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Abstract Curved shock theory (CST) is introduced, devel-
oped and applied to relate pressure gradients, streamline
curvatures, vorticity and shock curvatures in flows with
planar or axial symmetry. Explicit expressions are given,
in an influence coefficient format, that relate post-shock
pressure gradient, streamline curvature and vorticity to pre-
shock gradients and shock curvature in steady flow. The
effect of pre-shock flow divergence/convergence, on vortic-
ity generation, is related to the transverse shock curvature.
A novel derivation for the post-shock vorticity is presented
that includes the effects of pre-shock flow non-uniformities.
CST applicability to unsteady flows is discussed.

Keywords Curved shock waves · Vorticity

1 History and introduction

There is a long, albeit thin, history of research, stretching
over 75years, on curved shocks, in steadyflowwith bounding
curved streamlines andvaryingpressure, fromCrocco [2] and
Thomas [22] to the modern treatment of Emanuel [5]. These
efforts, focusing on shock curvature and the resulting flow
property gradients, have been largely analytical. Crocco [2]
showed that, on a curved, planarly symmetric (planar) shock
wave, there is a shock angle where the streamline behind the
shock is straight, irrespective of shock curvature. This loca-
tion on the shock surface is called the Crocco point. Thomas
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[24] derived the curved shock equations for steady flow of
an ideal gas with planar shocks in uniform flow. He found
an expression for the curvature of the streamlines behind a
curved shock. Any influence of upstream vorticity was not
considered. Lin and Rubinoff [16] re-derived the equations
of Crocco and Thomas to show that a normal shock can sit
on a continuously curving surface only if the Mach number
exceeds a certain supersonic value. Thomas [23] extended the
curvature notion to higher derivatives of shock and stream-
line shape, giving extensive graphs of the first-derivative
relations. Algebraic complexities prevented Thomas from
examining higher derivatives. Today’s computerized alge-
bra manipulators such as Matlab and Maple could be used to
advance Thomas’ early efforts. Thomas [24,25] also consid-
ered the motion of a shock attached to the leading edge of a
planar, curved surface and developed total differential equa-
tions for the first, second and third approximations for the
surface pressure. Truesdell [28] derived the formula for the
vorticity jump across a curved shock wave, but erroneously
concluded that, “when a uniform flow of any fluid breaks
across a shock the pressure gradient cannot vanish on the rear
side of the shock at any point where the shock is curved and
oblique.” A simple physical argument shows otherwise and
so does the correct theory. The shock angle and place on the
shock wave where the pressure gradient vanishes is called
the Thomas point. An application of curved shock theory
(CST) to the propagation and decay of spherical blast waves
is found in Thomas [27]. Gerber and Bartos [6] presented
coefficients for the curved shock equations for determining
the orientation of constant property lines behind planar and
axisymmetric (axial) shocks in steady, irrotational, uniform
flow of an ideal gas. Truly unsteady (i.e., non-pseudo-steady)
flow and shock motion were allowed by Pant [20] in deriving
gradient expressions for flowbehind amoving shock.Mölder
[17,18] presented numerical results for curved shocks in reg-
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338 S. Mölder

ular reflection (RR) andMach reflection (MR) at a plane wall
and some results for polar streamline directions behind the
triple point of Mach reflection for steady flow [19]. Pant [21]
presented similar results for planar flow. Darden [3] derived
the spatial derivatives of flow properties behind curved weak
shocks with applications to sonic boom problems. Emanuel
[5] presents a modern treatment of curved shocks based on a
vector calculus approach. All of the above contributions have
assumed that the gas is both thermally and calorically per-
fect. Hsu [11] accounted for the effects of non-equilibrium
dissociation on gradient functions for flow behind a shock.
Hornung [9,10] described many interesting features of real
gas effects on curved shocks and inferred real gas properties
from measurements of shock curvature on plane wedges.

A whole series of papers by Truesdell [28], Hayes [7],
Kanwal [14] and Emanuel [5] have treated the production
of vorticity by a curved shock. Most of these make use of
the equation of state and Crocco’s thermodynamic relation.
Kanwal [13] shows that the jump in vorticity is independent
of the energy equation and the form of the equation of state.

Most of the curved shock equation derivations such as [1]
and [26], and the ones above, are for single shock curvature
in a flow that is either planarly or axially symmetric. In more
complex situations, such as shock reflections in axial flows,
terms must be included which account for complex shock
curvature since the reflected shock, facing non-uniform and
rotational flow, becomes doubly curved. A reflected shock,
behind a curved incident shock, has an upstream flow that is
non-uniform, rotational and convergent or divergent as well.
Previous derivations of CST are for a uniform upstream flow
and so do not contain terms reflecting upstream vorticity,
upstream flow non-uniformity and compound shock curva-
ture.

The CST is derived and embodied in the curved shock
equations, which relate shock curvature directly to the gra-
dients of flow properties near the shock. The equations are
derived by applying the Rankine–Hugoniot and Euler equa-
tions of conservation to a perfect gas, in steady flow, across
a doubly curved shock wave—a shock surface that is curved
in two orthogonal planes. The results, although algebraically
cumbersome, are more versatile than the Method of Char-
acteristics because they can be used in flow regions where
the flow is locally subsonic; however, they are restricted to
giving answers in the close proximity of the shock waves.
Here the resulting expressions are explicit and exact, being
presentable in an influence coefficient format that exactly
and explicitly connects various input parameters to the out-
put variables of interest. Important features of shock wave
dynamics become apparent when examined by CST; features
which are not present for plane shock waves. It becomes evi-
dent thatmanyof the results that are derived for flat shocks are
not applicable to curved shock waves. A well-known exam-

ple of this is the detachment of a flat shock from a flat wedge
and the detachment of a conical shock from a cone surface.

We present equations, and the details of their derivation,
for pressure gradient, flow curvature and vorticity for flow
behind a doubly curved shock in steady non-uniform flow
where the upstream flow can have a pressure gradient, a
streamline curvature, vorticity and can be inclined to the axis.

2 Geometry of curved shocks

Figure 1 shows an oblique, doubly curved shock element
(red) in supersonic flow separating the pre-shock state (1)
from the post-shock state (2). The gas enters the shock with
a velocity vector V1 and leaves with a velocity vector V2

(or Mach numbers M1 and M2). These vectors are contained
in, and they define the flow plane [12]. The coordinate plane,
(x, y), lies in the flowplane and x ismeasured in the direction
of the symmetry axis. The velocity vectors are inclined at δ1
and δ2 to the x-axis so that the net flow deflection through
the shock is δ = δ2 − δ1. The shock has a trace a − a in the
flow plane that is inclined at an angle θ (the shock angle) to
the incoming flow vector (Fig. 2). Distance measured along
the shock trace a − a is σ and distances measured along
and normal to the streamline are s and n. The shock trace
a−a has a curvature Sa = ∂θ1/∂σ and a radius of curvature
Ra = −1/Sa in the flow plane. The flow-normal plane is nor-
mal to both the flow plane and the shock surface. The shock
has a trace b − b in the flow-normal plane. The b − b trace
has a curvature Sb and a radius of curvature, Rb = −1/Sb.
In axial flow, y is an important geometric parameter that
enters the analysis through Sb = − cos θ1/y, where y is the
distance to the axis of symmetry. The pre-shock flow incli-
nation, δ1, also enters through Sb because θ1 = θ + δ1. At
the triple point, in Mach reflection, the three shocks have

Fig. 1 Doubly curved shock element—red surface
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Fig. 2 Shock trace a − a in the flow plane

the same value of y but their Sb’s are different because the
shock angles and pre-shock flow inclinations differ. y is also
a convenient scaling parameter for normalizing the length
variables. For planar flow y → ∞ so that Sb → 0. In pla-
nar flow, the length scaling parameter can be any convenient
length that characterizes the flow size. Shock curvature is
positive when, moving along the shock, so that the upstream
is on the left, the shock angle increases. A positively curved
shock is always concave towards the upstream flow.1 Using
this definition of curvature makes the results applicable to
general shock surfaces with no particular degrees of sym-
metry, as long as the coordinate axis (x, y) is located in the
flow plane. A streamline has positive curvature if the flow
along it turns away from the wall, x-axis or the centre line of
symmetry. The distance from the shock to the axis of symme-
try is y. The geometric shock angle θ1 is distinguished from
the aerodynamic shock angle θ when the pre-shock flow is
diverging /converging so that θ1 = θ + δ1, in which case
the geometric curvature, Sa = ∂θ1

∂σ
= ∂θ

∂σ
+ ∂δ1

∂σ
showing that

Sa is equal to the vorticity-producing term ∂θ
∂σ

only when
the pre-shock flow convergence/divergence, δ1 is constant.
A significant parameter that appears in the applications of
CST is,R = Sa/Sb. At any point, on the shock, its shape is
completely determined by the shock angle, θ or θ1, and the
two shock curvatures, Sa and Sb.

