. 12. The
line L is located at 1mm from the top wall of the bifur-
cated branch. While the fact that the velocity flow behind
the incident shock wave increases near the corner is evident
(zone 1 in Fig. 13a), it is less obvious that this accelera-
tion zone is replaced by two acceleration zones (zones 3 and
4, Fig. 13c) separated by a stream of zero speed (zone 2,

Fig. 13 Zoom of the expansion zone representing the flow Mach num-
ber and the corresponding plot along the line L for an initial Mach
number equal to 1.12. For a t = 2.975ms, b 3.325ms, and c 3.4ms

Fig. 13b, c). We will see further that these acceleration and
zero speed zones will give way to a very complex map of
supersonic and subsonic zones in the Y device by increasing
theMach number. The same study was conducted for the two
other Mach numbers (1.36 and 1.69). The major difference
between the previous case (1.12) and the one explained in
Fig. 14 (1.36) is that the two acceleration zones 1 and 3 are
now supersonic as it is shown in Fig. 14b. It seems to be
important to note that in this case, the flow behind the shock
wave switches from subsonic to supersonic by entering the
expansion zone. Thus, direct transitions between supersonic
and subsonic zones appear, which cannot be possible without
the formation of shock waves. We also see in this case the
formation of another supersonic zone labeled 5 which seems
to separate from the zone 4 (Fig. 14b, c). The flow along the L
line crosses consecutively two shock waves, twice in a row.
Fig. 15 represents a numerical sequence of schlieren pho-
tographs showing the propagation of the shock wave along
the Y (Mach 1.36). It is clearly shown the formation of these
shock waves in the expansion zone. Moreover, it shows that
the reflected shock wave from the point of bifurcation prop-
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Fig. 14 Zoom of the expansion zone representing the flow Mach num-
ber and the corresponding plot along the line L for an initial Mach
number equal to 1.36. For a t = 2.45ms, b 2.625ms, and c 2.875ms

Fig. 15 Numerical sequence of schlieren photographs, for a shockwave
Mach number of 1.36

Fig. 16 Zoom of the expansion zone representing the flow Mach num-
ber and the corresponding plot along the line L for an initial Mach
number equal to 1.69. For a t = 2ms, b 2.1ms, and c 2.2ms

agates upstream the general flow motion. By increasing the
strength of the incident Mach number (1.69), all these mech-
anisms are repeated and amplified as it is subsequently shown
in Fig. 16. We can see that the mechanisms are similar to the
previous case (M = 1.36), but amplified.Themappingof this
area shows the flow field is also covered by supersonic and
subsonic zones separated by shock waves. The zones 4 and
5 in Fig. 16c are now separated by another subsonic stream
that leads to the formation of a new shock wave allowing the
transition between these two supersonic zones. A particular-
ity in this case is the border between the zones 1 and 4, which
are both supersonic, but whom the transition is discontinued
as can be seen in Fig. 17. Indeed, the line along which the
flow Mach number is calculated is now shifted in order to
cross the zones 1, 4, and 5. The plot of the flow Mach num-
ber along the line (L∗ located 30mm away from the top wall)
clearly shows the discontinuity between the two supersonic
zones (1 and 4 in Fig. 16c) and the subsonic stream between
4 and 5.

In the previous case, for M = 1.36, the flow is highly
perturbed by entering in the expansion zone and because of
the reflection of the incident shock wave on the bifurcation

123



294 A. Marty et al.

Fig. 17 Zoom on the expansion zone representing the shocked flow
Mach number and the corresponding plot along the line L∗ for an initial
Mach number equal to 1.69 (see Fig. 16c)

Fig. 18 Numerical sequence of schlieren photographs for a shock wave
Mach number of 1.69

point, but none of these phenomena remains stationary. It
is not the case for a stronger incident shock wave (M =
1.69). Figure 18 presents a numerical sequence of schlieren
photographs of the shock wave propagating in the Y-shaped
duct (M = 1.69). We can observe in the expansion zone the
creation of quasi-steady shock waves.

Indeed, in the previous case (M = 1.36), the reflected
shock wave from the bifurcation point could move upstream,
but now it is no longer the case. We clearly see that this
reflected shock wave is now in a steady location in the expan-
sion zone, as with the other shock waves present in the flow.

Figure 19 corresponds to the superposition of the schlieren
density and the Mach number of the flow behind the incident
shock wave having a Mach number of 1.69 just before it
reaches the end wall. The matching between the alternately
subsonic and supersonic zones and the presence of stationary

Fig. 19 Numerical superposition of the schlieren density and the flow
Mach number just before the incident shock wave (M = 1.69) reaches
the end wall

shock waves is obvious. Lastly, the incident planar shock
wavewhich curves upon its exit from the shock tube becomes
planar again along the Y branches despite the highly non-
steady zones, as we can see in Fig. 19.

