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Abstract Experiments reported in the literature are repro-
duced using numerical simulations to investigate the early
stages of the breakup of water cylinders in the flow behind
normal shocks. Qualitative features of breakup observed in
the numerical results, such as the initial streamwise flatten-
ing of the cylinder and the formation of tips at its periph-
ery, support previous experimental observations of stripping
breakup. Additionally, the presence of a transitory recircula-
tion region at the cylinder’s equator and a persistent upstream
jet in the wake is noted and discussed. Within the uncertain-
ties inherent to the different methods used to extract mea-
surements from experimental and numerical results, com-
parisons with experimental data of various cylinder defor-
mation metrics show good agreement. To study the effects of
the transition between subsonic and supersonic post-shock
flow, we extend the range of incident shock Mach numbers
beyond those investigated by the experiments. Supersonic
post-shock flow velocities are not observed to significantly
alter the cylinder’s behavior, i.e., we are able to effectively
collapse the drift, acceleration, and drag curves for all simu-
lated shock Mach numbers. Using a new method that mini-
mizes noise errors, the cylinder’s acceleration is calculated;
acceleration curves for all shock Mach numbers are subse-
quently collapsed by scaling with the pressure ratio across
the incident shock. Furthermore, we find that accounting for
the cylinder’s deformed diameter in the calculation of its
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1 Introduction

The study of droplet breakup has applications in the combus-
tion and detonation of multiphase mixtures, liquid jet atom-
ization, and rain erosion damage. The primary motivation for
the current work lies in geothermal waste heat recovery appli-
cations. Within variable phase turbines (VPTs), multiphase
nozzles are used to flash evaporate and accelerate the work-
ing fluid into a high-speed two-phase jet composed mainly
of gas with disperse liquid droplets. Experimental testing has
shown that larger droplets tend to coalesce on the rotor blades
to form a thin film that adversely impacts momentum trans-
fer from droplet impacts [44]. On the other hand, smaller
droplets are more likely to run off the rotor blade, while
still imparting momentum during impact. A more complete
understanding of the breakup process within the multiphase
nozzle, so as to predict a final droplet size distribution, would
allow for optimized nozzle design.

Much of the earlier literature on droplet breakup consists
of experimental work performed in shock tubes and wind tun-
nels. Normal shock waves, by themselves, have little effect on
the droplet. However, they have proven to be a reliable and
repeatable technique to generate a high-speed flow around
the droplet, which is responsible for the deformation and
disintegration [12,31]. Earlier studies focused on droplets of
Newtonian fluids in subsonic streams, and attempted to char-
acterize various breakup modes and mechanisms [6,12,15–
17,25,31,32]. Breakup has, classically, been separated into
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five distinct regimes (delineated by the Weber number, We):
vibrational, bag, bag-and-stamen, shear or sheet stripping,
and catastrophic. Descriptions of each regime and their cor-
responding Weber numbers can be found in the reviews of
Pilch and Erdman [28] and Guildenbecher et al. [9]. More
recently, Theofanous and Li [39] proposed a re-classification
into two primary breakup regimes: Rayleigh–Taylor piercing
and shear-induced entrainment. In this new classification, the
shear-induced entrainment regime is the terminal regime for
We > 103. The classical catastrophic regime was argued
to be an artifact of low-resolution shadowgraph visualiza-
tions [39]. Earlier experimental studies noted the formation
of a mist or spray in the wake of the disintegrating droplet
[31–33]. In her investigation, Engel [6] concluded that the
most likely explanation was a combination of breaking wave
crests at the droplet’s equator and the stripping of water by
vortices in the airflow. In addition to varying droplet size and
shock Mach number, MS , [6], studies have also calculated
characteristic breakup times [7,15,31,32], and attempted to
quantify the dependence of breakup on parameters such as
the density and viscosity ratios of the fluids [7,12,14,15,40].

Historically, the drag of a deforming droplet has been a
quantity of keen interest for numerous applications. Vari-
ous attempts have been made to determine accurate droplet
velocities and accelerations. Experimental studies often fit a
polynomial to the drift measurements from their visualiza-
tions, and then differentiate to approximate the acceleration
[6,24,31,33,36,37]. Empirical correlations exist in the lit-
erature to predict the drag coefficient of a droplet based on
various non-dimensional groupings (commonly, the Weber,
Ohnesorge, Oh, and Reynolds, Re, numbers) [26].

Due to the high computational cost of three-dimensional
simulations, numerical droplet breakup studies often invoke
two-dimensional [3,18–20] or axisymmetric [1,10,11]
approximations. Quan and Schmidt [29] studied breakup for
incompressible fluids using three-dimensional simulations.
Their computations were initialized by first simulating flow
over a solid sphere. The steady-state velocity field around the
sphere was then used as the initial flow condition around the
droplet. The axisymmetric simulations [1,10,11] also solved
the incompressible Navier–Stokes equations, and initialized
droplet breakup by subjecting the droplet to either a body
force [10] or a step change to a divergence-free velocity
field [1,11]. The two-dimensional simulations of Igra and
Takayama [18–20] were limited by their numerical method,
which was suitable only for the very early stages of breakup,
and could not capture the majority of the deformation and
breakup. The two-dimensional numerical work of Chen [3]
also tried to duplicate the experiments of Igra and Takayama.
The simulation results therein provide a, albeit limited, basis
of comparison for the present work.

