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Abstract A new parallel, fully implicit, anisotropic block-
based adaptive mesh refinement (AMR) finite-volume
scheme is proposed, described and demonstrated for the
prediction of laminar, compressible, viscous flows associ-
ated with unsteady oblique shock reflection processes. The
proposed finite-volume method provides numerical solu-
tions to the Navier–Stokes equations governing the flow of
polytropic gases in an accurate and efficient manner on two-
dimensional, body-fitted, multi-block meshes consisting of
quadrilateral computational cells. The combination of the
anisotropic AMR and parallel implicit time-marching tech-
niques adopted is shown to readily facilitate the simulation of
challenging and complex shock interaction problems, as rep-
resented by the time-accurate predictions of unsteady oblique
shock reflection configurations with fully resolved internal
shock structures.
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1 Introduction and motivation

Over several decades, significant progress has been made
towards achieving high-fidelity numerical simulations of
physically complex fluid flows in an efficient and accurate
manner. Modern developments in the field of computational
fluid dynamics (CFD) and recent advancements in high-
performance parallel computing systems have collectively
enabled the solution of a wide range of fluid dynamics prob-
lems with fundamental as well as practical applications in
many areas of science and engineering. Nevertheless, the
high-fidelity prediction of compressible viscous flows con-
tinues to pose a considerable computational challenge as
the resources required to accurately resolve the features
of such detailed and, often, intricate flow problems can
be very large. In particular, the large disparity of physical
length scales commonly associatedwith unsteady high-speed
flows containing thermal and viscous boundary layers and/or
shock waves and their reflections has elicited the need for
researchers to devise improved numerical methods that can
effectively handle and accurately predict the complex and
rather elaborate structures of such flows. This continued
demand for more reliable and robust high-fidelity numeri-
cal methods that are capable of accurately and efficiently
treating unsteady compressible viscous flow problems with
shocks comprises the drivingmotivation behind this research.

The unsteady reflection of shock waves at oblique inci-
dence to a ramp is of concern here. For a planar shock wave
of strength Ms propagating in a gas and striking a rigid, non-
porous inclined surface at an angle of θw to the direction
of the flow field, a variety of multi-shock reflection con-
figurations can result that are pertinent to the validation of
the proposed parallel, fully implicit, anisotropic block-based
AMR finite-volume framework. A two-shock regular reflec-
tionpattern canoccurwhen the incident (Si ) and reflected (Sr)
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Fig. 1 Unsteady oblique shock reflection patterns arising from the interaction of a planar, rightward-moving, incident shock wave with a rigid,
non-porous, inclined wedge

shock waves are connected through a reflection point on the
surface of the wedge, as illustrated in Fig. 1a. Three- or four-
shockMach reflection configurations, presented in Fig. 1b, c,
respectively, can occur when the reflection point moves grad-
ually off and away from the surface of the wedge, becoming
a triple point that connects the incident and reflected shock
waves to an emerging shock wave known formally as the
Mach stem (Sm), and leaves behind it a slipstream that sepa-
rates two different regions of the flow. In general, for a given
value of Ms, a two-shock regular reflection pattern will occur
at large values of θw, whereas a more complex multi-shock
Mach reflection pattern will occur when θw is small.

The numerical simulation of two-dimensional, unsteady,
oblique shock wave reflection phenomena has a rather long
history going back more than thirty years. Early research
focused on the prediction of such flows using Godunov-type
finite-volume solution methods [1] for the Euler equations
governing inviscid compressible flows on simple uniform
Cartesian meshes. This early research includes the studies
of Colella and Glaz [2], Woodward and Colella [3] and
Glaz et al. [4,5]. Subsequent work by Colella and Glaz
[6] as well as Colella and Henderson [7] considered the
application of patch-based mesh adaptation techniques on a
Cartesianmeshwith localizedmesh refinement in designated
regions of the flow field. Shortly thereafter, other possi-
bly more general solution-directed adaptive mesh refinement
(AMR) schemes were proposed and developed by Fursenko,
Timofeev, Voinovich and co-researchers [8–12], Sun and
Takayama [13] and Henderson et al. [14] for compress-
ible, inviscid, unsteady flow applications dealing with shock
waves and their complex interactions.

More recently, the extension of upwind-based finite-
volume schemes with AMR to the solution of the Navier–
Stokes equations governing unsteady, compressible, viscous
flows with shocks has permitted researchers to examine the
significance ofmolecular transport properties on the behavior
of a range of simple and complex compressible flow phe-
nomena. For example, Colella and co-researchers [15,16],
Timofeev, Ofengeim, Voinovich and co-researchers [17–20],
aswell asHenderson and co-researchers [21,22] have all con-
sidered and/or proposed AMR schemes for the solution of
viscous flows associated with unsteady oblique reflections

of shock waves. Additionally, Graves et al. [23] have pro-
posed a Cartesian mesh AMR scheme for the solution of
the compressible Navier–Stokes equations with an embed-
ded boundary treatment.

In spite of these successes, the capabilities of AMR grid-
ding strategies have to date not permitted the high-fidelity,
fully resolved, numerical solution of viscous, unsteady flow
applications containing shock waves in which the shock
is fully resolved for a wide range of Reynolds numbers.
Apart from the numerical investigations of Henderson et
al. [24], as well as Ivanov and co-researchers [25,26], who
each used very fine, uniform computational meshes to obtain
fully resolved, unsteady and steady computations, respec-
tively, there is a scarcity of published numerical studies with
fully resolved internal shock structures. In turn, this has not
allowed a full evaluation of the effects of micro-scale mole-
cular transport on oblique reflection processes.