2.1 Rankine–Hugoniot and Euler equations

Across a normal shockwave, the relations expressing conser-
vation of mass, momentum/force, energy and state are [15]
(p. 56),

1 This definition is unambiguous and does not depend on the chosen
coordinate system.

ρ1V1 = ρ2V2 (1)

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 (2)

CpT1 + V 2
1 /2 = CpT2 + V 2

2 /2 (3)
p1

ρ1T1
= p2

ρ2T2
(4)

where the usual density, velocity, pressure and temperature
symbols with subscript 1 refer to the flow entering the shock
and the subscript 2 refers to the departingflow inFigs. 1 and2.
For an oblique (acute or obtuse) shock, the conservation
equations are,

ρ1V1N = ρ2V2N (5)

p1 + ρ1V
2
1N = p2 + ρ2V

2
2N (6)

ρ1V1NV1T = ρ2V2NV2T (7)

CpT1 + (V 2
1N + V 2

1T )/2 = CpT2 + (V 2
2N + V 2

2T )/2 (8)
p1

ρ1T1
= p2

ρ2T2
(9)

The additional subscripts N and T denote velocity compo-
nents normal and tangential to the oblique shock. For the
applications that follow it is important to affirm that these
equations relate flow properties immediately up- and down-
stream of the shock surface and they apply locally to plane
as well as to smoothly curving shock waves, be the shocks
stationary or not, as long as velocities are measured with
respect to the shock wave. Equation (7), when divided by
(5), becomes V1T = V2T , however, we retain the (7) form
so as to get proper coupling between derivatives when (7) is
differentiated.

Away from the shock surfaces, either upstream or down-
stream, flow properties are governed by the Euler equations.
These express the conservation of mass, momentum/force
and energy in intrinsic coordinate directions along (s) and
normal (n) to a streamline. For our purposes, we make the
assumption that the flow is homenergic so that the stagnation
enthalpy is constant along, as well as across, streamlines.
Under these conditions, in the natural or intrinsic streamline
coordinates [8] (p. 482), the Euler conservation equations,
for steady, axial or planar flow, are,

Mass conservation:
∂

∂s
ρV y j + ρV y j ∂δ

∂n
= 0 (10)

s-momentum: ρV
∂V

∂s
+ ∂p

∂s
= 0 (11)

n-momentum: ρV 2 ∂δ

∂s
+ ∂p

∂n
= 0 (12)

Energy (homenergic flow):
∂h

∂s
+ V

∂V

∂s
= 0 (13)

∂h

∂n
+ V

∂V

∂n
= 0 (14)
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Vorticity is defined as, ω = V
∂δ

∂s
− ∂V

∂n
(15)

In these equations, y is the normal distance from the x-axis
of symmetry, δ is the inclination of the streamline from the
x-axis and h = CpT is the enthalpy. The equations apply to
continuous steady flow, in smooth flow regions, between the
shock waves. Distance s is measured in the flow direction
along the streamline and n is normal to it. j is 0 or 1 for
planar or axial flow, respectively. For the present theory, the
flow has to be neither planar nor axial if y is taken as the local
radius of curvature of the shock trace in the plane normal to
the upstream velocity vector. With this, more general defini-
tion of y, what follows is applicable to doubly curved shock
waves possessing at least left–right symmetry with an iden-
tifiable y and where s and n are local (intrinsic) coordinates
fixed in the flow plane at the shock. The normal coordinate
n is well defined only at the shock wave but this poses no
difficulties since we are concerned only with the flow imme-
diately up- and downstream of the shock. Both (x, y) and
(s, n) are in right-hand coordinate systems so that the corre-
sponding, positive, z and t point “out-of-the page.” For axial
flow, y is the distance from the shock to the axis of symmetry
and it is used to normalize all distances. In planar flow, all
distances are normalized by a convenient length scale that
need not be specified at this stage.

For sake of algebraic neatness, we define the following
variable gradients:

The normalized pressure gradient, P ≡ ∂p/∂s

ρV 2

The streamline curvature, D ≡ ∂δ/∂s

The normalized vorticity, � ≡ ω/V

and note that along a streamline in front of the shock
(

∂y
∂s

)
1

=
sin δ1 and

(
∂y
∂s

)
2

= sin δ2 behind.

With these definitions, the Euler equations, (10)–(15), can
be written as,

Mass:
∂δ

∂n
= −(M2 − 1)P − j

sin δ

y
(16)

s-momentum:
1

V

∂V

∂s
= − 1

ρV 2

∂p

∂s
= −P (17)

n-momentum:
1

ρV 2

∂p

∂n
= −∂δ

∂s
= −D (18)

Energy:
1

ρ

∂ρ

∂n
= −M2 [

D + (γ − 1) �
]

(19)

1

ρ

∂ρ

∂s
= M2P (20)

Vorticity:
1

V

∂V

∂n
= D − � (21)

where the Mach number is defined by M2 = ρV 2/γ p.
These relations will be used to eliminate the derivatives of

δ, V, p and ρ on the left-hand side in favour of M, P, D and
�, appearing on the right. In the above equations, all vari-
ables have either the subscript 1 or 2 depending on whether
application is to flow on the up- or downstream side of the
shock. The parameter y needs no subscript since it has the
same value when states 1 and 2 are on opposite sides of the
same shock. The use of j to denote flow with planar or axial
symmetry will not be carried further. This parameter occurs
only when multiplied by 1/y so that its effect is obtained in
calculations by assigning a very large value to ywhen dealing
with planar flows.

2.2 The curved shock equations

Consider a segment of a doubly curved shockwave inclined at
an angle θ to the freestreamflowdirection, as shown inFigs. 1
and 2. This aerodynamic shock angle, θ , is measured in the
flowplane that contains both the entering and leaving velocity
vectors. This definition of shock angle is very general and
makes the theory applicable to a curved shock segment at any
orientation in the flow that possesses left–right symmetry. In
the flow plane, the geometric curvature of the shock is Sa =
∂θ1/∂σ , where σ is the distance, measured along the shock
trace, in the flowplane, and θ1 = θ+δ1 is the geometric shock
angle. The curvature of the shock trace in a plane normal to
the flow plane and normal to the shock surface is Sb. The
corresponding radii of curvature are then Ra = −1/Sa and
Rb = −1/Sb. In axial flow, y/Rb = cos θ1, so that Sb =
− cos θ1/y, where y is the normal distance from the axis to
the shock. In the flow plane, the velocity components, normal
and tangential to the shock, upstream (1) and downstream (2)
of the shock are,

Normal Tangential

Upstream: V1N = V1 sin θ V1T = V1 cos θ

(22, 23)

Downstream: V2N =V2 sin (θ−δ) V2T =V2 cos (θ−δ)

(24, 25)

With these substitutions, the Rankine–Hugoniot equa-
tions, (5)–(9), become:

ρ1V1 sin θ = ρ2V2 sin(θ − δ) (26)

p1 + ρ1V
2
1 sin2 θ = p2 + ρ2V

2
2 sin2(θ − δ) (27)

V1 cos θ = V2 cos(θ − δ) (28)

V1V2 sin θ sin (θ − δ) = a2∗ − γ − 1

γ + 1
V 2
1 cos2 θ (29)

Here a2∗ is the sound speed at sonic conditions (a constant
in adiabatic flow).
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2.2.1 Conditions of compatibility and derivation of CST
equations

If some quantity (e.g. mass flux) remains constant across a
shock wave then the derivatives of this quantity, along the
same direction, on either sides of the surface of the shock,
must be equal. This kinematic condition is the basic premise
underlying all of CST and it seems “intuitively obvious.” It is
perhaps less obvious for unsteady flow—but it must still be
so since we are dealing locally with quantities immediately
up- and downstream of the shock discontinuity that take no
time to cross the shock and it is implicit in the fact that the
discontinuity conservation equations, (26)–(29), contain no
time-dependent terms. This is a subtle yet essential assump-
tion that forms the basis of CST. The same argument can be
applied to higher derivatives, Thomas [24], and Kanwal [13]
refers to this as “geometrical and kinematical conditions of
compatibility,” attributing them to Thomas [24].

The curved shock equations are derived by taking deriv-
atives of both sides of each of equations (26), (27) and (28)
with respect to σ (the distance along the shock) and equating
these pre- and post-shock derivatives for each equation. The
derivations are presented in Appendices 1, 2 and 3.