The goals of the present work are to perform high-fidelity
simulations of the breakup of a water column in the flow

behind a normal shock wave to understand the flow fea-
tures associated with breakup, and extract accurate mea-
surements of the cylinder’s acceleration and unsteady drag
coefficient. Solving the multicomponent, compressible Euler
equations allows our simulations to match the experimental
setup of Igra and Takayama [20], and comparisons can be
made with their data. We are also able to accurately calcu-
late the cylinder’s center-of-mass velocity, acceleration, and
unsteady drag coefficient. The present work is organized as
follows. In Sect. 2, we present the physical model and relevant
simulation flow parameters. Section 3 briefly describes the
employed numerical method and the calculation of various
flow quantities used in the analysis. Analysis of the compu-
tational results and a discussion of their implications follows
in Sect. 4. The major conclusions are summarized in Sect. 5.

2 Physical modeling

2.1 Problem description

Droplet breakup is studied in two dimensions by simulating
the breakup of a water cylinder in the high-speed flow behind
a normal shock wave. We initially focus on the experiments
of Igra and Takayama [20], and then extend the range of
simulated shock Mach numbers to include supersonic post-
shock gas velocities. The values of incident shock Mach num-
bers and their corresponding post-shock Mach numbers, M2,
are shown in Table 1. The Weber and Reynolds numbers,
respectively, characterize the relative importance of inertial-
to-capillary and inertial-to-viscous forces:

We = ρgu2
gd0

σ
, (1)

Re = ρgugd0

μg
, (2)

where the density, ρg , and velocity, ug , are those of the
shocked gas, σ is the surface tension coefficient, μg is the
dynamic viscosity of the gas, and the characteristic length
scale is the initial cylinder diameter, d0. Using the experi-

Table 1 Post-shock Mach numbers, M2, in the shock-stationary (SS)
and shock-moving (SM) reference frames

MS M2 (SS) M2 (SM)

1.18 0.8549 0.2625

1.30 0.7860 0.4056

1.47 0.7120 0.5775

1.73 0.6330 0.7885

2.00 0.5774 0.9622

2.50 0.5130 1.1970
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Fig. 1 Computational domain setup

mental parameters for a water cylinder in air, the approximate
Weber numbers corresponding to the four weaker shocks
range between 940–19,300. The Reynolds numbers corre-
sponding to the same shock Mach numbers range between
39,900 and 237,600. These Weber and Reynolds numbers
suggest that the physical mechanisms of breakup are pri-
marily driven by inertia, and that a reasonable first approx-
imation can be made by neglecting the effects of surface
tension and viscosity. With these simplifications, we do not
capture all the physics of the breakup process. For example,
the absence of surface tension restricts our capability to sim-
ulate the breakup of the thin liquid filaments that are stripped
off the edge of the cylinder. However, for the early stages
of breakup where the cylinder remains, for the most part, a
coherent body, the roles of viscosity and surface tension are
expected to be relatively minor compared to that of inertia.
Future work will restore these physical effects back into the
model.

The breakup of the water cylinder is simulated using the
computational setup shown in Fig. 1. In addition to the lim-
itations imposed by the absence of viscous and capillary
effects, our analysis is also restricted to the early stages of
breakup since the flow is assumed to be symmetric across
the cylinder’s centerline. Experimental visualizations of both
cylinder and droplet breakup show no significant asymme-
tries during the early stages of breakup. We employ a sym-
metric boundary condition along the bottom of the com-
putational domain, and enforce non-reflecting characteris-
tic boundary conditions along the three remaining bound-
aries. Implemented following Thompson [41,42], these char-
acteristic boundary conditions do not contaminate the solu-
tion through the reflection of outgoing waves. The water
cylinder and the air in front of the planar shock are ini-
tially at rest (ρg = 1.204 kg/m3, ρl = 1,000 kg/m3, and
pg = pl = 1 atm). At the start of the simulation, the shock
is set in motion towards the water cylinder and establishes a
steady freestream flow field.

2.2 Equations of motion

In the absence of surface tension and viscosity, the flow is
governed by the multicomponent, compressible Euler equa-

tions. In addition to being compressible and inviscid, each
fluid is considered immiscible and does not undergo phase
change. In the absence of mass transfer and surface tension,
material interfaces are simply advected by the local flow
velocity. Following the five-equation model of Allaire et al.
[2], interfaces are modeled using volume fractions, α. The
governing equations consist of two continuity equations, (3)
and (4), a mixture momentum equation, (5), a mixture energy
equation, (6), and a volume fraction advection equation, (7).