In the present study, the anisotropic block-based AMR
finite-volume scheme of Zhang and Groth [27] is extended
to solutions of two-dimensional, laminar, compressible, vis-
cous flows governed by the Navier–Stokes equations and
couples the spatial discretization scheme with a parallel,
fully implicit, time-marching scheme based on Newton’s
method [28–30]. The former mitigates the inherently large
computational memory and storage requirements associated
with the use of the very fine spatial resolution needed for
fully resolved viscous simulations of shocks, whereas the
latter provides unconditional stability of the algorithm and
the freedom to select the physical time step for unsteady
shock reflection problems based solely on a consideration of
solution accuracy, not stability constraints. Details of the pro-
posed parallel finite-volume AMR scheme are given and the
benefits, capabilities, and parallel performance of themethod
are demonstrated for unsteady oblique shock reflection prob-
lems in which the internal shock structure is fully resolved.

The structure of the remaining portions of the paper are
as follows. In Sect. 2, the governing conservation equations
for laminar, compressible, viscous, fluid flows are reviewed.
In Sect. 3, details of the proposed finite-volume spatial dis-
cretization method are given. This is followed in Sects. 4,
5, and 6 by descriptions of the anisotropic AMR scheme,
implicit time-marching scheme, and parallel implementation
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used herein, respectively. Numerical verification and valida-
tion of the computational framework is reported alongside
previously published experimental results in Sect. 7. Finally,
numerical solutions of fully resolved oblique shock reflec-
tion simulations are presented in Sect. 8. Section 9 provides
a brief summary of the findings from this study.

2 Governing conservation equations

A parallel implicit AMR finite-volume scheme is consid-
ered herein for the solution of the Navier–Stokes equations
governing two-dimensional, laminar, compressible, viscous,
unsteady, gaseous flows. As the influence of the unsteady
transition to turbulence and turbulent flow on the shock
reflection process, which should occur far from the vicin-
ity of the confluent shocks and slipstreams, is expected to be
minimal at most, the assumption of laminar flow is deemed
to be sufficient for the present simulations. The conservation
form of the Navier–Stokes equations can be expressed using
matrix-vector notation as

∂U
∂t

+ �∇· �H = 0, (1)

which, for a two-dimensional Cartesian coordinate system
(x, y), can be written as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= ∂Fv

∂x
+ ∂Gv

∂y
, (2)

where �H = (F−Fv,G−Gv) is the total solution flux dyad.
In Eqs. (1) and (2), the vector of conserved variables, U, the
inviscid flux vectors, F and G, and the viscous flux vectors,
Fv and Gv, are given by

U = [
ρ, ρu, ρv, ρE

]T
, (3)

F =
[
ρu, ρu2 + p, ρuv, ρu

(
E + p

ρ

)]T
, (4)

G =
[
ρv, ρuv, ρv2 + p, ρv

(
E + p

ρ

)]T
, (5)

Fv = [
0, τxx , τxy,−qx + uτxx + vτxy

]T
, (6)

Gv = [
0, τx y, τyy,−qy + uτxy + vτyy

]T
, (7)

respectively, and t is the physical time. The conserved solu-
tion variables are expressed in terms of the fluid density, ρ,
the x- and y-direction velocity components, u and v, respec-
tively, and the specific total energy, E = e + 1

2

(
u2 + v2

)
,

where e is the specific internal energy. The solution fluxes
involve the fluid pressure, p, the non-zero elements of the
viscous stress tensor, τxx , τyy and τxy , and the x- and y-
components of the heat flux vector, qx and qy , respectively.
The gas is assumed to behave as a polytropic gas satisfying

the ideal-gas equation of state p = ρRT , where R is the spe-
cific gas constant and T is the fluid temperature. The specific
internal energy and enthalpy in this case have the forms e =
cvT and h = cpT , where cv = R/(γ −1) and cp = γ R/(γ −
1) are specific heats at constant volume and pressure, respec-
tively, and γ = cp/cv is the ratio of specific heats. The
non-zero elements of the viscous stress tensor are given by

τxx = μ

(
4

3

∂u

∂x
− 2

3

∂v

∂y

)
, (8)

τyy = μ

(
4

3

∂v

∂y
− 2

3

∂u

∂x

)
, (9)

τxy = μ

(
∂u

∂y
+ ∂v

∂x

)
, (10)

where μ is the dynamic viscosity of the gas. The x- and y-
components of the heat flux vector, qx and qy , respectively,
are given by

qx = −κ
∂T

∂x
, qy = −κ

∂T

∂y
, (11)

where κ is the thermal conductivity coefficient for heat trans-
fer. Note that both the heat transfer by radiation and the
heat addition from the external surrounding environment are
ignored in this research. Expressions governing the molecu-
lar transport properties, including the dynamic viscosity and
thermal conductivity, for pure species and their mixtures fol-
low from the tabulated empirical database and corresponding
multi-component mixture formulations outlined by Gordon
et al. [31,32].

3 Finite-volume spatial discretization

The governing Navier–Stokes equations of Eqs. (1) and (2)
are in differential form.The cell-centered, finite-volume, spa-
tial discretization procedure utilized herein is applied to the
integral form of these equations, which can be obtained by
integrating over a two-dimensional control area, A, in (x, y)
space and applying the divergence theorem to a closed path,
Γ , surrounding this control volume. The following integral
form of Eq. (1) is then obtained:

d

dt

∫

A
U dA +

∮

Γ

�n · �H dΓ = 0, (12)

where �n is the outward unit vector that is normal to the closed
contour. Subsequent application of the finite-volume method
to Eq. (12) results in the following semi-discrete form of the
conservation equations for an arbitrary cell (i, j) of a two-
dimensional, multi-block mesh composed of quadrilateral
computational cells:
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dŪi j

dt
= − 1

Ai j

N f∑

k=1

(
�nk · �H	lk

)

i j
= Ri j (U), (13)

where Ū is the cell-averaged value of the conserved solution
vector given by

Ū = 1

A

∫

A
U dA. (14)

In Eq. (13), each quadrilateral cell has N f = 4 faces, 	l
is the length of the cell edge and R is the physical time
residual vector. Standard mid-point rule quadrature has been
used to evaluate the solution fluxes through each cell face
k. Limited piecewise linear reconstruction is applied within
each cell to ensure solution monotonicity near discontinu-
ities while maintaining second-order accuracy in smooth
regions of theflowfield. The slope limiter ofVenkatakrishnan
[33] is employed. The inviscid, or hyperbolic, components
of the numerical flux at cell interfaces are evaluated using
the approximate Riemann solver of Harten et al. [34] with
contributions from Einfeldt [35]. The viscous, or elliptic,
components of the numerical flux are calculated using a cen-
tral schemewith a diamond-path reconstruction technique for
determining the solution gradients, as described by Coirier
and Powell [36].