For example, taking derivatives of the left- and right-hand
sides of the conservation of mass (26) produces,

ρ1V1
∂ sin θ

∂σ
+ ρ1 sin θ

∂V1
∂σ

+ V1 sin θ
∂ρ1

∂σ

= ρ2V2
∂

∂σ
sin (θ − δ) + ρ2 sin (θ − δ)

∂V2
∂σ

+ V2 sin (θ − δ)
∂ρ2

∂σ

and similarly (not presented here) for equation (27), produc-
ing two differentiated conservation equations involving the
aerodynamic shock curvature terms ∂ sin θ

∂σ
explicitly.

In front of the shock, the derivative of any quantity with
respect to distance along the shock, can be expressed in terms
of the two derivatives along and normal to the streamline,

(
∂•
∂σ

)

1
=

(
∂•
∂s

)

1
cos θ+

(
∂•
∂n

)

1
sin θ for ρ, V, T and p

(30)

Similarly, behind the shock,

(
∂•
∂σ

)

2
=

(
∂•
∂s

)

2
cos (θ − δ) +

(
∂•
∂n

)

2
sin (θ − δ)

(31)

These expressions are used to replace the σ -derivatives in the
differentiated conservation equations by s and n derivatives
and then replacing all derivatives ∂•

∂s and ∂•
∂n by expressions

involving P1, D1, �1, D2, P2, Sa , and Sb from the Euler
equations. This produces, with a few pages of algebraic
manipulation, the curved shock equations,

A1P1 + B1D1 + E1�1 = A2P2 + B2D2 + CSa + GSb

(32)

A′
1P1 + B ′

1D1 + E ′
1�1 = A′

2P2 + B ′
2D2 + C ′Sa + G ′Sb

(33)

where the coefficients A, B, E, C, G and their primed and
subscripted variants (14 in all) are given by,

A1 = 2 cos θ((3M2
1 − 4) sin2 θ − (γ − 1)/2)/(γ + 1)

B1 = 2 sin θ((γ − 5)/2 + (4 − M2
1 ) sin2 θ)/(γ + 1)

E1 = −2 sin3 θ((γ − 1)M2
1 + 2)/(γ + 1)

A2 = sin θ cos θ/ sin(θ − δ) (34)

B2 = − sin θ cos θ/ cos(θ − δ)

C = −4 sin θ cos θ/(γ + 1)

G = 4 sin2 θ cos θ sin δ1/[(γ + 1) cos (θ + δ1)]
and

A′
1 = M2

1 cos δ cos2 θ − (M2
1 − 1) cos(2θ + δ)

B ′
1 = − sin(2θ + δ) − M2

1 sin δ sin2 θ

E ′
1 = −(2 + (γ − 1)M2

1 ) sin δ sin2 θ

A′
2 = (1 + (M2

2 − 2) sin2(θ − δ)) (sin θ cos θ) /

(sin (θ − δ) cos (θ − δ)) (35)

B ′
2 = − sin(2θ)

C ′ = − sin(2δ)/(2 cos(θ − δ))

G ′ = [sin θ sin δ1 sin (θ + δ)

− sin θ cos θ sin δ2 tan(θ − δ)]/ cos(θ + δ1)

where,

M2
2 = (γ +1)2 M4

1 sin
2 θ−4

(
M2

1 sin
2 θ−1

) (
γ M2

1 sin
2 θ+1

)
[
2γ M2

1 sin
2 θ−(γ −1)

] [
(γ −1) M2

1 sin
2 θ+2

]

and δ = δ2 − δ1 (36)

The two equations (32, 33) relate shock curvature, Sa
and Sb, to streamwise pressure gradient, P, and stream-
line curvature, D, on the up- and downstream sides of a
shock element while accounting for any upstream vorticity,
�1 and flow divergence/convergence δ1. The equations (32,
33), together with the coefficients (34, 35), constitute the
tools for analysing shock wave curvature and flow gradients
on the up- (subscript 1) and downstream (subscript 2) sides
of a single, curved shock wave. The derivations of the curved
shock equations and their coefficients are found in Appen-
dices 1, 2 and 3. If we assume that the freestream Mach
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number (M1), the flow inclination in front of the shock (δ1)

and the shock angle (θ or θ1) are known then all the coeffi-
cients can be calculated. Then, in the curved shock equations,
five of the seven variables P1, D1, �1, D2, P2, Sa , and Sb
must be known and the remaining two can then be calcu-
lated from the two “simultaneous” curved shock equations,
(32, 33). If the coordinate system is aligned with the uni-
form freestream, then the shock angle, θ , is measured with
respect to the freestream direction and δ1 = 0 so that δ = δ2.
In the derivation of the curved shock equations, the vortic-
ity, as defined by (15), appears explicitly on both sides of the
shock as�1 and�2, so that the vorticity is just another depen-
dent variable along with the pressure gradient and streamline
curvature and it should have its own equation alongside the
two curved shock equations. However, in (32, 33), �2 has
been eliminated using the vorticity expression from Appen-
dix 3. Various restricted forms of the curved shock equations
have been presented by many authors: Crocco [2], Thomas
[22] and Pant [21]. However, they have not appeared with
the degree of generality that includes both upstream vortic-
ity, �1, and transverse shock curvature, Sb. Both of these are
essential in application to curved shock wave reflection, both
planar and axial. The detailed derivation of the curved shock
equations (32, 33) and their coefficients has been verified
more recently (2015) by Prof. Yancheng You and Weiqiang
Han as presented in Appendices 1 and 2. The equations can
be solved, yielding explicit expressions for the downstream
pressure gradient and streamline curvature,

P2= B2
(
C ′Sa + G ′Sb−L ′)−B ′

2 (CSa + GSb − L)

A2B ′
2−A′

2B2

D2=− A2
(
C ′Sa+G ′Sb − L ′)−A′

2 (CSa+GSb−L)

A2B ′
2 − A′

2B2

(37)

where,

L = A1P1 + B1D1 + E1�1

L ′ = A′
1P1 + B ′

1D1 + E ′
1�1 (38)

These are the most general expressions for pressure gra-
dient and streamline curvature for flow behind a doubly
curved shock, with curvatures (Sa, Sb), facing a non-uniform
upstream flow with pressure gradient P1, streamline curva-
tureD1 andvorticity�1; the upstreamnon-uniformities being
contained in the two expressions L and L ′. The upstreamflow
inclination, δ1, is contained in the two coefficients G and G ′;
it embodies the effects of flow convergence/divergence in
front of the shock.

Both P2 and D2 can be written in the influence coefficient
form,

P2 = Jp P1 + Jd D1 + Jg�1 + Ja Sa + JbSb
D2 = KpP1 + KdD1 + Kg�1 + KaSa + KbSb

(39)

where the influence coefficients are,

Jp = (
A1B

′
2 − A′

1B2
)
/[AB] Kp = −(

A1A
′
2 − A′

1A2
)
/[AB]

Jd = (
B1B

′
2 − B ′

1B2
)
/[AB] Kd = −(

B1A
′
2 − B ′

1A2
)
/[AB]

Jg = (
E1B

′
2 − E ′

1B2
)
/[AB] Kg = −(

E1A
′
2 − E ′

1A2
)
/[AB]

Ja = (
B2C

′ − B ′
2C

)
/[AB] Ka = −(

A2C
′ − A′

2C
)
/[AB]

Jb = (
B2G

′ − B ′
2G

)
/[AB] Kb = −(

A2G
′ − A′

2G
)
/[AB]

(40)

and where [AB] = A2B ′
2 − A′

2B2.
In most aeronautical applications, the freestream is uni-

form so that P1 = D1 = �1 = δ1 = 0 and L = L ′ = 0, and
(39) then simplify to,

P2 = Ja Sa + JbSb (41)

D2 = KaSa + KbSb (42)

The influence coefficient equations show explicitly how
each of P2 and D2 are determined by the upstream quan-
tities and the shock curvatures where the shock properties
(M1, θ) determine the influence coefficients. The influence
of pre-shock flow convergence/divergence, as expressed by
δ1, is unfortunately not as explicit, being embedded in Ja, Jb
and Ka, Kb, through the coefficients C,C ′,G,G ′. Figure 3
shows the influence coefficients for the post-shock pressure
gradient, P2 for both an acute and obtuse shock facing aMach
3 air flow.2 The blue curve shows that for weak shocks the
pre-shock pressure gradient is amplified in the same sense by
a factor of about 4, whereas for a strong shock the incoming
gradient is amplified by as much as 40 with a sense reversal.3

At some intermediate values of shock angle of about 72◦ and
(180◦–72◦), the incoming pressure gradient has no influence
on the post-shock gradient. The green curve shows that a pre-
shock flowcurvature, D1, causes an unlike sense contribution
to the post-shock pressure gradient for the acute shock and a
like sense contribution for the obtuse shock.Upstreamvortic-
ity’s contribution (red curve) to post-shock pressure gradient
is in the opposite sense to the pre-shock flow curvature’s
but otherwise similar. The contribution of the flow-plane