∂(αgρg)

∂t
+ ∇ · (αgρgu) = 0, (3)

∂(αlρl)

∂t
+ ∇ · (αlρlu) = 0, (4)

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u + pI) = 0, (5)

∂E

∂t
+ ∇ · [

(E + p)u
] = 0, (6)

∂αg

∂t
+ u · ∇αg = 0, (7)

where the subscripts l and g denote, respectively, the liquid
and gas phases. Since phasic continuity equations are solved,
individual fluid masses (and, therefore, total mass) are con-
served by the numerical method. As a consequence of the
shock-capturing nature of the numerical scheme, interfaces
are diffuse (smeared over several grid cells) and a smooth
transition of volume fractions exists in a mixture region
between the two constitutive fluids. These mixture regions
are not indicative of molecular mixing (since the component
fluids are immiscible), but are inherently unphysical and an
artifact of numerical diffusion. The interface model of Allaire
et al. [2] tends to the Euler equations in each of the pure flu-
ids, and recovers the correct sharp interface properties in the
limit of infinite grid resolution.

Non-dimensionalization of all physical flow variables is
accomplished using the original cylinder diameter, and the
nominal density and sound speed of water (cl = 1,450 m/s).
Time is non-dimensionalized using a scaling, found in
the literature, characteristic of breakup by Rayleigh–Taylor
or Kelvin–Helmholtz instabilities [28,31,33]. The resultant
non-dimensional time is given by

t∗ = t
ug
d0

√
ρg

ρl
, (8)

where t is the dimensional time, and the gas velocity, ug , and
fluid densities, ρg and ρl , refer to post-shock conditions.

2.3 Equation of state

The stiffened gas equation of state [13] is used to close the
system of equations, and models both gases and liquids in
the flow solver.
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Γ p + �∞ = E − 1

2
ρu · u, (9)

where

Γ = 1

γ − 1
=

2∑

i=1

αi

(
1

γi − 1

)
, (10)

and

Π∞ = γ P∞
γ − 1

=
2∑

i=1

αi

(
γi P∞,i

γi − 1

)
, (11)

are the mixture properties in the diffuse interface region [2].
For air, γ = 1.4 is the ratio of specific heats, P∞ = 0, and
the stiffened gas equation of state reduces to the ideal gas
equation. The parameters γ and P∞ for water are empirically
determined from shock Hugoniot data. Following Gojani et
al. [8], the properties for water are taken to be γ = 6.12 and
P∞ = 343.44 MPa.

3 Numerical methods

3.1 Spatial and temporal discretization

The numerical method is based on the work of Johnsen and
Colonius [23], which was shown to be both interface- and
shock-capturing. The original work has since been extended
to three dimensions and includes the effects of viscosity and
nonuniform grids [5]; it has been used to model the shock-
induced collapse of bubbles [4]. Verification of the algorithm
via benchmark test cases (e.g., isolated interface advection,
shock–interface interaction, gas–liquid Riemann problem)
is shown by Coralic and Colonius [5] and is not reproduced
here.

The numerical method is based on a finite-volume
framework. Spatial reconstruction is accomplished with a
third-order, weighted, essentially non-oscillatory (WENO)
scheme coupled with the Harten–Lax–van Leer Contact
(HLLC) approximate Riemann solver [43]. The equations are
advanced in time using a total-variation-diminishing (TVD)
Runge–Kutta scheme. Since the time marching scheme is
explicit, the time step is chosen to limit the Courant–
Friedrichs–Lewy (CFL) condition to CFL ≈0.25. For the
production runs, a Cartesian grid of 1,200 × 600 cells is
stretched near the boundaries using a hyperbolic tangent
function. The most refined portion of the grid is located near
the initial position of the cylinder and in the region of the
near-field wake. In this region, the nominal grid resolution is
100 cells per cylinder diameter. The numerical diffusion of
an initially discontinuous interface can result in unphysical

mixture regions that are particularly vulnerable to computa-
tional failure and affect code stability. Therefore, in order to
avoid such a discontinuous interface, a smoothing function
is applied to the cylindrical geometry as it is initially laid out
on the Cartesian grid.

Without the presence of molecular viscosity to regular-
ize the smallest scales, ever finer flow features are obtained
in the simulation as spatial resolution is improved. There-
fore, traditional grid convergence or independence of the
computational results cannot be definitively shown; this is
a known issue associated with “inviscid” calculations using
shock- and interface-capturing methods. A grid resolution
study doubling the number of cells in each direction, while
resolving finer flow features, showed little difference in mea-
surements of cylinder deformation and center-of-mass prop-
erties. Further details of this study can be found in Appendix
A. We believe that the present spatial resolution is able to
capture the salient features in the flow without being compu-
tationally cumbersome.