4 Anisotropic block-based AMR

Block-based AMRmethods have been developed previously
using both Cartesian and body-fitted, multi-block meshes for
fluid flows involving a wide variety of complicated physical
and chemical phenomena, as well as complex flow geome-
tries, by Berger and co-researchers [37–39], De Zeeuw and
Powell [40], Powell et al. [41], Quirk and Hanebutte [42], as
well as Groth et al. [43] and Groth and co-researchers [44–
48], amongst others. Despite the success of this previous
research, one major limitation of these isotropic AMR grid-
ding strategies has been the accurate and efficient treatment of
multi-scale anisotropic physics. Recently, Zhang and Groth
[27] proposed a treatment that addresses this important chal-
lenge by considering a parallel anisotropic block-basedAMR
method for solutions of a model linear advection–diffusion
equation as well as the fully non-linear Euler equations
governing two-dimensional, compressible, inviscid, gaseous
flows.

The finite-volume scheme outlined above is used in con-
junction with the anisotropic block-based AMR scheme of
Zhang and Groth [27], which has been extended in this
research to include applications to two-dimensional, lami-
nar, compressible, viscous flows governed by the Navier–
Stokes equations. Solution of the coupled non-linear ordinary

Fig. 2 Refinement and coarsening of an 8 × 8 cell block during i
anisotropic AMR in the ξ -direction, ii anisotropic AMR in the ζ -
direction and iii isotropic AMR

differential equations (ODEs) given by Eq. (13) yields
area-averaged solution quantities defined within quadrilat-
eral computational cells. In the proposed multi-block AMR
scheme, these cells are embedded in structured, body-fitted
grid blocks, and a flexible block-based hierarchical binary
tree data structure is used to facilitate automatic and local
solution-directed mesh adaptation of the individual grid
blocks. The refinement procedure can be performed indepen-
dently in each of the ξ and ζ local computational coordinate
directions for the body-fitted grid block or domain of inter-
est when dealing with strong anisotropic solution features.
In regions requiring increased mesh resolution, a single par-
ent block can be partitioned into two children blocks, with
each new child block having the same number of cells as its
parent block. The resolution in the coordinate direction of
refinement is thereby doubled, while remaining unchanged
in the other direction. Conversely, coarsening takes place
by combining two children blocks into one parent block.
This process is elucidated in Fig. 2, where the advantages
of anisotropic AMR become apparent, in comparison to a
traditional isotropic AMR approach, for dealing with flows
exhibiting large solution gradients in one direction but not
necessarily in the other. To ensure a smooth variation in the
overall solution, mesh refinement ratios are limited to 2:1
between adjacent grid blocks and the minimum mesh reso-
lution of the computational domain is limited to that of the
initial, i.e., coarsest, mesh.

At regular intervals during the computation, the coars-
ening and/or refinement of blocks within the flow field is
directed using multiple physics-based refinement criteria.
User-defined percentage thresholds are specified to refine
blocks with criteria above the refinement threshold and to
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coarsen blocks with criteria below the coarsening threshold.
This technique is implemented to treat flows with disparate
spatial and temporal scales and to properly detect important
flow features such as shock fronts, triple-shock confluence
and reflection points, contact surfaces, as well as both ther-
mal and viscous boundary and shear layers,while limiting the
number of necessary computational cells required to accu-
rately resolve these complex flow configurations. For any
given solution variable of interest, u, the direction-dependent
refinement criteria for anisotropic AMR are based on the
measures εξ = �∇u · 	X̃/|u| and εζ = �∇u · 	Ỹ/|u| where
	X̃ and 	Ỹ are the vector differences between the mid-
points of the cell faces in each of the logical coordinate
directions. These indicators provide a representativemeasure
of the total solution change across individual cells in each
coordinate direction and regulate mesh adaptation in regions
containing strong anisotropic characteristics of the flow. In
this research, the direction-dependent refinement criteria for
anisotropic AMRhave been specified using both the gradient
of density as well as the gradient of specific entropy, unless
stated otherwise, in an effort to ensure that the internal struc-
tures of shock waves present in the flow field are properly
resolved.

5 Implicit time-marching via Newton’s method

A fully implicit Newton–Krylov–Schwarz (NKS)method, as
developed by Groth and Northrup [28–30], is utilized to reli-
ably and efficiently integrate the semi-discrete form of the
system of the conservation equations given by Eq. (13). This
implicit time-marching scheme is particularly well suited
for obtaining highly resolved numerical solutions for cases
in which the stability limits of an explicit time-marching
method would likely result in severe limitations on the maxi-
mum allowable physical time step, as dictated by the smallest
cells in the mesh. When used in combination with the pre-
viously described anisotropic AMR technique, the scheme
provides significant computational savings for the calcula-
tion of fully resolved oblique shock reflection problems.