2 The curves are shown to approach±∞where the shock angle equals
the Mach angle for both acute and obtuse shocks. This is due to the
shock-tangential gradients becoming zero while the shock-normal gra-
dients remain finite across a characteristic. The problem can be resolved
by first passing all the curved shock coefficients to theirMachwave lim-
its before they are used as divisors. This poses no problems when the
theory is applied to finite strength shocks.
3 Note that in this case Jp represents P2/P1, the ratio of the non-
dimensional pressure gradients. To get the ratio of the physical pressure
gradients multiply by the dynamic pressure ratio, ρ2V 2

2 /ρ1V 2
1 .
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Fig. 3 Influence coefficients
for pressure gradient

Fig. 4 Influence coefficients
for streamline curvature

curvature, Sa , to the pressure gradient is shown by the cyan-
coloured curve. The effect is similar to that of pre-shock
pressure gradient; sense reversal occurring near a shock angle
of 76◦ and (180◦–76◦). The black curve shows the influence
of the lateral shock curvature, Sb, on the post-shock pres-
sure gradient when there is no flow divergence/convergence
in front of the shock. There can be, however, a change in
divergence/convergence as represented by ∂δ1

∂σ
, contributing

to Sb. This becomes more apparent in the derivation of (47),
below.

Figure 4 depicts the influence coefficients for the pre-
shock and shock curvature terms affecting the post-shock
flow curvature, D2. The blue curve shows that a positive pre-
shock pressure gradient contributes negatively to post-shock
curvature for a weak acute shock and positively to a strong
acute shock. The effect is anti-symmetric for an obtuse shock.
The green curve shows that the pre-shock flow curvature
causes a positive contribution to the post-shock curvature for
weak shocks and a negative contribution for strong shocks,
acute as well as obtuse. The contribution of pre-shock vor-

ticity (red curve) is similar except with an opposite sense.
Cyan and black curves show the anti-symmetric effects of
the two shock curvatures Sa and Sb. The Ja curve crosses the
horizontal axis at the Crocco point, where the flow curvature
behind the shock vanishes.

The two graphs, Figs. 3 and 4, are either symmetric or anti-
symmetric for acute and obtuse shocks. This is because the
freestream has been set to be parallel to the axis of symmetry
(δ1 = 0). A finite value of δ1 has no effect in planar flow,
however in axial flow, it leads to pre-shock flow convergence
or divergence effects through the sin δ1/y-term in (16).

For all examples, involving an oblique shock element, we
first need to solve theRankine–Hugoniot equations (26)–(29)
to obtain one ofM2, θ , and δ in terms of the other two and the
upstream conditions. These are required to calculate the coef-
ficients of the curved shock equations (32, 33). For shocks
facing a uniform upstream, all terms on the left-hand sides
of the two curved shock equations are zero. So is G, on the
right-hand side, if we choose to align the freestream with the
x-axis, for then δ1 = 0. This is not the case when the equa-
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tions are applied to the reflected shock in the shock reflection
process below, for then the flow in front of the reflected shock
is inclined towards the axis and it is also non-uniform (with
curvature and pressure gradient) and rotational, as produced
by a curved incident shock.

2.2.2 Vorticity behind the shock

When applying CST to RR andMR, the post-shock vorticity,
in region (2), behind the incident shock, is required as input
to the curvature calculations of the reflected shock when a
curved incident shock has created vorticity in front of the
reflected shock.

For a uniform upstream flow, the vorticity behind a curved
shock, as given by Truesdell [28], Hayes [7] and more
recently by Emanuel [4] is,

ω2 = V1
ρ2

ρ1

(
1 − ρ1

ρ2

)2

cos θ
∂θ

∂σ
(43)

The derivation of this relation uses the Crocco relation
between vorticity and entropy and assumes a uniform
upstream flow. The normalized version of (43) is,

�2 = ω2

V2
= V1

V2

ρ2

ρ1

(
1 − ρ1

ρ2

)2

cos θ
∂θ

∂σ
(44)

This equation gives the normalized vorticity in front of a
reflected shock (in region 2) as produced by a curved incident
shock. Equation (44) can be further simplified to,

�2 = 2 sin2 δ

sin(2θ) sin(θ − δ)

∂θ

∂σ
(45)

This equation gives the normalized vorticity behind an
acute or obtuse shock, in region 2, where ∂θ

∂σ
is the change

of the aerodynamic shock angle with distance along the
shock. This change in the aerodynamic shock angle is due

to the curvature of the shock, in the flow plane, Sa , and any
divergence/convergence of the pre-shock flow. This becomes
apparent if one considers the relation, θ1 = θ + δ1 (Fig. 2)
and its shock-wise derivative ∂θ1

∂σ
= ∂θ

∂σ
+ ∂δ1

∂σ
so that

∂θ
∂σ

= Sa − ∂δ1
∂σ

, where ∂δ1
∂σ

expresses the change, along the
shock, of the divergence/convergence angle in the pre-shock
flow, so that,

�2 = 2 sin2 δ

sin(2θ) sin(θ − δ)

[
Sa − ∂δ1

∂σ

]
(46)

This equation gives the vorticity behind a shock that has
a geometric curvature, Sa , in the flow plane and a pre-shock,
shock-wise, change of divergence, ∂δ1

∂σ
. Otherwise, for this

equation, the pre-shock flow is uniform, i.e., there is no pres-
sure gradient, no streamline curvature and no vorticity in the
pre-shock flow. It now remains to show what the effect of Sb
is when there is a change in pre-shock divergence, ∂δ1

∂σ
, along

the shock. Figure 5 shows the flow plane trace of a curved
axial shock element a−a (red) on a symmetry axis x− x . At
the point s, on the shock element, the shock makes an angle
θ1 with x − x . The transverse radius of shock curvature is Rb

and the pre-shock flow approaches at an angle δ1 so that the
angle between the shock and the pre-shockflow is θ1−δ1. The
infinitesimal shock segment dσ (blue) subtends an angle dδ1
at the axis. From geometry: dδ1 = dσ sin (θ1 − δ1) /r and
tan θ1 = Rb/w. The law of sines, sin(π − θ1)/r = sin δ1/w,
is used to eliminate the lengths r and w to give,

∂δ1

∂σ
= − sin δ1 sin (θ1 − δ1)

cos θ1
Sb (47)

Equation (46) can then be written,

�2 = 2 sin2 δ

sin(2θ) sin(θ − δ)

[
Sa + sin δ1 sin (θ1 − δ1)

cos θ1
Sb

]

(48)

Fig. 5 Diverging flow in front
of curved, axial shock element.
Flow divergence angle is δ1.
Geometric shock angle is θ1. Rb
is transverse shock radius of
curvature
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The coefficients multiplying Sa and Sb, respectively, are sim-
plified versions of the influence coefficients Ia and Ib derived
inAppendix 3. The purely geometric relation between Sb and
∂δ1
∂σ

in (47), shows that Sb is a measure of the vorticity gen-

erating term ∂δ1
∂σ

and it explains the appearance of Sb, in the
influence coefficient equation for vorticity, when the flow is
diverging/converging in front of the shock. Note that if the
pre-shock flow is divergent then it would, most likely, have
a pressure gradient. This gradient has its own effect on the
post-shock vorticity through the influence coefficient Ip in
Appendix 3. The pressure gradient effect is not included in
(43)–(46), (48). The same is true for any pre-shock flow cur-
vature and vorticity. For a Mach wave and a normal shock,
for which δ = 0, (46) shows that no vorticity can be produced
by the curvature of either one of these waves. The level of
generality in (46) is sufficient for the study of RR andMR in a
uniform and parallel freestream flow. If, however, the vortic-
ity value is desired behind the reflected shock (in region 3),
then a more general expression is required which includes
the pre-shock pressure gradient, curvature, divergence and
vorticity. This is so also if the freestream is non-uniform.

The derivation of the equation for vorticity, behind a
curved shock, in non-uniform pre-shock flow (including
divergence), is contained in Appendix 3.