3.2 Numerical viscosity

Since our numerical method is both shock- and interface-
capturing, numerical viscosity is present in the simulation.
Preliminary viscous simulations have been performed in an
attempt to find an approximate lower bound for the “appar-
ent” Reynolds number corresponding to the numerical vis-
cosity associated with the present 1,200 × 600 grid resolu-
tion. A description of the implementation of viscosity into
our solver can be found in Coralic and Colonius [5], which is
based on the work of Perigaud and Saurel [27]. Our approach
involved running a series of viscous simulations, holding grid
resolution constant, while successively decreasing Reynolds
numbers. At a critical Reynolds number, Rec, the molecular
viscosity becomes sufficient to influence the flow physics,
and causes a significant deviation from the “inviscid” sim-
ulation results. The analysis is complicated by the fact that
physical flow quantities exhibit varying degrees of sensitiv-
ity to changes in viscosity. For brevity, only representative
results are shown here. Figures 2 and 3 show the results
of a series of runs, at the same 1,200 × 600 grid resolu-
tion, varying the Reynolds number between Re = 15 and
Re = 5,000. Note that time and energy in both figures
have been non-dimensionalized using the original cylinder
diameter, and the nominal density and sound speed of water.
As the incident shock wave moves through the domain, the
energy increases in a linear manner. When the shock exits,
at a non-dimensional time of approximately 50, the energy
in the domain begins to slowly decrease due to a net flux of
energy out of the domain. In Fig. 2, the curves for Re ≥ 500
match the inviscid curve indicating that the magnitude of the
molecular viscosity is less than that of the numerical vis-
cosity, which is responsible for the behavior of the curves.
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Fig. 3 Total energy in the domain as a function of Reynolds number

For Reynolds numbers 15 < Re < 150, the magnitude of
the molecular viscosity surpasses that of numerical viscosity,
and changes the overall behavior of the curves. In Fig. 3, a
smaller range of values for the Reynolds number is plotted,
but it can be seen that the curves for Re ≥ 500 are almost
indistinguishable from the inviscid curve. Based on these
viscous simulations, the apparent Reynolds number associ-
ated with the numerical viscosity is believed to be no less
than Rec = 500 at the level of resolution used in the present
results. For a Mach 1.47 shock wave, this corresponds to a
physical droplet diameter of approximately 18µm.

3.3 Center-of-mass calculations

The accurate calculation of the cylinder’s center-of-mass
acceleration is a necessary step towards estimating the
cylinder’s unsteady drag. Experimental studies have often
extracted acceleration data by differentiating a polynomial

fit of the cylinder’s trajectory. The measurement of the cylin-
der’s drift from the forward stagnation point is often a neces-
sary simplification for extracting meaningful data from pho-
tographic evidence, and has been used in previous experi-
mental work [6,33]. However, acceleration calculations fol-
lowing this methodology are subject to additional error since
the drift of the cylinder front does not accurately represent the
center-of-mass drift. As noted by Theofanous [38] and shown
in our results, the leading edge drift first overestimates, then
underestimates, the center-of-mass drift.

In our results, the location of the center of mass (denoted
by an overbar) of the deforming cylinder is calculated using

x̄ =
∫

αlρlx dV
∫

αlρl dV
, (12)

where the integrated volume (area in 2D) is that of the entire
computational domain. The liquid partial density, αlρl , in
(12) is then the parameter that restricts the integration to cells
with non-zero liquid volume fractions. Once the center-of-
mass location is calculated, a few options exist for calculating
the velocity and acceleration. Perhaps the simplest method
is to differentiate the discrete displacement data using finite
difference approximations. However, this introduces signifi-
cant noise error into the calculations, and makes it difficult to
determine which oscillations (particularly in the acceleration
and drag histories) are physical and which are noise-driven.
Following the experiments, we could use a polynomial fit to
the drift data, and then differentiate the fitted curve to obtain
velocity and acceleration curves. Although preferable over
the finite difference method, this strategy also has its draw-
backs. Experimental data have shown that the drift history
of the cylinders is well approximated by a quadratic polyno-
mial. Fitting the drift data with a quadratic (or even cubic)
polynomial then restricts the acceleration to, at best, a linear
function. Of course, higher order polynomial fits are possi-
ble, but they are still unable to capture the high-frequency
oscillations that end up characterizing the acceleration. Tak-
ing advantage of the type of quantitative analysis allowed
by numerical simulations, we derive integral expressions for
the center-of-mass velocity and acceleration, which mini-
mize unnecessary noise error in the calculation. Assuming
constant liquid mass in the computational domain (zero mass
flux across volume boundaries), usage of the continuity equa-
tion and the divergence theorem allow simplification of the
time derivatives of (12). Taking a derivative with respect to
time through the integral in the numerator of (12) and simpli-
fying yields the following expression for the center-of-mass
velocity:

ū =
∫

αlρlu dV
∫

αlρl dV
. (13)

123



404 J. C. Meng, T. Colonius

Note that the integrals in the denominators of (12) and (13)
represent the total liquid mass in the domain, and can be
treated as constants with respect to time under the given
assumptions. Taking a time derivative of (13) then yields
the following for the acceleration of the center of mass:

