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Abstract Shock wave reflection from concave cylindrical
and elliptical wedges is numerically studied. The model of
a polyhedron inscribed into a circular cylinder is used to
elucidate the mechanism of formation of reflection configu-
rations in unsteady flows. This numerical simulation gives
a clear indication of how the initial incident shock wave
“receives information” from the reflecting surface. Flow fea-
tures resulting from shock reflection off smooth, concave
wedges are considered for different shapes of the reflecting
surface. It is found that the evolution of the shockwave reflec-
tion configuration is determined by the shape of the reflecting
wedge. It is shown that the Mach to regular reflection (MR
→ RR) transition angles are different for different reflecting
surfaces with the same incident shock Mach number.

Keywords Unsteady reflection · Inscribed polyhedron ·
Concave cylindrical wedge · Concave elliptical wedge ·
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1 Introduction

In spite of the practical importanceof the problemof unsteady
shock wave reflection over curved surfaces, attention has
traditionally been paid to the investigation of the simplest
curvilinear surfaces—concave and convex cylindrical walls
[1–4]. The unsteady reflection process has been described
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as a series of consequential changes of reflection configu-
rations depending on an incident shock Mach number M
and a local slope angle [5]. In the case of reflection off
a concave cylindrical surface with zero initial angle, these
configurations are: von Neumann reflection (vNR) → Mach
reflection (MR) → inverse Mach reflection (InMR) → tran-
sitioned regular reflection (TRR). In [3], it was shown that the
reflection configurations obtained in an unsteady flow differ
noticeably from the configurations obtained at pseudo-steady
shock reflection for the same incident shock Mach numbers
and slope angles. The complex flow features arising from
the interaction of a shock wave with a concave cylindrical
wall were determined in [6]. The study has indicated that
the description of the unsteady reflection process mentioned
above is imprecise. The reflection configurations arising in
the course of the unsteady reflection process are not the ideal
ones on which the classical von Neumann theory is based.
That has been clearly demonstrated in [7] by comparing the
experimental data with the calculation results in the vonNeu-
mann theory.

Figure 1 presents two three-shock configurations. The
shadowgraph image from experimental results illustrates
a Mach configuration over a cylindrical concave arc of a
100 mm radius with an incident shock Mach number M =
2.5 in CO2 (heat capacities ratio γ = 1.29) at t = 80µs. The
tangent line to the concave surface in the Mach stem foot is
inclined at β = 36◦. Using the elementary three-shock the-
ory, we calculated the idealMach configuration forM = 2.5,
β = 36◦, and γ = 1.29. White lines show this configuration
superimposed over the experimental image; ϕ is the angle
between the incident and the reflected shock waves, ψ is the
angle between the reflected shock wave and the slipstream,
and θ is the angle between the slipstream and theMach stem.
Knowing the Mach stem length and the angle α between the
incident shock wave and trajectory of the triple point of the
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Fig. 1 Mach reflection configuration with M = 2.5 and γ = 1.29.
Experimental and calculation results

ideal Mach configuration, the location of the leading edge
of the imaginary straight wedge can be reconstructed. The
disagreement between the geometries and the locations of
the leading edges of the experimental and calculated con-
figurations is obvious. These data testify that three-shock
configurations arising in unsteady reflection cannot be inter-
pretedwith the help of the vonNeumann theorywhich is valid
for pseudo-steady reflection. Unsteady shockwave reflection
is a process much more complicated than a sequence of ideal
shock-wave configurations corresponding to the local values
of an incident shock Mach number and a wall angle.

To provide a better understanding of the physical mecha-
nism of formation of reflection configurations over a concave
cylindrical surface, various diagnostic approaches were pro-
posed. Suzuki et al. [8] applied an approach with the method
of multiple steps. A cylindrical reflecting surface was simu-
lated by a step-likewedge. The surface of the step-likewedge
was composed of multiple steps with constant height. The
radius of curvature of the step-like wedge was equivalent to
the radius of the cylindrical wedge. The experimental results
of shock wave reflection over a concave step-like wedge
contribute to better understanding of the reflected shock for-
mation, but they do not illustrate the Mach stem formation
and evolution of the three-shock configuration. It appears
that the step-like wedgemodel does not provide a sufficiently
accurate simulation of a cylindrical surface.