3 Application to three-dimensional flows and to
unsteady flows

A flow plane is defined as containing the pre- and post-shock
flow vectors. A smooth three-dimensional shock has to have
two such vectors at every point on its surface and it would
therefore have a flow plane. The curvature of the trace that
the shockmakes in the flow plane is Sa . A flow-normal plane,
that is normal to the flow plane as well as the shock, has a
shock tracewith a curvature Sb. Thus there are, generally, two
definable shock curvatures, Sa and Sb, of the traces that the
3D shock makes in the two planes and there are no apparent
restrictions on the dimensionality of the shock. TheRankine–
Hugoniot equations apply and the shock appears to be locally
two-dimensional. This makes it tempting to assert that CST,
as derived, is applicable to three-dimensional shock waves.
However, as pointed out by G. Emanuel (private communi-
cation), the Euler equations (10)–(15) apply on an osculating
plane that contains the curved post-shock streamline and this
osculating plane, generally, veers away from the flow plane
in the post-shock flow so that the CST applies only when
the flow plane and the osculating plane are co-planar, i.e.,
the angle, ω, between them is zero. This angle is given by
tanω = −(∂p/∂b)/(∂p/∂s) [5], where the two partial deriv-
atives are of the pressure gradients in the flow plane and the
flow-normal plane. The flow-normal pressure gradient is zero

when the shock-trace curvature in the flow-normal plane is
constant, i.e., ∂Sb/∂b = 0. This occurs at a meridional plane
of symmetry in three-dimensional flow, if such a symme-
try plane exists. For example, a shape with an elliptic cross
section, at zero angle of attack, produces a surrounding flow
that has two orthogonal, meridional planes of symmetry, both
planes containing the symmetry axis. In this case, the flow
plane, the osculating plane and a symmetry plane are co-
planar and the CST applies wherever the shock intersects
these planes. Thus, there are such lines of symmetry, on three-
dimensional shocks, where CST does apply. At other points,
on the shock, it does not.

The Euler equations (10)–(15), as used in the derivations
of the CST, do not contain any time-dependent terms so that
CST does not apply to unsteady flows, in general. However,
when the flows are self-similar4 in the (S, N ) coordinate
system,where S = s/t and N = n/t , and theEuler equations
are written in the (S, N ) system so that they do not contain t
explicitly, then CST applies. Such self-similar flows occur, in
“pseudo-steady” flow, when a flat shock moves over a plane
wedge or over a cone or when a flat shock turns around a
sharp corner.

4 Conclusions

The CST relates shock curvatures and flow divergence/
convergence, in both planar and axial flow, to vorticity
and to pressure gradient and streamline curvature at the
shock surface. The theory allows non-uniform flow both
up- and downstream of a doubly curved shock surface. The
effect of pre-shock flow divergence/convergence, on vortic-
ity generation, is related to the transverse shock curvature. A
novel derivation for post-shock vorticity includes effects of
pre-shock flow non-uniformities, including flow divergence.
Expressions for flow gradients are made explicit in an influ-
ence coefficient form.

Acknowledgments Many times, the author was pointed in the right
direction by the insights of George Emanuel. George Emanuel,
Yancheng You and Weiqiang Han re-derived and verified the coeffi-
cients in Appendices 1 and 2—many thanks.

Appendix 1. Derivation of the curved shock equation
(32)

For nomenclature and methodology refer to Sect. 2.

4 Also known as “pseudo-stationary” or “pseudo-steady.”
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The pressure ratio across an oblique shock is given by,

p2
p1

= 2γ

γ + 1
M2

1 sin
2θ − γ − 1

γ + 1

p2
p1

= 2γ

γ + 1

ρ1V 2
1

γ p1
sin2θ − γ − 1

γ + 1

(γ + 1) p2 = 2ρ1V
2
1 sin

2θ − (γ − 1) p1

Taking derivatives of both sideswith respect to distance along
the shock, σ ,

(γ + 1)
∂p2
∂σ

= 2ρ1V
2
1

∂sin2θ

∂σ
+ 2ρ1sin

2θ
∂V 2

1

∂σ

+2V 2
1 sin

2θ
∂ρ1

∂σ
− (γ − 1)

∂p1
∂σ

Changing σ derivatives to s and n derivatives,

(γ + 1)

[
∂p2
∂s

cos (θ − δ) + ∂p2
∂n

sin (θ − δ)

]

= 4sinθcosθρ1V
2
1

∂θ

∂σ

+ 4V1ρ1sin
2θ

(
∂V1
∂s

cosθ + ∂V1
∂n

sinθ

)

+ 2V 2
1 sin

2θ

(
∂ρ1

∂s
cosθ + ∂ρ1

∂n
sinθ

)

− (γ − 1)

(
∂p1
∂s

cosθ + ∂p1
∂n

sinθ

)
(49)

Derivatives ∂θ
∂σ

, ∂•
∂s and ∂•

∂n can be expressed as:

∂p1
∂s

= P1ρ1V
2
1

∂p2
∂s

= P2ρ2V
2
2

∂p1
∂n

= −D1ρ1V
2
1

∂p2
∂n

= −D2ρ2V
2
2

∂V1
∂s

= −P1V1
∂V1
∂n

= V1 (D1 − �1)

∂ρ1

∂s
= ρ1M

2
1 P1

∂ρ1

∂n
= −ρ1M

2
1

[
D1 + (γ − 1) �1

]

∂θ

∂σ
= Sa +

(
M2

1 − 1
)
sinθ P1 − cosθD1 + sinθsinδ1

y

With these substitutions (49) becomes,

(γ + 1)
[
P2ρ2V

2
2 cos (θ − δ) − D2ρ2V

2
2 sin (θ − δ)

]

= 4sinθcosθρ1V
2
1

[
Sa +

(
M2

1 − 1
)
sinθ P1

− cosθD1 + sinθsinδ1
y

]

+ 4V1ρ1sin
2θ [−P1V1cosθ + V1 (D1 − �1) sinθ ]

+ 2V 2
1 sin

2θ
{
ρ1M

2
1 P1cosθ

− ρ1M
2
1

[
D1 + (γ − 1) �1

]
sinθ

}

− (γ − 1)
(
P1ρ1V

2
1 cosθ − D1ρ1V

2
1 sinθ

)
(50)

Replacing 1
y by − Sb

cosθ1

(
1
y = − Sb

cosθ1

)
, (50) becomes,

(γ + 1)
[
P2ρ2V

2
2 cos (θ − δ) − D2ρ2V

2
2 sin (θ − δ)

]

= 4sinθcosθρ1V
2
1

[
Sa +

(
M2

1 − 1
)
sinθ P1

− cosθD1 − Sbsinθsinδ1
cosθ1

]

+ 4V1ρ1sin
2θ [−P1V1cosθ + V1 (D1 − �1) sinθ ]

+ 2V 2
1 sin

2θ
{
ρ1M

2
1 P1cosθ

− ρ1M
2
1

[
D1 + (γ − 1) �1

]
sinθ

}

− (γ − 1)
(
P1ρ1V

2
1 cosθ − D1ρ1V

2
1 sinθ

)

Collecting terms,

[
−4ρ1V

2
1

(
M2

1 − 1
)
sin2θcosθ + 4ρ1V

2
1 sin

2θcosθ

− 2ρ1V
2
1 M

2
1 sin

2θcosθ + (γ − 1) ρ1V
2
1 cosθ

]
P1

+
[
4ρ1V

2
1 sinθcos

2θ − 4ρ1V
2
1 sin

3θ

+ 2ρ1V
2
1 M

2
1 sin

3θ − (γ − 1) ρ1V
2
1 sinθ

]
D1

+
[
4ρ1V

2
1 sin

3θ + 2 (γ − 1) ρ1V
2
1 M

2
1 sin

3θ
]
�1

=
[
− (γ + 1) ρ2V

2
2 cos (θ − δ)

]
P2

+
[
(γ + 1) ρ2V

2
2 sin (θ − δ)

]
D2

+
(
4ρ1V

2
1 sinθcosθ

)
Sa

+
[
−4ρ1V 2

1 sin
2θcosθsinδ1

cosθ1

]
Sb

Dividing through by ρ1V 2
1 ,

[
−4

(
M2

1 − 1
)
sin2θcosθ + 4sin2θcosθ

− 2M2
1 sin

2θcosθ + (γ − 1) cosθ
]
P1

+
[
4sinθcos2θ−4sin3θ+2M2

1 sin
3θ−(γ −1) sinθ

]
D1

+
[
4sin3θ + 2 (γ − 1) M2

1 sin
3θ

]
�1

=
[
− (γ + 1)

sinθcosθ

sin (θ − δ)

]
P2

+
[
(γ + 1)

sinθcosθ

cos (θ − δ)

]
D2 + (4sinθcosθ) Sa
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+
[
−4sin2θcosθsinδ1

cosθ1

]
Sb

Thus, the curved shock equation (32),

A1P1 + B1D1 + E1�1 = A2P2 + B2D2 + CSa + GSb

has the coefficients A1, B1, E1, A2, B2,C , and G, given by,

A1 =
4

(
M2
1 −1

)
sin2θcosθ−4sin2θcosθ+2M2

1 sin
2θcosθ−(γ −1) cosθ

γ +1

=
2cosθ

[(
3M2

1 − 4
)
sin2θ − (γ − 1) /2

]

γ + 1

B1 = −4sinθcos2θ + 4sin3θ − 2M2
1 sin

3θ + (γ − 1) sinθ

γ + 1

=
4sinθ

(
sin2θ − 1

)
+ 4sin3θ − 2M2

1 sin
3θ + (γ − 1) sinθ

γ + 1

=
2sinθ

[
(γ − 5) /2 +

(
4 − M2

1

)
sin2θ

]

γ + 1

E1 = −4sin3θ − 2 (γ − 1) M2
1 sin

3θ

γ + 1

= −
2sin3θ

[
2 + (γ − 1) M2

1

]

γ + 1

A2 = sinθcosθ

sin (θ − δ)

B2 = − sinθcosθ

cos (θ − δ)

C = − 4sinθcosθ

γ + 1

G = 4sin2θcosθsinδ1
(γ + 1) cosθ1

These coefficients can be further simplified by dividing all
of them through by sinθ .