5.1 Steady-state computations

Steady-state solutions of Eq. (13) satisfy

R(U) = dU
dt

= 0, (15)

the solution ofwhich requires the solution of a large, coupled,
non-linear system of algebraic equations. Newton’s method
is used here to determine the solution of Eq. (15). Starting
with an initial estimate, U(0), successively improved esti-
mates of the solution at each iteration level, m, of Newton’s
method can be obtained by solving the linear system

(
∂R
∂U

)(m)

	U(m) = J(m)	U(m) = −R
(
U(m)

)
(16)

where J = ∂R/∂U is the Jacobian of the residual vector with
respect to the conserved solution vector. Improved approxi-
mations of the solution are then given by

U(m+1) = U(m) + 	U(m), (17)

and the iterative procedure is repeated until a desired reduc-
tion in an appropriate norm of the solution residual vector is
achieved, that is, until ||R(U(m))||2 < ε||R(U(0))||2, where ε

is some small convergence tolerance typically in the range of
ε ≈ 10−7−10−5 for the steady-state computations presented
herein.

Each iteration level in Newton’s method requires the solu-
tion of a large, sparse, and non-symmetric system of linear
equations given by Eq. (16). This system is of the gen-
eral form Jx = b, where x and b designate the solution
and residual vectors, respectively. To solve for such non-
symmetric linear systems, the present algorithm employs a
class of Krylov subspace iterative methods known as gen-
eralized minimum residual (GMRES) methods [49] with an
additive Schwarz global preconditioner. The application of
the GMRES method within Newton’s method results in an
overall solution algorithm that consists of a nested iterative
procedure: inner-loop iterations to determine a solution of
the linear system at each Newton step using the GMRES
method and outer-loop iterations to solve the non-linear prob-
lem using Newton’s method. For improved performance,
an inexact Newton method is adopted wherein the GMRES
method is only partially converged at each iteration level of
Newton’s method, i.e., the inner-loop iterations are deemed
completewhen ||R(m)+J(m)	U(m)||2 ≤ ζ ||R(m)||2,where ζ

is some small convergence tolerance (typically, ζ ≈ 0.01−0.5
herein).

5.2 Dual-time-stepping-like approach for time-accurate
computations

For the solution of time-dependent or unsteady problems,
such as those encountered in the study of oblique shock
reflections, the aforementioned implicit NKS method can be
extended by adopting a dual-time-stepping-like procedure
[30,50]. In the implicit dual-time-stepping method, a pseudo
time, τ , and pseudo time derivative of U are introduced,
resulting in a modified semi-discrete form of the governing
equations given by

dU
dτ

+ R∗(U) = 0, (18)

where the vector R∗(U) is the dual-time residual given by
R∗(U) = dU/dt + R(U). Steady-state solutions in pseudo
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time of Eq. (18) are sought by applying an unconditionally
stable implicit second-order backward differencing formula
(BDF2) to the temporal discretization of the physical time
derivative, yielding

R∗(U(n+1)) = 3U(n+1) − 4U(n) + U(n−1)

2	t

+ R
(
U(n+1)

)
= 0. (19)

Although numerous time-marching schemes are compatible
for use in a dual-time stepping approach, the BDF2 exhibits
favorable stability properties [50] and has been used quite
successfully to facilitate computations for a variety of prac-
tical flow applications, such as those studied byNorthrup and
Groth [29,30], Isono and Zingg [51], as well as Tabesh and
Zingg [52].

Solution of the modified non-linear system of algebraic
equations given by Eq. (19) is again obtained via Newton’s
method and requires the solution of the following linear sys-
tem of equations at each Newton step:
[ (

3

2	t

)
I +

(
∂R
∂U

)(n+1,m) ]
	U(n+1,m)

= J∗	U(n+1,m)

= −R∗ (
U(n+1,m)

)
, (20)

Here, 	U(n+1,m) is the mth Newton estimate for the solu-
tion change at physical time level n. Successively improved
estimates for the solution in physical time are given by

U(n+1,m) = U(n) + 	U(n+1,m). (21)

In Eq. (20), I denotes the identity matrix and J∗ = ∂R∗/∂U
is the Jacobian of the modified residual vector. The phys-
ical time step, 	t , is determined by considering both the
inviscid Courant–Friedrichs–Lewy (CFL) stability condition
as well as the viscous von Neumann stability criterion, by
means of 	t = CFL · min

[
	l/(|�u| + a), ρ	l2/μ

]
in each

coordinate direction, where a is the sound speed. In the dual-
time-stepping approach, the iterative procedure is repeated
until ||R∗(U(n+1,m))||2 < ε||R∗(U(n))||2, where a value of
ε ≈ 10−3−10−2 was found sufficient for the time-accurate
computations presented herein.

6 Parallel implementation

Parallel implementation of the anisotropic block-basedAMR
finite-volume scheme has been carried out using the C++
programming language and the Message Passing Interface
(MPI) library. The block-based AMR and NKS methods are
ideally suited to the parallel implementation of the algo-
rithm via block-based domain decomposition in which the

grid blocks are distributed to awaiting available processors,
with more than one block permitted on each processor core.
For homogeneous multi-processor architectures, the self-
similar blocks are distributed and treated equally amongst the
processors; for heterogeneous systems, a weighted distribu-
tion of the blocks is adopted to allocate more blocks to faster
processors and fewer blocks to slower ones. In this investi-
gation, all computations were performed using a large-scale,
high-performance IBMSystem× iDataPlex dx360M2 com-
putational cluster based on Intel’sNehalemarchitecture, built
using 3780 nodes in total, with two quad-core 2.53 GHz Intel
Xeon E5540 Nehalem x86-64 processors and 16 GB of main
memory per node. A highly scalable and efficient algorithm
results.