Skews and Kleine [9] used the method based on track-
ing very weak perturbations generated in the post-shock
flow. The diagnostic technique was used in conjunction with
high-speed time-resolved photography. The data obtained
for the Mach number 1.35 and a 64-mm-radius cylinder
demonstrated that the surface curvature results in a series
of compression waves spreading across the incident shock
wave. The compression causes the incident wave to bend
smoothly forward increasing in strength towards the sur-

face. Merging of compression waves results in a kink on the
incident shock front and subsequently, in the formation of a
reflected shock and a Mach stem. However, the Mach stem
has to play the role of the incident shock. This circumstance
should also be considered when investigating the reflection
process. The results of this work suggest that there is a need
to continue the investigation of shock reflection over a cylin-
drical surface, because only a few features of the complex
flow structure have been revealed.

Theobjective of this paper is to elucidate themechanismof
formation of various configurations that arise, while a shock
wave propagates along smooth concave surfaces of different
shapes. For better understanding of the process, numerical
calculation of a shock reflection off an inscribed polyhedron
surface has been carried out.

2 Numerical method

For computations of unsteady inviscid flows, a solver [10]
intended for integration of the Euler equations has been used.
The code has successfully been applied to a variety of gasdy-
namic problems. It is based on an explicit quasi-monotonous
scheme of Godunov-type with a second-order accuracy both
in space and time. The use of unstructured grids with the
dynamical adaptation to the flow features (shock waves, slip-
streams, etc.) allows detailed information about the evolution
of complex shock-wave structures to be obtained. To test
the numerical set-up, a set of computations using different
grid refinement levels was performed for the reflection of
the shock waves from a concave cylindrical surface. The
computational results are shown in Fig. 2. The comparison
between the results demonstrates good grid convergence in
terms of shock intensities and gas parameters. The only grid-
dependent features are the relativewidths of shockwaves and
shear layers. The slight disagreement in shear layer insta-
bility at different grid refinement levels can also be seen.
Since the main concern of this contribution is to elucidate
the mechanism of formation of unsteady shock wave reflec-
tion patterns, it was concluded that the numerical simulation
using the grid refinement levels equal to seven is suitable for
such study.More details regarding the numerical method and
code can be found in [11].

3 Results and discussion

3.1 Shock wave reflection off a polyhedron inscribed in
a cylinder

To elucidate the mechanism of formation of the reflection
configuration, we performed a numerical simulation of a
shock wave reflection off a multi-faceted concave wedge.
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Fig. 2 Comparison of the
simulation of the reflection of a
shock wave from a concave
cylindrical surface using
different grid refinement levels.
Density contours. M = 2.5,
γ = 1.29
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A polyhedron inscribed in a cylinder of radius R can be suc-
cessfully used, because the cylindrical surface is the limit
of a polyhedron with n → ∞ (where n is the number of
facets of the polyhedron). The computation was performed
for M = 2.5, γ = 1.29, and for 1/4 of tetraicosagon (24
facets) as the reflecting surface. All sizes are related to R;
time scale is the time that it takes the incident shock wave
to cover the distance R. The numerical density contours for
different instances are presented in Fig. 3. Figure 3a corre-
sponds to the instant t = 0.200, at which the incident shock
wave reflects from the first facet as a vNR. The incident
wave and the Mach stem constitute a smooth curve without
a discontinuity in slope; the reflected signal is a compression
wave. Note that usually a vNR is referred to as the pattern
obtained for weak shocks and small wall angles. The given
configuration is obtained for β = 7.5◦ and M = 2.5, i.e., for
a strong shock wave with a supersonic flow behind its front.
An attached shock wave is formed over the leading edge of
the first facet.