Appendix 2. Derivation of the curved shock equation
(33)

Starting from (26), (27) and (28),

p1 + ρ1V
2
1 sin

2θ = p2 + ρ2V
2
2 sin

2 (θ − δ)

p1− p2 = ρ1V
2
1 sinθcosθ tan (θ−δ)−ρ1V

2
1 sin

2θ

Taking derivatives of both sides with respect to σ ,

∂p1
∂σ

− ∂p2
∂σ

= ρ1V
2
1 sinθcosθ

∂ tan (θ − δ)

∂σ

+ ρ1V
2
1 sinθ tan (θ − δ)

∂cosθ

∂σ

+ ρ1V
2
1 cosθ tan (θ − δ)

∂sinθ

∂σ

+ ρ1sinθcosθ tan (θ − δ)
∂V 2

1

∂σ

+ V 2
1 sinθcosθ tan (θ − δ)

∂ρ1

∂σ

−ρ1V
2
1

∂sin2θ

∂σ

− ρ1sin
2θ

∂V 2
1

∂σ
− V 2

1 sin
2θ

∂ρ1

∂σ
Changing to s and n derivatives,

(
∂p1
∂s

cosθ + ∂p1
∂n

sinθ

)

−
[
∂p2
∂s

cos (θ − δ) + ∂p2
∂n

sin (θ − δ)

]

= ρ1V
2
1 sinθcosθ

1

cos2 (θ − δ)

∂ (θ − δ)

∂σ

− ρ1V
2
1 sin

2θ tan (θ − δ)
∂θ

∂σ

+ ρ1V
2
1 cos

2θ tan (θ − δ)
∂θ

∂σ

+ 2ρ1V1sinθcosθ tan (θ − δ)

(
∂V1
∂s

cosθ + ∂V1
∂n

sinθ

)

+ V 2
1 sinθcosθ tan (θ − δ)

(
∂ρ1

∂s
cosθ + ∂ρ1

∂n
sinθ

)

−2sinθcosθρ1V
2
1

∂θ

∂σ

−2ρ1V1sin
2θ

(
∂V1
∂s

cosθ + ∂V1
∂n

sinθ

)

−V 2
1 sin

2θ

(
∂ρ1

∂s
cosθ + ∂ρ1

∂n
sinθ

)
(51)

Derivatives ∂θ
∂σ

,
∂(θ−δ)

∂σ
, ∂•

∂s and ∂•
∂n can be expressed as,

∂p1
∂s

= P1ρ1V
2
1

∂p2
∂s

= P2ρ2V
2
2

∂p1
∂n

= −D1ρ1V
2
1

∂p2
∂n

= −D2ρ2V
2
2

∂V1
∂s

= −P1V1
∂V1
∂n

= V1 (D1 − �1)

∂ρ1

∂s
= ρ1M

2
1 P1

∂ρ1

∂n
= −ρ1M

2
1

[
D1 + (γ − 1) �1

]

∂θ

∂σ
= Sa +

(
M2

1 − 1
)
sinθ P1 − cosθD1 + sinθsinδ1

y
∂ (θ−δ)

∂σ
= Sa+

(
M2

2 −1
)
sin (θ−δ) P2−cos (θ − δ) D2

+ sin (θ − δ) sinδ2
y

So (51) becomes,

(
ρ1V

2
1 P1cosθ − ρ1V

2
1 D1sinθ

)
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−
[
ρ2V

2
2 P2cos (θ − δ) − ρ2V

2
2 D2sin (θ − δ)

]

= ρ1V 2
1 sinθcosθ

cos2 (θ − δ)

[
Sa +

(
M2

2 − 1
)
sin (θ − δ) P2

−cos (θ − δ) D2 + sin (θ − δ) sinδ2
y

]

+
[
ρ1V

2
1 cos

2θ tan (θ − δ) − ρ1V
2
1 sin

2θ tan (θ − δ)

−2ρ1V
2
1 sinθcosθ

] [
Sa +

(
M2

1 − 1
)
sinθ P1

−cosθD1 + sinθsinδ1
y

]

+
[
2ρ1V1sinθcosθ tan (θ − δ) − 2ρ1V1sin

2θ
]

× [−P1V1cosθ + V1 (D1 − �1) sinθ ]

+
[
V 2
1 sinθcosθ tan (θ − δ) − V 2

1 sin
2θ

]

×
{
ρ1M

2
1 P1cosθ − ρ1M

2
1

[
D1 + (γ − 1) �1

]
sinθ

}

(52)

Replacing 1
y by − Sb

cosθ1
, (52) becomes,

[
sinθcosθ

sin (θ − δ)
P2 − sinθcosθ

cos (θ − δ)
D2

]

= sinθcosθ

cos2 (θ − δ)

[
Sa + (

M2
2 − 1

)
sin (θ − δ) P2

−cos (θ − δ) D2 − Sbsin (θ − δ) sinδ2
cosθ1

]

+ [
cos2θ tan (θ − δ) − sin2θ tan (θ − δ) − 2sinθcosθ

]

×
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M2
1 − 1

)
sinθ P1 − cosθD1 − Sbsinθsinδ1

cosθ1

]

+ [
2sinθcosθ tan (θ − δ) − 2sin2θ

]

× [−P1cosθ + (D1 − �1) sinθ ]

+ [
sinθcosθ tan (θ − δ) − sin2θ
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M2

1 P1cosθ

−M2
1

[
D1 + (γ − 1) �1

]
sinθ

}

Collecting terms,
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)
sin (θ − δ)

]
P2

+ [−2sinθcosθ ] D2

+
[

sinθcosθ

cos (θ − δ)
+ cos2θsin (θ − δ) − sin2θsin (θ − δ)

−2sinθcosθcos (θ − δ)] Sa

+
{
− sinθcosθ

cos (θ − δ)

sin (θ − δ) sinδ2
cosθ1

− sinθsinδ1
cosθ1

[
cos2θsin (θ − δ) − sin2θsin (θ − δ)

−2sinθcosθcos (θ − δ)

]}
Sb

The curved shock equation (33),

A′
1P1 + B ′

1D1 + E ′
1�1 = A′

2P2 + B ′
2D2 + C ′Sa + G ′Sb

where the coefficients A′
1, B

′
1, E

′
1, A

′
2, B

′
2,C

′,G ′ are given
by,

A′
1 = cosθcos (θ − δ) −

(
M2

1 − 1
)
sinθ

[
cos2θsin (θ − δ)

−sin2θsin (θ − δ) − 2sinθcosθcos (θ − δ)
]

+ cosθ
[
2sinθcosθsin (θ − δ) − 2sin2θcos (θ − δ)

]

− M2
1 cosθ

[
sinθcosθsin (θ − δ) − sin2θcos (θ − δ)

]

= cosθcos (θ − δ) +
(
M2

1 − 1
)
sinθsin (θ + δ)

+ M2
1 sinθcosθsinδ − 2sinθcosθsinδ

= cosθ (cosθcosδ + sinθsinδ)

+
(
M2

1 − 1
)
sinθ (sinθcosδ + sinδcosθ)

+ M2
1 sinθcosθsinδ − 2sinθcosθsinδ

= 2M2
1 sinθcosθsinδ − 2sinθcosθsinδ

+ M2
1 sin

2θcosδ + cos2θcosδ − cosδsin2θ

=
(
M2

1 − 1
)
sin2θsinδ +

(
M2

1 − 1
)
sin2θcosδ

+
(
M2

1 − 1
)
cos2θcosδ −

(
M2

1 − 1
)
cos2θcosδ

+ cos2θcosδ

= M2
1 cos

2θcosδ −
(
M2

1 − 1
)
cos (2θ + δ)

B ′
1 = −sinθcos (θ − δ) + cosθ

[
cos2θsin (θ − δ)
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−sin2θsin (θ − δ) − 2sinθcosθcos (θ − δ)
]