7 Verification and validation

Prior to carrying out the fully resolved oblique shock reflec-
tion simulations presented in Sect. 8, an effort was made to
first verify and validate the solutions of the proposed par-
allel, implicit, anisotropic, block-based AMR, finite-volume
scheme. The validity of the numerical solutions and mesh
resolution requirements for the prediction of steady one-
dimensional planar shock structure was first assessed. In
particular, resolution requirements for mesh-independent
predictions of steady shock structure were explored via com-
parison to one-dimensional ODE solutions. Additionally, a
direct comparison of anisotropic and isotropic block-based
AMR strategies was made for oblique shock reflections with
under-resolved internal shock structures, in an effort to fore-
cast the anticipated computational savings of the anisotropic
AMR approach when applied to the fully resolved case.
Lastly, the predictive capabilities of the proposed solution
method were assessed for a range of oblique shock reflection
problems considered in other previous studies. In particu-
lar, the present numerical predictions were compared to the
experimental results of Henderson and Gray [53] for the dif-
fraction of strong incident shock waves over rigid concave
corners. The latter provides evidence of the validity of the
proposed numerical framework in the prediction of unsteady
oblique shock reflection processes.

7.1 Mesh resolution study for one-dimensional
stationary shock structure

To establish the resolution requirements of the proposed solu-
tion method for the prediction of fully resolved shocks, a
mesh resolution study was conducted in which the paral-
lel, implicit, finite-volume scheme with AMR was applied
to the prediction of the one-dimensional stationary shock
structure where the working gas was diatomic nitrogen (N2).
The predictions of the finite-volume scheme were compared
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to several ODE results for shock-front transitions [54,55].
Such comparisons provide a validation of the high-fidelity
CFD solution method in terms of its ability to compute accu-
rate and highly resolved internal shock structures.

Stationary solutions for a shock in nitrogen with a shock
Mach number of Ms = 1.95 were considered. A simple rec-
tangular domain was used in which the initial mesh was 10×
10 cell blocks. The shock jump conditions were imposed as
initial data and supersonic inflow boundary conditions and
subsonic outflow boundary conditions were imposed at the
upstream and downstream boundaries, respectively, so as to
ensure that the shock remains centered indefinitelywithin the
computational domain. The implicit NKS method described
in Sect. 5 for steady flows was used to quickly and effi-
ciently converge the solution of this problem to steady state.
Smoothing of the solution on the coarse initial mesh was
achieved by performing 10 steps of an explicit multi-stage
time-marching scheme with optimal smoothing, at which
point a steady-state solution was computed directly on the
same mesh using the NKS method with limiter-freezing
enabled to assist in solution convergence. Once the solution
on the initial grid was fully converged to steady state, the
process was repeated following the application of a single
level of anisotropicAMR.This processwas then successively
repeated until additional levels of mesh refinement ceased to
affect the variation of flowproperties through the shock front.

The refinement and coarsening thresholds for the anisotropic
refinement were set to values of 0.125 and 0.075, respec-
tively, encouraging refinement of the grid with each addi-
tional level of refinement in regions with strong gradients in
entropy.

The predicted steady-state solutions for the stationary
shock, illustrating the asymptotic convergence of the pre-
dicted profiles for the specific entropy as well as den-
sity through the shock wave for 16 through 23 levels of
anisotropic AMR are compared in Fig. 3. The corresponding
convergence histories for the computations on each succes-
sively refined mesh are presented in Fig. 4, where it can be
seen that the residual is reduced by at least 5 orders of mag-
nitude in an average of approximately 25 GMRES iterations
per Newton step with 6–9 Newton iterations on each grid. It
is evident from the results of the mesh resolution study pre-
sented in Fig. 3 that a total of 23 levels of anisotropic AMR
are required to accurately capture and fully resolve the tran-
sition of flow properties through the shock front, although it
appears as though as few as 20 levels would suffice and pro-
vide sufficient accuracy for many applications. Note that in
the case of 23 levels of refinement, the finest cells in themesh
are more than 8 × 106 (or 223) times smaller than the coars-
est cells present in the computational domain. As detailed in
the inset of Fig. 3, the predicted peak in the specific entropy
profiles through the shock front nearly coincides for the solu-

Fig. 3 Mesh resolution study illustrating the smooth but rapid transi-
tion of specific entropy and density profiles through a one-dimensional,
planar shock wave of strength Ms = 1.95 in gaseous N2. The inset

diagram highlights the convergence of specific entropy profiles at their
maximum peak value within the shock front
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Fig. 4 Steady-state
convergence history with
anisotropic AMR,
corresponding to the preceding
results of the mesh resolution
study presented in Fig. 3, for a
one-dimensional, planar shock
wave of strength Ms = 1.95 in
gaseous N2

tions with 22 and 23 levels of anisotropic AMR, signifying
a mesh-independent solution has been achieved.

The predicted shock wave thickness obtained using the
parallel, implicit, finite-volume scheme with anisotropic
AMR was found to be accurate to within 0.07% of the
results obtained from standard ODE solutions [54,55], when
23 levels of anisotropic AMR were used. In this research,
the shock thickness was calculated from the velocity profile
according to the method presented by Taylor and Maccoll
[56]. It is believed that this minor discrepancy in the com-
puted thickness is largely attributed to small differences in
the physical modeling adopted in the present finite-volume
and ODE solutions. The good agreement between the ODE
solutions and finite-volume predictions provides a strong
indication of the mesh densities required for accurately pre-
dicting shock structure. A detailed listing that compares the
accuracy of the predicted shock thickness results obtained
using the anisotropic AMR mesh with 16 through 23 levels
of refinement is presented in Table 1. In particular, the con-
vergence of shock properties, including the maximum peak
specific entropy value, smax, as well as the shock thickness,
	x , is given as a function of the number of levels of refine-

Table 1 Overview of the numerical results of themesh resolution study
for a one-dimensional, planar shock wave of strength Ms = 1.95 in
gaseous N2

AMR
levels

	lmin(nm) smax
(J/kgK)

	x
(nm)

∣
∣∣1− 	x

	xODE

∣
∣∣

×100%

23 1.25 8521.74 211.3916 0.0609

22 2.50 8521.73 211.4462 0.0868

21 4.80 8521.66 211.5776 0.1490

20 9.40 8521.45 212.3932 0.5350

19 18.75 8520.52 215.2458 1.8853

18 38.50 8517.04 225.1612 6.5787

17 74.50 8502.50 271.0596 28.3044

16 151.75 8496.41 353.0420 67.1103

ment. It is evident from the results of the table that, to ensure
recovery of fully resolved, mesh-independent, shock transi-
tions in nitrogen under standard atmospheric conditions, the
minimum cell sizes, 	lmin, must be about 10−9 m, or 1 nm.
Depending on the strength of the shock wave, this translates
to requiring approximately 100–200 cells to reside within the
shock transition structure.