ā =
d
dt

∫
αlρlu dV

∫
αlρl dV

=
∫

∂
∂t (αlρlu) dV
∫

αlρl dV
. (14)

This can be directly calculated from our solver since αlρlu
is known everywhere in the domain at each timestep. It can
be shown that (14) is equivalent to

ā =
∫

αlρla dV
∫

αlρl dV
, a = Du

Dt
= ∂u

∂t
+ u · ∇u, (15)

under the same assumptions. Mathematically, (14) and (15)
are equivalent. However, from a computational standpoint,
it is preferable to use (14) since it involves only a finite dif-
ference approximation in time, whereas (15) requires finite
difference approximations in both time and space. The inte-
gral expressions (13) and (14) allow us to calculate accurate
time histories of the center-of-mass velocity and acceleration,
while minimizing the amount of noise error in the calcula-
tion. Once liquid mass is lost through the volume boundaries,
(13) and (14) do not hold, and we terminate their calculation.

4 Results and discussion

4.1 Qualitative features of breakup

Similar qualitative flow features of the breakup process are
observed over the range of simulated shock Mach numbers,
with the only differences arising when quantifying relevant
length and time scales. Therefore, in describing the flow fea-
tures, we will, in this section, focus solely on the Mach 1.47
case. A time history of the breakup process is shown in Fig. 4,
where the shock (and subsequent flow) is moving from left
to right. The incident shock and the subsequent wave system
in the wake of the deforming cylinder are visualized using a
numerical schlieren function1 As previously mentioned, the
actual traversal of the shock wave over the cylinder does lit-
tle in terms of cylinder deformation. The shock’s influence,
or lack of it, on the cylinder is attributed to the fact that the

1 Following Quirk and Karni [30], the schlieren function is computed
as the exponential of the negative, normalized density gradient.

φ = exp

(
− k

|∇ρ|
max |∇ρ|

)
,

where k is a scaling parameter that allows simultaneous visualization
of waves in both fluids. Following Johnsen [22], k = 40 for air and
k = 400 for water.

time scale of the shock is smaller than the relaxation time
of the cylinder [1]. In fact, during the very early stages, the
cylinder can be approximated as a rigid cylinder. The orig-
inal shock and reflected wave are seen in Fig. 4b. Behind
the reflected wave, there is a high pressure region associated
with the forward stagnation point. At a critical angle preced-
ing the equator of the cylinder, the shock reflection transi-
tions from a regular reflection to a Mach reflection shown
in Fig. 4c. This transition marks the peak drag experienced
by the cylinder. This phenomenon has been studied in the
literature for rigid cylinders and spheres [34,35]. The con-
vergence of the Mach stems behind the cylinder results in a
secondary wave system (Fig. 4d) that generates high pres-
sures at the rear stagnation point. The non-uniform pressure
field around the cylinder results in an initial flattening that
is reinforced by the pulling of material away from the equa-
tor by the surrounding flow. It has been suggested that the
early time flattening is independent of viscosity or mater-
ial type at large Weber numbers [24]. In conjunction with
the lateral elongation, tips are observed to form on the cylin-
der’s periphery (Fig. 4e–g), which are thought to be the onset
of the stripping process [3]. In time, these tips are drawn
downstream into thin filaments. Though not captured in these
simulations (due to the absence of surface tension), the rise
of capillary instabilities in these filaments causes them to
break up downstream. Behind the cylinder, unsteady vortex
shedding drives the formation of a complex wake. Initially,
the wake consists of a single large vortex seen in Fig. 4d–f.
As more vortices are shed, the wake becomes increasingly
chaotic. This vortical structure is observed to entrain down-
stream fluid and jet it upstream to impinge on the back of
the cylinder. This upstream jet persists for the duration of the
simulation. Within the wake, a standing shock can also be
observed (Fig.4e–g), which is associated with the turning of
the locally supersonic flow.

An interesting flow feature to note is the existence of recir-
culation regions near the equator of the deforming cylinder,
which, as far as we are aware, has not been noted before in the
literature. Consider for now the top half of the water cylin-
der. As the normal shock passes over the hemisphere, neg-
ative vorticity is generated by the baroclinic vorticity term,
1
ρ2 ∇ρ × ∇ p, which is transported downstream by the sur-
rounding flow. This stream of negative vorticity is the source
of vortex shedding that creates the wake behind the deform-
ing cylinder. Along the back side of the cylinder, positive
vorticity is generated again by the baroclinic term. The large
vortex in the cylinder’s wake transports this positive vorticity
up along the flattened back of the cylinder until it runs per-
pendicularly into the stream of negative vorticity coming off
the front of the cylinder. These two streams of opposite vor-
ticity interact to form the recirculation region seen in Fig. 5.
The recirculation region is composed of two counter-rotating
vortices that are trapped by the two vorticity streams and the
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Fig. 4 Numerical schlieren images (top) and filled pressure contours
(bottom) of the breakup of a 4.8 mm cylinder at t∗ = a 0.000 b 0.008 c
0.017 d 0.090 e 0.171 f 0.262 g 0.444 h 0.626 i 0.808 j 1.036 behind

a Mach 1.47 shock wave (top to bottom, left to right). Isocontours are
shown for αl ≥ 0.9
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Negative vorticity stream