−sinθ
[
2sinθcosθsin (θ − δ) − 2sin2θcos (θ − δ)

]

+M2
1 sinθ

[
sinθcosθsin (θ−δ) − sin2θcos (θ−δ)

]

= −sinθcos (θ − δ) − cosθsin (θ + δ)

+ 2sin2θsinδ − M2
1 sin

2θsinδ

= −sin (2θ + δ) − M2
1 sin

2θsinδ

E ′
1 = sinθ

[
2sinθcosθsin (θ − δ) − 2sin2θcos (θ − δ)

]

+ (γ − 1) M2
1 sinθ [sinθcosθsin (θ − δ)

− sin2θcos (θ − δ)
]

= − [
2 + (γ − 1) M2

1

]
sinδsin2θ

A′
2 = sinθcosθcos (θ − δ)

sin (θ − δ)
+ sinθcosθ

cos (θ − δ)

(
M2

2 − 1
)
sin (θ − δ)

= sinθcosθcos2 (θ − δ) + sinθcosθ
(
M2

2 − 1
)
sin2 (θ − δ)

sin (θ − δ) cos (θ − δ)

=
[
1 + (

M2
2 − 2

)
sin2 (θ − δ)

]
sinθcosθ

sin (θ − δ) cos (θ − δ)

B ′
2 = −2sinθcosθ = −sin (2θ)

C ′ = sinθcosθ

cos (θ − δ)
+ cos2θsin (θ − δ) − sin2θsin (θ − δ)

−2sinθcosθcos (θ − δ)

= sinθcosθ+cos2θsin (θ−δ) cos (θ−δ)−sin2θcos2 (θ−δ)

cos (θ − δ)

= sinθcosθ − sin (θ + δ) cos (θ − δ)

cos (θ − δ)

= −sin (2δ)

2cos (θ − δ)

G ′ = − sinθcosθ

cos (θ − δ)

sin (θ − δ) sinδ2
cosθ1

− sinθsinδ1
cosθ1

[
cos2θsin (θ − δ) − sin2θsin (θ − δ)

− 2sinθcosθcos (θ − δ)]

= − sinθcosθ tan (θ − δ) sinδ2
cosθ1

+ sin (θ + δ) sinθsinδ1
cosθ1

= − sinθcosθ tan (θ − δ) sinδ2 − sin (θ + δ) sinθsinδ1
cosθ1

Appendix 3. Derivation of the equation for vorticity
behind a curved shock

Although the effect of pre-shock vorticity on the post-shock
flow curvature and pressure gradient is included in the curved
shock equations (32, 33), the post-shock vorticity does not
appear explicitly. For example, when applying CST to RR
and MR, the post-shock vorticity, in region (2), behind the
incident shock, is required as input to the curvature calcula-

tions of the reflected shock when a curved incident shock has
created vorticity in front of the reflected shock.

The vorticity behind a curved shock, as given by Truesdell
[28], and more recently by Emanuel [4] is,

ω2 = V1
ρ2

ρ1

(
1 − ρ1

ρ2

)2

cos θ × ∂θ

∂σ
(53)

The derivation of this equation uses the Crocco rela-
tion between vorticity and entropy and assumes a uniform
upstream flow. The normalized version of (53) is,

�2 = ω2

V2
= V1

V2

ρ2

ρ1

(
1 − ρ1

ρ2

)2

cos θ × ∂θ

∂σ
(54)

Equation (54) can be further simplified using the oblique
shock relations:

�2 = 2 sin2 δ

sin(2θ) sin(θ − δ)

∂θ

∂σ
(55)

This equation gives the normalized vorticity behind an acute
or obtuse shock with aerodynamic curvature ∂θ

∂σ
when the

upstream flow is uniform and irrotational. The aerodynamic
curvature consists of the geometric curvature and the pre-
shock flow divergence/convergence according to ∂θ

∂σ
= ∂θ1

∂σ
−

∂δ1
∂σ

.
We seek an expression for vorticity behind adoubly curved

shock for a shock that faces a flow that is curved, has a
pressure gradient, is vorticial and is converging or diverg-
ing towards or away from the line of symmetry—altogether
a very high degree of generality. As for the previous deriva-
tions, the flow is steady and of a calorically and thermally
perfect gas. Results apply directly to flows that possess axial
and planar symmetry and with some considerations of sym-
metry also to curved shock elements in three-dimensional
flow. As for P2 and D2 derivations, we derive the rational
as well as the influence coefficient forms of the vorticity
equation. The derivation is based on the shock-tangential
momentum equation, the Euler equations and the definition
of vorticity for the upstream (subscript 1) and downstream
(subscript 2) flows. The following Euler relations are used
to eliminate derivatives of velocity in favour of expressions
containing streamwise pressure gradient, streamline curva-
ture and normalized vorticity,

1

V1

(
∂V

∂s

)

1
= −P1

1

V1

(
∂V

∂n

)

1
= D1 − �1

1

V2

(
∂V

∂s

)

2
= −P2

1

V2

(
∂V

∂n

)

2
= D2 − �2

(56)

The geometric shock angle is θ1 = θ + δ1. Taking deriv-
atives of θ1 with respect to σ gives the geometric shock
curvature in the flow plane, Sa ,
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Sa = ∂θ1

∂σ
= ∂θ

∂σ
+ ∂δ1

∂σ
(57)

This can be written,

Sa = ∂θ

∂σ
+ cos θ

∂δ1

∂s
+ sin θ

∂δ1

∂n
(58)

But

∂δ1

∂s
= D1 and

∂δ1

∂n
= −

(
M2

1 − 1
)
P1 − sin δ1/y (59)

So that,

∂θ

∂σ
= Sa +

(
M2

1 − 1
)
sin θ P1 − cos θD1 + sin θ sin δ1/y

(60)

Similarly, starting from θ − δ = θ1 − δ2 gives,

∂ (θ−δ)

∂σ
= Sa+

(
M2

2 − 1
)
sin (θ−δ) P2−cos (θ−δ) D2

+ sin (θ − δ) sin δ2/y (61)

In these equations δ1 and δ2 are the geometric flow incli-
nations in front of and behind the shock. δ = δ2 − δ1 is the
flow deflection through the shock and θ is the correspond-
ing aerodynamic shock angle. θ1 is the geometric (physical)
shock inclination.All inclinations aremeasured from the axis
of symmetry, in the flow plane. For axial flow, y is the per-
pendicular distance from the shock to the axis of symmetry
or, more generally, the radius of curvature of the shock trace
in the transverse plane. For planar flow y → ∞. Equations
(11) and (15) are needed in the derivation of the vorticity
equation. The derivation follows.

The momentum equation tangential to the shock is,

V1 cos θ = V2 cos (θ − δ). (62)

Taking derivatives of both sides of this equation with
respect to the distance σ along the shock gives,

V1
∂ cos θ

∂σ
+ cos θ

∂V1
∂σ

= V2
∂ cos (θ − δ)

∂σ
+ cos (θ − δ)

∂V2
∂σ

Dividing through by V1 and using equations (56) and (59)
gives,

sin θ
∂θ

∂σ
− cos θ

[
cos θ

1

V1

(
∂V

∂s

)

1
+ sin θ

1

V1

(
∂V

∂n

)

1

]

= V2
V1

[
sin (θ − δ)

∂ (θ − δ)

∂σ

]

− cos (θ − δ)
V2
V1

[
cos (θ − δ)

1

V2

(
∂V

∂s

)

2

+ sin (θ − δ)
1

V2

(
∂V

∂n

)

2

]
(63)

Using (11) and (15) to replace the velocity and angle deriv-
atives and replacing V2/V1 by cos θ/ cos (θ − δ) gives,

sin θ
[
Sa +

(
M2

1 − 1
)
sin θ P1 − cos θD1 + sin θ sin δ1/y

]

+ cos2 θ P1 − cos θ sin θ {D1 − �1}
= cos θ tan (θ − δ)

[
Sa +

(
M2

2 − 1
)
sin (θ − δ) P2

− cos (θ − δ) D2 + sin (θ − δ) sin δ2/y
]

− cos θ [− cos (θ − δ) P2 + sin (θ − δ) {D2 − �2}]
(64)

Dividing through by cos θ and collecting coefficients of
the physical variables P1, D1 etc. results in the vorticity equa-
tion,

A′′
1P1+B ′′

1 D1+E ′′
1�1 = A′′

2P2+B ′′
2 D2+E ′′

2�2 + C ′′Sa+G ′′Sb

(65)

where,

A′′
1 =

(
M2

1 − 1
)
tan θ sin θ + cos θ

B ′′
1 = −2 sin θ

�1 : E ′′
1 = sin θ

A′′
2 =

(
M2

2 − 1
)
tan (θ − δ) sin (θ − δ) + cos (θ − δ)