7.2 Computational domain, boundary and initial
conditions

For all of the unsteady oblique shock reflection computations
that now follow, the schematic diagram of Fig. 5 illustrates
the two-dimensional computational domain that was used
to perform the simulations using the proposed finite-volume
scheme. The numerical simulations are initiated on an ini-
tially coarsemesh consisting of 2 adjacent 10×10 cell blocks.
For anygivenwedge angle, θw, the non-inclinedblockof cells
has a 0.10 m length in both the x- and y-directions and the
inclined block of cells has a length of 0.10m along thewedge
surface, as illustrated in the figure. This particular grid siz-
ing has been chosen to be large enough to closely match the

Fig. 5 Grid geometry (10× 10 cell blocks) exemplifying initial mesh
refinement near the vertically oriented, rightward-moving, incident
shock wave and near the shock wave-trailing boundary layer on the
lower horizontal surface

123



Parallel implicit anisotropic block-based adaptive mesh… 379

dimensions of conventional experimental shock tube facili-
ties and to contain the entire structure of both the incident
and reflected shock waves.

The initial conditions for the reflection problem consist of
an incident planar shockwave of a given strength propagating
rightwards in the positive x-direction through a quiescent
region of gas at standard atmospheric conditions.

The region behind (downstream of) the incident shock
wave was defined by the Rankine–Hugoniot relations across
a shock wave. The boundary conditions governing the fluid
flow within this computational domain include a fixed inlet
on the left-hand vertical boundary; a constant extrapolation
outlet on the right-hand vertical boundary; viscous, isother-
mal walls on the lower horizontal and inclined boundaries;
and an inviscid, adiabatic wall spanning the entire upper hor-
izontal boundary.

7.3 Anisotropic versus isotropic AMR

The performance benefits of the anisotropic block-based
AMR procedure were characterized herein by assessing the
total reductions in mesh size provided using the anisotropic
approach, as opposed to the usual isotropic method, for an
unsteady oblique shock reflection problem. The particular
case examined corresponds to the singleMach reflection flow
in N2 examined previously by Henderson and Gray [53] with
an incident shock Mach number of Ms = 1.732 and a wedge
angle of θw = 36.90◦. The simulations have been carried out
using both AMR strategies (isotropic and anisotropic) with
adapted meshes having refinement levels ranging from 7 to
10. A fixed physical time step of 	t = 1.25 × 10−7 s was
used. The AMR procedure was applied every 7 physical time
steps and criteria based on the gradient of density with refine-
ment and coarsening thresholds of 0.125 and 0.075, respec-
tively, were used throughout the mesh refinement process.

The predicted distributions of the density for the sin-
gle Mach reflection flow obtained using both isotropic and
anisotropic AMR methods with refinement levels ranging
from 7 to 10 are depicted in Fig. 6. Each of predicted results
is shown at a solution time of t = 9.34 × 10−5 s after the
incident shock wave has passed the corner of the wedge
and the oblique shock reflection process has ensued. The
grid blocks for the refined isotropic and anisotropic AMR
meshes are overlayed onto distributions of the density field
and the plots reveal the regions of the domain where large
density gradients exist and, as a result, the mesh concen-
trations are highest. The latter correspond to regions near
the incident and reflected shocks, Mach stem, viscous shear
layers, and thermal boundary layers, as expected. The total
number of computational cells, Ncells, as well as the refine-
ment efficiency, η, is listed in each case. Here, the refinement
efficiency for both isotropic and anisotropic AMR is defined
as η = 1 − Ncells/Nuniform, where Nuniform denotes the total

number of computational cells that would exist on a uniform,
isotropic mesh whose maximum refinement level equals the
highest level of refinement in any computational coordinate
direction on the current mesh.

It is evident from Fig. 6 that the application of the
anisotropic AMR scheme for the single Mach reflection
pattern of interest provides reductions in the mesh size of
upwards of 78% when using up to 10 levels of refinement,
when compared to the isotropic AMR method, while still
achieving the same overall solution accuracy. Assuming that
the computational memory and storage requirements scale
linearlywith themesh size, this translates to a factor of nearly
5 in computational savings. It is estimated that similar or
perhaps even slightly higher levels of computational savings
could be expected in the simulation of fully resolved, mesh-
independent oblique shock reflections, wherein flow features
such as shock structures as well as the viscous and thermal
boundary layers lend themselves quite naturally to resolu-
tion via an anisotropic AMR approach. The results indicate
that anisotropic AMR is markedly more effective than its
isotropic counterpart when dealing with flows having strong
anisotropic features.

7.4 Comparisons with experiments

The predictive capabilities of the proposed parallel, implicit,
finite-volume scheme with AMR have also been assessed
herein by comparing numerical predictions to published
experimental measurements for several unsteady oblique
shock reflection flows. The previous experimental results of
Henderson and Gray [53] were again considered pertaining
to the diffraction of shocks over rigid concave corners in
N2. In addition to the single Mach reflection case outlined in
Sect. 7.3, a relatively simple regular reflection pattern with
Ms = 1.721 and θw = 52.36◦, as well as a more complex
double Mach reflection configuration with Ms = 2.391 and
θw = 46.17◦, were investigated. Numerical predictions for
each one of these three flows were performed using 10 levels
of anisotropic AMR based on the gradient of density, with
refinement and coarsening thresholds set to 0.10 and 0.05,
respectively. A CFL number of 0.2 was imposed for each
case and anisotropic AMR was applied every 10 physical
time steps.