At t = 0.535 (Fig. 3b), the initial incident shock wave is
located over the third facet of the polyhedron. Three triple
points can be seen. The triple point T ∗

1 was obtained when
the initial shockwave reflected from the first facet. TheMach
reflectionwith the point T2 was obtainedwhen theMach stem
reflected from the secondwedge, and theMach configuration
with the point T3 arose when the Mach stem of the latter
shock configuration reflected from the third facet. Here and

elsewhere, an asterisk is used to mark the triple point located
on the initial incident shock wave. Occurrence of the three
triple points testifies that at t = 0.535, the disturbances from
the second and third facets have not yet reached the initial
incident wave. The type of reflection configuration can be
referred to as a vNR with the additional triple points on the
Mach stem.

As the initial incident shock wave propagates, two
processes are responsible for the formation of the shock-
wave configurations. These are the successive collisions of
the triple points leading to the formation of new three-shock
configurations and the reflections of the newly formed Mach
stem from the succeeding facets of the polyhedron. The three-
shock configurationwith the pointT ∗

4 whichwas formed after
collisions of the points T ∗

1 , T2, and T3 is presented in Fig. 3c
(t = 0.700). The triple point T4 arose as a result of reflection
of the new Mach stem from the fourth facet. The reflection
configuration with the point T ∗

4 is a MR with the additional
triple point on the Mach stem and the triple point on the
reflected wave.

Eventually, multiple collisions of the triple points result
in the formation of a single three-shock configuration on the
fifth facet of the polyhedron (Fig. 3d, t = 0.900). The reflec-
tion configuration has a straight Mach stem, but there are
some additional triple points on the reflected wave. That is
an InMR configuration, because the triple point T ∗

5 moves
towards the fifth facet and collides with it. After the termi-
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Fig. 3 Numerical simulation of
M = 2.5 shock wave reflecting
off the tetraicosagon ramp.
Density contours (sequential
shock wave patterns)
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nation of the InMR, the structure known as a transitioned
regular reflection (TRR) [1] arises on the fifth facet (Fig. 3e).
The major part of the shock pattern is a regular reflection
(RR) of the initial incident shock wave with the reflection
point T ∗

5 . In addition, a new triple point T is formed on
the reflected wave. The structure is clearly seen in the next
Fig. 3f (t = 1.0). The RR on the fifth facet changes into
the RR with the reflection point T ∗

6 on the sixth facet. The
additional configuration is located just ahead of the leading
edge of the last facet, and details of the configuration are
clearly seen. Apparently, the additional three-shock config-

uration results from the interaction of the reflected wave of
the RR with the reflected wave of the MR. The resulting
wave of the additional configuration is perpendicular to the
fifth facet and will subsequently reflect off the sixth facet.
Note that the TRR structure was first reported in [3] where
the results of an investigation of a shock wave reflection
from a concave cylindrical ramp were presented. The flow
field over the whole area at t = 1.0 is presented in Fig. 4.
The picture illustrates very clearly how the reflected wave is
formed.
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Fig. 5 Trajectory of the main triple point T ∗

Computational results suggest that the reflection process
follows the following sequence of events: vNR → MR →
InMR → TRR. Figure 5 shows the trajectory of the main
triple point (marked with an asterisk) over the reflecting
multi-faceted wedge. The distance between the triple point
and the surface increases from 0.0 at the leading edge of
the reflecting surface to a maximum after which it decreases
until it vanishes. The non-monotone run of the curve of the
trajectory of the main triple point is caused by the fact that as
the resulting triple points merge, a new three-shock config-
uration is formed. The triple point of the configuration can

move either away from the surface or towards the reflecting
surface.

Considering the mechanism of formation of reflection
configurations, we can suppose that the behavior of the triple
point depends strongly on the length and wall angle of each
facet of the polyhedron. It means that in the case of a concave
smooth reflecting wall, the shape of the reflecting surface
defines the evolution of the shock wave reflection configura-
tion.

3.2 Shock wave reflection off smooth concave reflecting
walls

The model of a polyhedron inscribed in a cylinder provides a
clear understanding of themechanism of formation of shock-
wave reflection configurations in unsteady flows. Since a
smooth cylindrical surface is the limit of a polyhedron where
the number of facets tends to infinity, it is clear that the foot
of a shockwavemoving along a smooth surface will generate
continuous perturbations. These perturbationswill be contin-
uously passed on to the incident wave causing the formation
of reflection configurations. Apparently, the reflection con-
figurations will have curved reflectedwaves andMach stems,
and a gradient field behind them.