B ′′
2 = −2 sin (θ − δ)

�2 : E ′′
2 = sin (θ − δ)

C ′′ = tan (θ − δ) − tan θ

G ′′ = −F ′′/ cos (θ + δ1)

F ′′ = tan (θ − δ) sin (θ − δ) sin δ2 − sin θ tan θ sin δ1

(66)

Equation (65) can now be written as,

L ′′ = A′′
2P2 + B ′′

2 D2 + E ′′
2�2 + C ′′Sa + G ′′Sb (67)

or,

L ′′ = A′′
2P2 + B ′′

2 D2 + E ′′
2�2 + C ′′Sa + F ′′/y (68)

where,

L ′′ = A′′
1P1 + B ′′

1 D1 + E ′′
1�1 (69)

Either one of the equations (67) or (68) can be used
to solve for the post-shock vorticity, �2, in terms of the
other variables. The two equations differ in their last terms
depending on whether the transverse curvature of the shock
is specified by Sb or y—a choice determined by the problem
at hand. Sb and y are themselves interchangeable through
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Sb = − cos (θ + δ1) /y. Choosing (67) and solving (65) for
�2 gives the desired expression for the downstream vorticity,

�2 = [
L ′′ − (

A′′
2P2 + B ′′

2 D2 + C ′′Sa + G ′′Sb
)]

/E ′′
2

(70)

This is the generalized vorticity equation in a rational form
for�2, the normalized vorticity behind a curved shock facing
non-uniform, divergent flow. Together with equations (39), it
forms three equations for the three unknowns P2, D2 and �2

so as to completely define the non-uniform post-shock flow.
For a uniform upstream, (70) reduces to,

�2 =
[
C ′′

E ′′
2

+ [BC]

[AB]

A′′
2

E ′′
2

− [AC]

[AB]

B ′′
2

E ′′
2

]
Sa (71)

The coefficient multiplying Sa is identical to the coef-
ficient of Sa = ∂θ/∂σ in (55). Fortunately P2 and D2

are decoupled from �2, leading to explicit solutions for all
unknowns. P2 and D2, appearing in the equations (65) and
(70), are found from the two curved shock equations (37) and
(38) which are repeated here:

P2 = B2
(
C ′Sa + G ′Sb − L ′) − B ′

2 (CSa + GSb − L)

A2B ′
2 − A′

2B2

D2 = − A2
(
C ′Sa + G ′Sb − L ′) − A′

2 (CSa + GSb − L)

A2B ′
2 − A′

2B2

(72)

where the L-terms above are given by,

L = A1P1 + B1D1 + E1�1

L ′ = A′
1P1 + B ′

1D1 + E ′
1�1 (73)

Note that L and L ′ contain the upstream gradients and that
G and G ′ contain the upstream flow inclination δ1. Substi-
tuting P2 and D2 from (72) into (70) and collecting terms
of the upstream gradients and the shock curvatures gives the
influence coefficient form of the vorticity equation (70),

�2 = Ip P1 + Id D1 + Ig�1 + Ia Sa + IbSb (74)

where the I -coefficients, each multiplying their respective
variables, appear in the full equation for �2 as shown below,

�2 = {
[AB] A′′

1 + (
B2A

′
1 − B ′

2A1
)
A′′
2

− (
A2A

′
1 − A′

2A1
)
B ′′
2

}
/
{
[AB] E ′′

2

}
P1

+ {
[AB] B ′′

1 + (
B2B

′
1 − B ′

2B1
)
A′′
2

− (
A2B

′
1 − A′

2B1
)
B ′′
2

}
/
{
[AB] E ′′

2

}
D1

+ {
[AB] E ′′

1 + (
B2E

′
1 − B ′

2E1
)
A′′
2

− (
A2E

′
1 − A′

2E1
)
B ′′
2

}
/
{
[AB] E ′′

2

}
�1

− {
[AB]C ′′ + (

B2C
′ − B ′

2C
)
A′′
2

− (
A2C

′ − A′
2C

)
B ′′
2

}
/
{
[AB] E ′′

2

}
Sa

− {
[AB]G ′′ + (

B2G
′ − B ′

2G
)
A′′
2

− (
A2G

′ − A′
2G

)
B ′′
2

}
/
{
[AB] E ′′

2

}
Sb (75)

The unprimed and single-primed coefficients, A . . .G, are
listed as equations (34, 35); the double-primed are in (66).
Equation (75) shows clearly what the role is of each upstream
non-uniformity P1, D1 and �1 and of the shock curvatures
Sa and Sb in determining the downstream vorticity, �2. Note
that the above derivation for vorticity does not need Crocco’s
thermodynamic relation between vorticity and entropy gra-
dient, and that the resulting equations account for upstream
flow non-uniformity and vorticity as well as flow divergence.
Derivation of the vorticity equation parallels those for the
pressure gradient and streamline curvature but it is quite a
bit simpler. The use of j to denote planar or axial symme-
try has been dropped since the equations are uniformly valid
for both geometries. For axial flow, y is the radius of the
shock’s curvature in the transverse plane, so that the flow is
sensitive to dimensionality through the parameter y. In the
calculations for planar flow, y is set to a very large number.
Figure 6 depicts the influence coefficients for vorticity plot-
ted against shock angle. The blue curve shows the influence
of pre-shock pressure gradient P1, and we see that a posi-
tive pressure gradient causes a positive vorticity contribution
for an acute shock and a negative contribution for an obtuse
shock. The green curve shows that a positive pre-shock flow
curvature, D1 produces a positive contribution to vorticity.
The red curve is for the effect of pre-shock vorticity itself. At
the Mach wave limits, the influence coefficient has a value
of 1, predicting that vorticity passes through Mach waves
unchanged. All other curves are at zero so, at Mach wave
conditions, there is no vorticity production due to pre-shock
gradients or Mach wave curvatures. Stronger shocks tend to
amplify and reverse the direction of vorticity. The cyan curve
shows that positive vorticity is produced by a positive flow-
plane shock curvature, Sa , for an acute shock and negative
vorticity is produced by a positively curving obtuse shock.
The black curve is for the effect of the transverse shock cur-
vature, Sb, and it shows that the influence coefficient for the
transverse curvature is identically zero. This confirms the fact
that the shock produces vorticity only by its flow-plane cur-
vature and not by the transverse curvature so that flow behind
a conical shock is irrotational. For flows with no pre-shock
divergence/convergence, the IbSb term can be dropped from
equations (74) and (75) since Ib is identically zero.

The situation becomes complicated when the pre-shock
flow is diverging. The role played by flow divergence δ1 and
transverse shock curvature Sb is interactive and has to be
carefully considered. Fromwhatwe knowof the behaviour of
vorticity, it seems incorrect that post-shock vorticity is a func-

123



352 S. Mölder

Fig. 6 Influence coefficients
for vorticity behind the shock as
by (74)

Fig. 7 Plot of the Ib influence
coefficient against shock angle
with the pre-shock flow
divergence angle as parameter

tion of the cross-stream curvature, Sb, as evident from the last
term of (75). So we examine the influence coefficient for Sb,

Ib = − {
[AB]G ′′ + (

B2G
′ − B ′

2G
)
A′′
2

− (
A2G

′ − A′
2G

)
B ′′
2

}
/
{
[AB] E ′′

2

}
(76)

In particular its numerator,

Nb= [AB]G ′′+(
B2G

′ − B ′
2G

)
A′′
2−(

A2G
′ − A′

2G
)
B ′′
2

(77)

must be zero when δ1 is zero. The black curve in Fig. 6 shows
that it is indeed so.Note that δ1 is contained inG ′ andG ′′ only
and not inG. This requires that the part of Nb, not containing
δ1 equals zero, i.e.,

A′
2B

′′
2 − B ′

2A
′′
2 = 0 (78)

This has proven that there is no influence on post-shock
vorticity from Sb when there is no pre-shock divergence. The
proof of this is straightforward, with four lines of algebra, so

that, without loss of generality, the influence coefficient for
Sb can be simplified to,

Ib=− {
[AB]G ′′+(

B2G
′) A′′

2−(
A2G

′) B ′′
2

}
/
{
[AB] E ′′

2

}

(79)

Ib from this equation is plotted in Fig. 7, against the shock
angle, for Mach 3, with the divergence angle δ1 (◦) as para-
meter. Actually it is Ib × Sb × y because Ib by itself goes
to infinity when cos (θ + δ1) goes to zero and it gets hard to
display. Note that cos (θ + δ1) = −Sb × y. The green line is
for δ1 = 0, black curves are for positive δ1 increasing by 10◦
away from the zero line to 50. Red curves are for negative δ1
decreasing by 10◦ to −50◦.
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