The simulated or numerical schlieren images based on
the predicted contours of the density gradient for each of
the three oblique reflection cases are illustrated in Fig. 7 and
compared to the actual experimental schlieren images. The
regular, single Mach, and double Mach reflection computa-
tions are shown at physical solution times of t = 5.13×10−5,
6.67×10−5 and 4.19×10−5 s after the incident shock wave
has passed the wedge corner, respectively. These values cor-
respond to the propagation of the incident shock wave at an
equidistance of 0.05mup the surface of the inclinedwedge. It
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Fig. 6 Comparison of isotropic and anisotropicAMRmethods for sim-
ulating an unsteady single Mach reflection problem (Ms = 1.732 and
θw = 36.90◦) in gaseous N2 at t = 9.34× 10−5 s after the initial inter-
action of the incident shock wave with the wedge corner. a 7 levels of
isotropic AMR with Ncells = 105, 200 and η = 0.87158. b 7 levels of
anisotropic AMR with Ncells = 47, 100 and η = 0.94251. c 8 levels of

isotropic AMR with Ncells = 218, 000 and η = 0.93347. d 8 levels of
anisotropic AMR with Ncells = 92, 000 and η = 0.97192. e 9 levels of
isotropic AMR with Ncells = 476, 300 and η = 0.96366. f 9 levels of
anisotropic AMR with Ncells = 138, 400 and η = 0.98944. g 10 levels
of isotropic AMR with Ncells = 854, 600 and η = 0.98370. h 10 levels
of anisotropic AMR with Ncells = 189, 600 and η = 0.99638
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Fig. 7 Numerical schlieren
images (right) replicating the
oblique shock reflection
configurations studied in the
experiments of Henderson and
Gray [53] (left) for the
diffraction of shock waves in
gaseous N2 over rigid concave
corners. Experimental
photographs reprinted from
Henderson and Gray [53] with
permission from Royal Society
Publishing. a Regular reflection
pattern with Ms = 1.721 and
θw = 52.36◦. b Single Mach
reflection pattern with
Ms = 1.732 and θw = 36.90◦.
c Double Mach reflection
pattern with Ms = 2.391 and
θw = 46.17◦

is evident that the predicted solutions of the shock reflection
process are very similar to those of the experiments in each
case. Flow features such as boundary layers and slipstreams,
as well as locations of planar incident, curved reflected, and
resultant Mach stem shock waves are reproduced with excel-
lent accuracy. Moreover, the good agreement between the
numerical results and previous experimental images provides
strong evidence of the validity of the proposed algorithm
for predicting unsteady, oblique shock reflections in gaseous
media.

8 Numerical solution of fully resolved shocks

To demonstrate the capabilities of the proposed parallel,
implicit, anisotropic AMR finite-volume scheme for pre-

dicting the physics of unsteady oblique shock reflection
processes, a fully resolved simulation of the single Mach
reflection configuration studied in the previous section of the
paper is considered. The process of choosing an appropriate
physical time step for use in the implicit BDF2 approach is
first described and, then, the results of the numerical sim-
ulation with fully resolved internal shock-front transition
profiles are presented and discussed.

8.1 Physical time step selection

For the time-accurate computation of unsteady compressible
flows, implicit time-marching schemes such as the BDF2
can provide the opportunity to achieve much larger physi-
cal time steps than those permissible with the capabilities
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of an explicit time-marching method. However, the use of
increasingly larger physical time steps tends to progressively
degrade the overall accuracy of a numerical solution. As a
result, it is important to first ensure that reasonably accurate
numerical results can still be attained when sufficiently large
physical time steps are used.

To examine the effects of time step selection on solution
accuracy, an unsteady shock transition problem is studied,
consisting of a one-dimensional planar shock wave with
a strength of Ms = 1.732 propagating in the positive x-
direction through an N2-filled shock tube with straight walls
(θw = 0◦). Numerical simulations were carried out using a
variety of fixed physical time steps with the BDF2 scheme
and the solutions for the propagating shock were determined
for a total solution time of 4.0 × 10−9 s. Based on the
mesh density study of Sect. 7.1, 20 levels of anisotropic
AMR are employed. This was deemed to be sufficient to
capture the full transition of flow properties through the
shock. For comparative purposes, similar results were also
obtained using a standard, explicit second-order Runge–
Kutta (RK2) time-marching method. The results obtained
using each time-marching method were compared to a ref-
erence solution that was obtained using a similarly dense
mesh and the explicit, fourth-orderRunge–Kutta (RK4) time-
marching method with a small time step. An estimate for the
solution error based on the root-mean-square of the differ-
ence between the predicted temporal history of density at a
selected point of interest as a function of time and that of the
reference solution was determined, as defined by

ρ̄error =
√√√√ 1

Nt

Nt∑

i=1

(
ρi − ρi,ref

)2 (22)

where ρi,ref represents the density of the reference RK4 solu-
tion at physical time step i and Nt denotes the total number
of physical time steps taken to reach the final time. The
reference solution was assumed to contain negligible error
as it is calculated with a very small fixed physical time
step.