Positive vorticity stream

Clockwise vortex

Fig. 5 Positive (red) and negative (blue) vorticity streams interacting
to form a recirculation region at t∗ = 0.171

cylinder body. This recirculation region persists through the
early deformation times of the cylinder, and appears to con-
tribute to the stripping mechanism at the edge of the cylinder.
This would support Engel’s theory that stripping of water by
vortices contributes to the formation of mist in the wake [6].
In time, as pressure forces flatten the cylinder, the two vortic-
ity streams are bent parallel to the flow, and the recirculation
region disappears.

Another interesting flow feature observed in the numerical
simulations is the aforementioned upstream jet in the wake
behind the cylinder. It is a possibility that the jet is an artifact
of assuming symmetry in the simulation. It is well known that
for a large range of Reynolds numbers (45 < Re < 105),
flow around a rigid cylinder will generate a von Kármán vor-
tex street. The symmetry assumption is acceptable for early
times since a finite time is required to establish the vortex
street. For the Reynolds numbers corresponding to the sim-
ulations, it is conceivable that, if the symmetry assumption
were to be relaxed, a vortex street may develop in the wake
of the deforming water cylinder. If, indeed, a vortex street
is established, the upstream jet may decrease in strength, or
cease to exist altogether. Finally, we note that the jet would
most likely change in three-dimensional simulations of a
deforming spherical droplet due to the “flow-relieving effect”
of the third dimension.

4.2 Comparison with experimental visualizations

Qualitative comparisons with experimental visualizations of
the breakup process are shown in Fig. 6 for the passage of a
Mach 1.47 shock over a 4.8 mm diameter cylinder. At these
early times in the breakup process, it is hard to make any
comparisons regarding the cylinder’s deformation. Instead,
one can compare the primary and secondary wave systems
that are generated as the shock interacts with the water cylin-
der. The locations of the primary wave system, consisting of
the incident and reflected shock, coincide between the exper-
iment and the numerical simulations for both time instances
shown. The secondary wave system, generated when the

Mach stems on both sides of the cylinder converge on the
rear stagnation point, looks qualitatively similar between the
experiment and simulation. A closer comparison reveals that
the secondary waves in the simulation are slower than those
of the experiment; pending further analysis, the exact cause
of this discrepancy is difficult to identify.

4.3 Comparison of subsonic and supersonic post-shock gas
velocities

Numerical schlieren images of the breakup of the water cylin-
ders behind Mach 1.30 and Mach 2.50 shocks are shown in
Fig. 7. The supersonic gas velocity behind the Mach 2.50
shock is evidenced by the detached bow shock preceding
the deforming water cylinder. Cylinder wakes for supersonic
post-shock flow appear to be narrower than their subsonic
counterparts, and standing shocks are visible along the length
of the wake.

4.4 Deformation

Using holographic interferograms, Igra and Takayama [20]
quantified the cylinder’s deformation by measuring its span-
wise diameter, d, centerline width, w, and coherent body
area, A. In the following plots, we compare our numerical
results with the experimental measurements for the above
deformation metrics. There exists, in our comparison, an
inherent uncertainty associated with the methodology or cri-
teria used to define the boundary of the deforming body.
The first part of the uncertainty arises from the experimental
data itself. From Igra and Takayama’s discussion, it is not
possible to unambiguously identify the criteria they used to
determine the boundaries of the deforming body. Further-
more, they provide no quantification of the error associated
with their measurements of deformation.

Additional uncertainty in the comparison stems from our
numerical method, which has diffuse interfaces in finite grid
resolution. To define a nominal interface location, we choose
a threshold liquid volume fraction, αT , to bound the cylin-
der, i.e., any computational cell with a liquid volume fraction
αl ≥ αT is considered part of the cylinder. Because of the
uncertainty in the experimental measurements, it is unclear
what value αT should take to best match the data. Therefore,
instead of specifying a single value, a range is chosen in an
attempt to bound the experimental data. This is demonstrated
in Fig. 8, which plots the cylinder’s centerline width for the
MS = 1.47 case (the stepped nature of the curves is an arti-
fact of approximating to the nearest grid cell). The curves
in the plot represent four distinct values of αT that range
between 0.25 ≤ αT ≤ 0.99. Since the following comparison
plots will show a range of shock Mach numbers, which are
differentiated by color, only two αT curves will be plotted
for each MS .
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Fig. 6 Holographic interferograms (left) [19] and numerical schlieren images (right) at t = a 16.18µs b 32.14µs. Note that the values of time
have been adjusted from the original work as described in Appendix B. Reprinted from [19] with permission from Springer

Fig. 7 Numerical schlieren images of the breakup behind Mach 1.30 (top) and Mach 2.50 (bottom) shock waves at t∗ = a 0.3543 b 0.5117
c 0.7479 d 0.9053

Figures 9, 10, and 11 show, respectively, the centerline
width, spanwise diameter, and coherent body area for four
MS cases. After the passage of the shock wave, the cylinder’s
deformation is characterized by flattening in the streamwise
direction, which is quantified here as an increase in spanwise
diameter and decrease in centerline width. As material is
stripped off the cylinder’s periphery by the surrounding high-
speed flow, the area of the cylinder monotonically decreases.
Additional comparison data from the numerical work of Chen

[3] are shown in Fig. 11. Though not a rigorous validation of
our solver due to the aforementioned ambiguities, compar-
ison with the experimental data provides confidence in the
accuracy of the numerical results.