To consider the influence of the curvature of the reflecting
wall on the dynamics of the reflection process, a numerical
simulation of a shock wave interacting with various smooth
concave ramps with a zero initial ramp angle was performed.
Computations were made for M = 2.5 and γ = 1.29. A
total of four reflecting surfaces were tested. Table 1 lists the
considered variants of the reflecting ramps. Variants 2 and 3
are piecewise-smooth surfaces consisting of two cylindrical
segments. Below, all sizes are related to R—radius of the
circular cylinder of var. 1. Time scale is the time that it takes
the incident shock wave to cover the distance R. For var. 2,
the dimensionless radii of the first and second segments are
equal to 1 and 3, respectively. For var. 3, these radii are equal
to 1 and 1/3, respectively. At x = 0.6, dy/dx is the same
for variants 1–3 . Figure 6 shows the shapes of the reflecting
ramps.

Table 1 Reflecting surfaces

Var. Surface Determining equation

1 Circular cylinder x2 + (y − 1)2 = R2

2 Compound surface x2 + (y − 1)2 = R2, x ≤ 0.6;
(x + 1.2)2 + (y − 2.6)2 = 9R2,
x > 0.6

3 Compound surface x2 + (y − 1)2 = R2, x ≤ 0.6;
(x−0.4)2+(y−0.467)2 = R2/9,
x > 0.6

4 Circular ellipse (x/4)2 + (y − 1)2 = 1
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Fig. 6 Shapes of the reflecting surfaces
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Fig. 7 Mach reflection configuration obtained from reflection of a
shockwave off a concave cylindrical ramp at t = 0.55.Density contours

For var. 1–3, computational results as density contours are
given in Figs. 7, 8, 9, 10. Because variants 1–3 have the same
cylindrical segment 0.0 < x < 0.6, the first stage of the
reflection process is also the same. Figure 7 shows a Mach
configuration with curved Mach stem, which is formed at
t = 0.55 (the straight line connecting two extremities of the
Mach stem is drawn to demonstrate its curvature). The first
stage of the reflection process ends at t � 0.575, when the
foot of the Mach stem reaches the point (x = 0.6, y = 0.2).
At this moment, the Mach configuration is the same for all
variants. Starting from this moment, the MR configuration
will propagate along smooth cylindrical arcs of different
radii. Flowfield histories are shown in Fig. 8. For each vari-
ant, density contours are presented for two locations of an
incident shock wave: when an incident shock wave is in the

point x = 0.6 and when it is in the vertex of the reflecting
ramp.

As flow patterns in Fig. 8 demonstrate, transition from
MR to TRR occurs for all considered reflecting walls. T is
the additional triple point on the reflected shock wave. An
enlarged fragment of Fig. 8b showing the flowfield in the
vicinity of the point T is presented in Fig. 9. This structure
is formed after termination of an InMR. The initial incident
shock wave reflects over surface as a RR. r is a reflected
shock. However, the elements of a InMR still exist in the
flow. These are the reflected shock wave rM and shear layer
SM. Interaction between reflected shocks r and rM results in
formation of the additional three-shock configuration. T is
the triple point, m is the resulting shock, and S is the shear
layer. The region with high values of density and pressure
is behind the resulting shock wave of the additional three-
shock configuration. It decelerates themotionof gas along the
reflecting surface. The nature of this additional configuration
is the same for all the cases under consideration. To examine
that structure, its formation, and evolution, further research
must be carried out in the future. While the transition from
Mach to regular reflection is beyond the scope of this work,
the assessment of the transition angle values was performed.
The transition angle βtr (β is a local wall angle) was defined
as an average value between two local angles.