The predicted temporal variations in the density at a
selectedpoint of interest producedby thepassageof the shock
as obtained using the implicit BDF2 scheme with various
fixed physical time steps are compared to the predicted refer-
ence solution obtained using the explicit RK4 time-marching
method with a very small time step in Fig. 8a. While it is evi-
dent that the BDF2 scheme allows use of large physical time
steps, it is observed from the results shown in the figure that
care must be exercised in selecting the time step. It should
not be overly large so as not to corrupt the numerical accu-
racy of the predicted solution. From Fig. 8a, it appears that
using a physical time step of 	t = 5 × 10−11 s provides
the BDF2 scheme with a reasonably large time step with

a minimal loss in accuracy, in comparison to the reference
RK4 solution, when 20 levels of anisotropic AMR are used.
Moreover, the inviscid CFL number is not exceedingly large
for this value of the physical time step and falls in the range
from 2 to 3 for all cells in the computational domain.

The computational savings provided by employing the
fully implicit BDF2 approach over the conditionally sta-
ble RK2 method are summarized in Fig. 8b. The figure
depicts the estimated error in the predicted temporal vari-
ation of the density, as given by Eq. (22), as a function of the
total computational or central processing unit (CPU) time
required to obtain the propagating shock solution for sev-
eral different values of the physical time step. From this plot,
it can be seen that computational savings of 42% are pro-
vided using the BDF2 scheme with 	t = 5 × 10−11 s, in
comparison to using the largest possible fixed physical time
step that is stable with the RK2 approach, without signif-
icantly compromising the global accuracy of the solution.
Overall, the slight loss of accuracy incurred in using the
fully implicit BDF2 scheme is thought to be outweighed by
the computational savings afforded by the use of a larger
time step. Note that if a greater level of mesh adapta-
tion were considered, the savings offered by the implicit
treatment are expected to be even more significant for, as
the mesh spacing becomes smaller, the more restrictive
Neumann or diffusive stability limit generally dominates
and dictates the time step selection for explicit time-
marching schemes. Hence, the implicit BDF2 approach is
proposed as a preferred method for the simulation of oblique
shock reflection problems with fully resolved internal shock
structures.

8.2 Computation of a fully resolved single Mach
reflection

Numerical predictions of the unsteady singleMach reflection
pattern in N2 gas with Ms = 1.732 and θw = 36.90◦ were
obtained using the anisotropic AMR technique alongside the
fully implicit BDF2 time-marching method. The simulation
was first initiated on a coarse mesh using 2 adjacent 10× 10
cell blocks and then started on an ensuing refined mesh fol-
lowing 20 levels of initial anisotropic AMR. Unsteady AMR
was carried out once every 7 physical time steps, wherein
refinement and coarsening was governed by thresholds of
0.125 and 0.075, respectively. This led to the refinement of
the mesh with each additional level of anisotropic AMR in
regions where strong density and entropy gradients existed
within the flow field. The fixed physical time step used in the
time-marching of the solution was 	t = 5× 10−11 s, as per
the findings presented in Sect. 8.1.

The numerical results of the fully resolved simulation are
illustrated in Fig. 9 at a solution time of t = 5.14 × 10−7

123



Parallel implicit anisotropic block-based adaptive mesh… 383

Fig. 8 An evaluation of
second-order time-marching
methods for use in the
computation of unsteady shock
wave problems with fully
resolved internal structures.
a Temporal variation of density
due to the passage of a shock
wave of strength Ms = 1.732 in
N2 gas, captured using various
fixed physical time steps for the
fully implicit BDF2 approach.
b A comparison of the
computational efficiency for the
fully implicit BDF2 scheme and
the explicit RK2 method, for a
variety of different fixed
physical time steps

s after the initial reflection of the incident shock wave from
the wedge surface. At this time, a total of 39106 10 × 10
cell blocks with 3,910,600 computational cells are present in
the simulation with 20 levels of anisotropic AMR, yielding
a refinement efficiency of 0.99999993. The internal struc-
tures of the incident, reflected and Mach stem shock waves
are well resolved. Furthermore, as with the under-resolved
solution presented earlier, the predicted fully resolved solu-
tion obtained using the proposed parallel implicit anisotropic
block-based AMR scheme agrees very well the experimental
images of Henderson and Gray [53].

Note that the application of the anisotropic AMR scheme
was found to provide a reduction of 78% in the mesh

size when compared to the isotropic AMR case, while still
achieving the same solution accuracy. Additionally, a further
42% in computational savings was attained by exploiting
the ability of the proposed implicit BDF2 scheme to take a
larger time step than that permissible with the conditionally
stable explicit RK2 time-marching method without signifi-
cantly compromising accuracy. It then follows that the overall
speedup provided by the combination of the anisotropic
AMR and parallel fully implicit BDF2 time-marching meth-
ods for this fully resolved case is estimated to be a factor of
more than 1010, when using 256 cores and assuming a 50%
parallel efficiency due to latency and interprocessor commu-
nication, compared to a serial computation performed using
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Fig. 9 Predicted density contours with overlaid 10 × 10 cell blocks
of an unsteady single Mach reflection problem (Ms = 1.732 and
θw = 36.90◦) in gaseous N2 at t = 5.14 × 10−7 s after the incident
shock wave strikes the corner of the wedge. The internal structures of
the incident, reflected and Mach stem shock waves are fully resolved;

the inset diagrams illustrate the smooth but rapid transitions of specific
entropy and density measured along the dashed distances x ′

i , x
′
r and

x ′
m, aligned in the directions normal to each of these respective shock
waves

the explicit RK2 scheme on a uniformmeshwith a resolution
equal to that of the finest mesh blocks.

9 Concluding remarks

A parallel, fully implicit, anisotropic block-based AMR
finite-volume scheme has been described for solving two-
dimensional, laminar, compressible, viscous, unsteady,
gaseous flows governed by theNavier–Stokes equations. The
combination of anisotropic AMR and parallel implicit time-

marching techniques adopted in the proposed method has
been shown to readily enable time-accurate numerical sim-
ulations of complex multi-shock interaction phenomena, as
represented by unsteady oblique shock reflection processes
with fully resolved internal shock structures.
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