4.5 Cylinder drift and velocity

Before analyzing the unsteady acceleration and drag of the
deforming cylinder, it is informative to first look at the
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detailed drift and velocity histories of the cylinder. The cylin-
der’s drift, as measured off the forward stagnation point, is
shown in Fig. 12. For shock Mach numbers up to MS = 1.47,
our numerical results coincide well with the experimental
measurements, falling within the error bounds, and show a
slight improvement over the results from Chen [3]. For rea-
sons not yet understood, our comparison appears to deteri-
orate with increasing shock Mach number (as evidenced by
the discrepancy in the MS = 1.73 case).

As noted by Theofanous [38], the stagnation point drift
of the cylinder is an inaccurate representation of the center-
of-mass drift. To evaluate the significance of the error, we
compute both the location of the cylinder’s center of mass
[using (12)] and its leading edge (using αT = 0.50), and
plot both in Fig. 13 for the full range of simulated shock

123



Numerical simulations of the early stages 409

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Δ
x/
d 0

t∗

MS = 1.18
MS = 1.30
MS = 1.47
MS = 1.73
MS = 2.00
MS = 2.50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Fig. 13 Drift as measured from the center of mass (solid) and forward
stagnation point (dashed), and normalized by the original diameter

Mach numbers. The intersection of the center-of-mass and
leading edge curves can be seen for the MS = 2.00 and
MS = 2.50 cases. Although both sets of drift curves exhibit
similar overall behavior, it is obvious to see that significant
errors are incurred in the acceleration calculation if the fitted
polynomial is based on the leading edge trajectory. It is noted
that the appropriate non-dimensionalization of time using the
characteristic breakup time shown in (8) appears to collapse
the cylinder trajectories across all simulated MS .

The cylinder’s streamwise center-of-mass velocity, ū, is
computed using (13) and shown in Fig. 14. Though scaled
using the same characteristic breakup time, t∗, as the drift
curves, the velocity curves do not appear to collapse, and
clearly show that stronger shocks induce higher cylinder
velocities. This is expected since, in the shock-moving ref-
erence frame, post-shock air velocity increases with shock
Mach number. From these velocity curves, it can also be seen
that the transition from subsonic to supersonic freestream
flow does not seem to significantly alter the cylinder’s behav-
ior.

4.6 Unsteady acceleration and drag coefficient

The unsteady acceleration of a droplet suddenly exposed to
a high-speed flow, and specifically, its unsteady drag coeffi-
cient, is of interest in many applications. For example, when
modeling flows with particle or droplet clouds, the drag coef-
ficient is often the parameter used to model the dynamics of
the disperse phase. Attempts to calculate the drag coefficient
of a deforming body have often assumed constant acceler-
ation [21,31,33]. Indeed, the acceleration data reported by
Chen [3] are derived from the drift data under this assump-
tion. Despite the ubiquity of this simplification in the litera-
ture, our numerical results lead us to believe that this is not
an accurate representation of the underlying physics. For this
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Fig. 14 Center-of-mass velocity normalized by the post-shock air
velocity

reason, we do not make comparisons with Chen [3] for the
cylinder acceleration and drag coefficient.

Using (14), we compute the acceleration in the stream-
wise direction experienced by the cylinder’s center of mass,
ā. The results are plotted in Fig. 15, where acceleration has
been non-dimensionalized by the original cylinder diameter
and post-shock air velocity. The initial spike in acceleration
is the passage of the shock wave over the cylinder. As men-
tioned in Sect. 4.1, the maximum acceleration occurs when
the shock reflection on the cylinder’s surface transitions from
a regular reflection to a Mach reflection. Once the shock has
passed, the surrounding high-speed air begins to accelerate
the cylinder. The oscillations in the acceleration curves are
believed to be related to the vortex shedding process in the
cylinder’s wake. It is observed that oscillation frequency and
amplitude increase and decrease, respectively, as the incident
shock Mach number is increased. These changes in frequency
and amplitude can be attributed to differences in the devel-
opment of the wake behind the deforming cylinder.