One angle is determined according to the flow picture
where the last MR is obtained. The other angle is determined
according to the flow picture, where the first appearance of
the RR is obtained. For variants 1–3, the following transi-
tion angles were obtained: β1

tr = 68◦ ± 3◦, β2
tr = 66◦ ± 4◦,

and β3
tr = 83◦ ± 7◦. The detachment (det) and mechan-

ical equilibrium (me) criteria have been suggested by von
Neumann (see [1,2]) for the transition between RR and MR
pseudo-steady configurations. For M = 2.5 and γ = 1.29,
βdet = 48.94◦, βme = 58.72◦. The transition between irreg-
ular and regular unsteady reflection configurations occurs at
angles greater than the angle corresponding to the mechan-
ical equilibrium criterion. It should be noted that the values
obtained in the present work are a crude assessment of the
transition angles. Since at t � 0.575, the same MR was
formed for all variants; at the second stage of the reflection
process, an important role will be played by the ratio of the
length of theMach stem of theMR to the radius of the second
segment of the reflecting arc. The larger the ratio, the greater
is the transition angle.

In case of var. 3, apart from the additional triple point, the
reflected shock wave features the kink k (Fig. 8c). To eluci-
date the reason for the occurrence of the kink, it is useful to
consider the reflection process over the second segment in
more detail (Fig. 10). The initial shock wave reflection off
the first segment leads to the formation of the MR configura-
tion. The length of the Mach stem of this configuration with
respect to the radius of the second segment is three times
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greater than the same length with respect to the radius of the
first segment. For this reason, for some time, the triple point
T ∗ on the incident wave is not subjected to the process of the
Mach stem reflection off the second segment (Fig. 10a). The
process of the reflection of theMach stem (it plays the role of
an incident shock) from the second segment resembles most
closely the process of the reflection of the initial shock wave
off the first segment. However, by contrast to the reflection
of the initial shock wave from the first reflecting segment,
which is completed by the formation of the three-shock con-
figuration, the reflection process of the Mach stem from the
second segment leads to the formation of the von Neumann
configuration type with the point TM on the Mach stem and
with not a reflected shock wave but rather a strong reflected
compression wave. Eventually, merging of the triple point
T ∗ and point TM (Fig. 10b) results in the formation of a new
three-shock configuration. Since the reflected compression
wave emanating from the point TM is rather strong, the kink
k occurs on the resulting reflected shock wave of the main
Mach configuration (Fig. 10c). It is known that interaction of
a planar shock wave with a wedge is a combination of two
sub-processes: shock wave reflection and an incident shock-
induced flow deflection around the compressive wedge [13].
Comprehensive analysis of shock wave reflection in pseudo-
steady flows was offered in [12]. Attention should be given
to the fact that, in contrast to a Transitional Mach reflection
(TMR)andaDoubleMach reflection (DMR),where the addi-
tional kink (or the triple point) is the result of the combination
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of two sub-processes: the shock reflection and the incident
shock-induced flow deflection [12]; in the given case, the
occurrence of the kink on the reflected wave is the result of
changing the curvature of the reflecting surface. Analysis of
the influence of an incident shock-induced flow deflection
on shock wave reflection in unsteady flows is much more
difficult than in pseudo-steady flows. In the case under con-
sideration, the flow deflection processes as well as the shock
reflection processes are different for var. 1–3. As shown in
Fig. 8, the boundary of the perturbed flowfield represented
by a shock wave along a half of the whole length for var. 1
(Fig. 8a), almost along the whole length for var. 2 (Fig. 8b),
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Fig. 11 Numerical simulation of M = 2.5 shock wave reflecting off
the concave elliptical wall. Density contours

and it is represented by a sonic line along most of the length
for var. 3 (Fig. 8c).

Numerical data of a shock wave reflection from a con-
cave elliptical surface (var. 4) are presented in Fig. 11. The
vNR configuration arises at the leading edge of the concave
wedge. The triple point T ∗ divides the incident shock into
undisturbed I and disturbed M (Mach stem) parts. For the
given elliptical surface, the longer axis and the shorter axis of
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the ellipse are related as 4:1. As the flow patterns show, the
vNR configuration is maintained throughout the reflection
process (Fig. 11). The point T ∗ is located much higher than
the vertex of the reflectingwall and cannot make contact with
the reflecting wall. In fact, not an initial incident shock wave,
but the part of the Mach stem close to the wall—a curved
shock wave with a nonlinear flow behind it—interacts with
the surface. At t = 3.9, the curve part of the Mach stem dif-
fracts over the vertex of the reflection surface (Fig. 11c).With
regard to the initial incident shock wave, it should be noted
that, as evidenced by this computation, during the whole
reflection process of a shock wave off the given shape of
the reflecting wall, the vNR type remains constant without
transition to other reflection forms.