Finally, we have seen that the coupling between the
diffraction on the incident shock wave with its reflection on
the bifurcation point leads to the appearance of acceleration
and deceleration zones inside the bifurcation. These zones
become at first subsonic and supersonic by increasing the
incident shock wave (M = 1.36) and seem to become almost
stationary by further increasing the Mach number (1.69).

4.5 Parametric study: influence of the angular
variation

As shown in Figs. 9 and 10, a very good agreement exists
between experimental records and the simulations when the
α angle between the shock tube main channel axis and the
bifurcation duct is equal to 45◦ (see Fig. 20). Therefore, a
numerical parametric study has been realized by changing
respectively α from 90◦ to 0◦ (90◦, 45◦, 20◦, 0◦) which cor-
responds in this last case to an abrupt opening of the straight
duct as schematically represented in Fig. 20. The geometry of
the abrupt area change configuration was chosen in keeping
the same study volume as with the Y-shaped one and keep-
ing the same expansion area ratio equal to two. This analysis,
which compares for the four geometries the pressure behind
the end-wall reflected shock wave, indicates that the change
of α has almost no influence on the pressure. It appears that
the end-wall reflected pressure calculated in each geometry
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(a)

(b)

(c)

(d)

Fig. 20 Schematic drawing of the numerical devices for the parametric
study

Table 1 Numerical end-wall reflected overpressures for the three
geometries and for shock wave Mach numbers 1.12, 1.36, and 1.69

Mach numbers End-wall reflected overpressure (bar)

90◦ 45◦ 20◦ 0◦

1.12 0.414 0.475 0.480 0.482

1.36 1.612 1.670 1.707 1.730

1.69 4.339 4.349 4.459 4.485

and for the threeMach numbers studied (1.12, 1.36, and 1.69)
are nearly identical even if a slight trend seems to indicate
that the pressure increases with a decrease in angle α. All
results are presented in Table 1.

Thus, the present results clearly show that the angle of the
bifurcationhas no significant impact on the end-wall reflected
pressure or on the attenuation of a shock wave propagating
through a duct system. A conclusion which can directly be
drawn from this investigation is that the leading parameter
which strongly impacts the attenuation of the incident and the
reflected shock wave is the enlargement of cross-sectional
area and not necessarily the complexity of the duct geome-
try. Indeed, in all the configurations explored here, we have
an increase in the cross-sectional area with a ratio equal to
two, which leads to highly reduce the reflected pressure in
comparison with the case of a shock wave propagating in
a straight shock tube at same condition (see Sect. 4.2). But
the value of this attenuation is almost the same in each case
and confirms that the expansion ratio of the section area is the
preponderant parameter compared to the propagation path of
the shock wave. Note that experiments with an abrupt open-

Fig. 21 Comparison of the experimental and numerical overpressure
histories recorded behind the reflected shock wave off the end wall
for the abrupt opening configuration and for an incident shock wave
Mach number of 1.44. The red and the black lines correspond to the
experimental and the numerical records, respectively

ing configuration (case c in Fig. 20) were also conducted and
results obtained also show a very good agreement with the
numerical simulations as shown in Fig. 21 for an incident
shock wave Mach number of 1.44.

5 Conclusion

The flow field and the wave patterns developed inside a Y-
shaped duct connected to the end of a conventional shock
tube were both experimentally and numerically studied. A
detailed description of the wave pattern is given for three
different Mach numbers. It is shown that very good agree-
ment exists between recorded evolution of the waves and
their simulation, as well as between recorded pressure his-
tories and appropriate simulations. Therefore, the presently
used physical model and its numerical solution could safely
be used for similar ducts to be proposed for shock or blast
wave attenuation. The numerical tool allowed us to establish
a map of the flow field behind the incident shock wave in
order to describe some main physical mechanisms not avail-
able in the experimental investigation, such as the appearance
of a supersonic zone in the expansion area. It is shown that
the pressure prevailing behind the reflected shock wave from
the end wall of the Y-shaped duct is less than half of what
exists behind a reflected shock wave from a similar straight
duct under the same initial conditions. Therefore, such duct
geometry is a suitable proposal for significantly reducing the
potential danger of a traveling shock blast wave in tunnels.
Moreover, we also pointed out that the expansion ratio of
the cross-sectional area is a preponderant parameter in atten-
uating the strength of a shock wave compared to the duct
geometry.
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