4 Concluding remarks

Numerical simulation of unsteady reflection of a planar shock
wave from various concave reflecting ramps is performed.
The model of a polyhedron inscribed in a cylinder as the
reflecting surface provided understanding of the mechanism
of formation of shock-wave configurations in unsteady flows.
It is shown that configurations forming in unsteady flows are
not determined by the incident shock Mach number M , the
angle of the wedge, and the specific heat ratio, but result
from complex sub-processes and cannot be described with
the use of the von Neumann theory. The numerical data of
a shock wave interaction with concave cylindrical and ellip-
tical wedges have shown unambiguously that the evolution
of reflection configurations is determined by the curvature of
the concave reflectingwall. Transition angles between differ-
ent kinds of unsteady reflection configurations depend on the
shape of the reflecting wall and differ from transition angles
obtained for pseudo-steady reflection.

References

1. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn.
Springer, Berlin (2007)

2. Ben-Dor, G., Igra, O., Elperin, T.: Handbook of Shock Waves.
Academic Press, Dublin (2001)

3. Syshchikova, M.P., Semenov, A.N., Berezkina, M.K.: Shock wave
reflection by a curved concave surface. Sov. Tech. Phys. Lett. 2,
61–66 (1976)

4. Krassovskaya, I.V., Berezkina, M.K.: Reflection and diffraction
of shock waves and shock wave configurations. In: 28th Inter-
national Symposium on Shock Waves, Manchester, England, pp.
13–19 (2011)

5. Ben-Dor, G., Takayama, K.: Application of steady shock polars to
unsteady shock wave reflections. AIAA J. 24, 682–684 (1986)

6. Skews, B.W., Kleine, H.: Flow features resulting from shock wave
impact on a cylindrical cavity. J. Fluid Mech. 580, 481–493 (2007)

7. Berezkina, M.K., Krassovskaya, I.V.: Interaction of a planar shock
wavewith a cylindrical concavewedge. In: 20th International Sym-
posium on Shock Interaction, Stock-holm, Sweden, pp. 5–8, 20–24
August (2012)

8. Suzuki, T., Adachi, T., Kobayashi, S.: Nonstationary shock reflec-
tion over nonstraight surfaces: an approach with a method of
multiple steps. Shock Waves 7, 55–62 (1997)

9. Skews, B.W., Kleine, H.: Anewdiagnostic approach to shock-
wave reflection. In: 27th International SymposiumonShockWaves,
St.Petersburg, Russia, pp. 314–319, 24 July (2009)

10. Fursenko, A.A., Sharov, D.M., Timofeev, E.V. andVoinovich, P.A.:
An efficient unstructured Euler solver for transient shocked flows.
Shock Waves @ Marsielle I, 371–376 (1995)

11. Drikakis, D., Ofengeim, D., Timofeev, E.V., Voinovich, P.A.: Com-
putation of non-stationary shock-wave/cylinder interaction using
adaptive-grid methods. J. Fluids Struct 11(6), 665–692 (1997)

12. Semenov, A.N., Berezkina, M.K., Krassovskaya, I.V.: Classifica-
tion of pseudo-steady shock wave reflection types. Shock Waves
22(4), 307–316 (2012)

13. Law,C.K.:Diffraction of strong shockwaves by sharp compressive
corner. UTIAS Technical Note No. 150, Toronto, Canada (1970)

123


	Mechanism of formation of reflection configurations over concave surfaces
	Abstract
	1 Introduction
	2 Numerical method
	3 Results and discussion
	3.1 Shock wave reflection off a polyhedron inscribed in a cylinder
	3.2 Shock wave reflection off smooth concave reflecting walls

	4 Concluding remarks
	References