In the course of our numerical analysis, we found that scal-
ing the non-dimensional acceleration by the pressure ratio
across the incident shock wave resulted in collapse of the
acceleration curves across all simulated shock Mach num-
bers. As far as we are aware, this has not been noted before
in the literature. The rescaled non-dimensional acceleration,
plotted in Fig. 16, is given by

ā∗ = ā

(
d0

u2
g

)(
p1

p2

)
, (16)

where p2
p1

is the pressure ratio across the incident shock.
Now that we have an accurate acceleration history for

the deforming cylinder, we can calculate its unsteady drag
coefficient. The drag coefficient is defined as:
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Fig. 16 Center-of-mass acceleration rescaled by the pressure ratio
across the incident shock

CD = D
1
2ρu2S

= mā
1
2ρg(ug − ū)2d

, (17)

where ρg and ug are the post-shock air density and velocity,
ū and ā are the velocity and acceleration of the cylinder’s
center of mass calculated using (13) and (14), m is the con-
stant liquid mass in the computational domain, and d is a
characteristic spanwise diameter. If we take the characteris-
tic spanwise diameter to be the original cylinder diameter,
d0, the computed drag coefficients, shown in Fig. 17, col-
lapse across the range of simulated MS , and all exhibit an
upward trend.

Though a time-dependent drag coefficient can be used to
model the dynamics of particles or droplets, an improvement
can be made by realizing that the drag coefficient calcula-
tion should account for the changing spanwise diameter of
the deforming cylinder. If we re-calculate the drag coeffi-
cient using the cylinder’s deformed diameter, ddef , it is found
that the resultant CD , shown in Fig. 18, can be reasonably
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Fig. 17 Unsteady drag coefficient based on the original diameter
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Fig. 18 Unsteady drag coefficient based on the deformed diameter

approximated as a constant over the initial breakup period.
It is notable that wave drag (in the case of supersonic post-
shock flow) does not significantly alter the drag coefficient
(as would be expected in the rigid body case). Not only is this
drag coefficient more physically correct than the one based on
the original cylinder diameter, it also simplifies the modeling
of particle and drop dynamics since it can be approximated
as a constant for the early times of breakup.

5 Conclusions

The breakup of water cylinders in the flow behind normal
shock waves has been simulated and is compared to pub-
lished experimental and numerical data. Our results sup-
port previous experimental observations regarding the strip-
ping breakup of the cylinders. Specifically, the water cylin-
der is initially compressed in the streamwise direction and
extended in its spanwise dimension. Tips are formed at the
cylinder’s periphery, which are drawn downstream by the
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surrounding flow. The stripping of material at the cylinder
periphery is partly attributed to the presence of a recircu-
lation region at the equator. The recirculation regions, not
noted before in the literature, are observed to result from the
interaction of two streams of opposite vorticity generated by
baroclinic torque on the cylinder surface. Engel [6] hypothe-
sized the existence of such vortices in the flow, which would
contribute to the formation of mist in the wake. An upstream
jet in the wake of the deforming cylinder is also observed to
persist for long times. The strength of this jet is expected to
be mitigated if either the symmetry assumption or the two-
dimensional approximation is relaxed.

Comparison with experimental data for metrics of the
cylinder’s deformation is hampered by uncertainties asso-
ciated with the experimental measurements and the numer-
ical method. However, reasonable agreement is shown to
the extent that the numerical results are able to bound,
and exhibit similar behavior to, the experimental results.
The transition from subsonic to supersonic freestream flow
does not alter the similarity of the solutions, and collapse
is shown for the unsteady acceleration and drag coefficients
for the range of simulated shock Mach numbers. The accel-
eration time histories of the deforming cylinders for dif-
ferent incident shock Mach numbers are shown to scale
with the pressure ratio across the incident shock wave. Fur-
thermore, the unsteady drag coefficient is seen to increase
with time when computed using the constant original cylin-
der diameter. However, when computed using the cylinder’s
deformed diameter, the unsteady drag coefficient can be
approximated as a constant over the initial breakup period.

Three-dimensional simulations and the inclusion of viscous
and capillary effects in future simulations will facilitate com-
parison with droplet experiments, and capture even more of
the multiscale and multiphase flow physics present in the
breakup process.
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Also, our gratitude to Guillaume Blanquart for his insight and guidance
in many useful discussions.

Appendix A: Grid resolution

As part of the grid resolution study, we simulated the Mach
1.47 shock wave case at three different resolutions. A time
history of these simulations is shown in Fig. 19. Though the
wake structure becomes more detailed as the grid is refined,
the overall qualitative features of the breakup process remain
similar. Features characteristic of stripping breakup, such as
the initial flattening of the cylinder and the formation of tips
at the cylinder’s periphery, are present at all three grid resolu-
tions. The recirculation regions at the cylinder’s equator and
the presence of an upstream jet in the wake are also observ-
able at all levels of grid refinement. Quantitative measure-
ments of cylinder deformation and center-of-mass properties,
used in the comparison with experimental data, do not show
significant differences between the original and doubled res-
olution. As an example, Fig. 20 plots the center-of-mass drift
calculated at the three different grid resolutions, and shows
negligible differences between the two finest grid sizes.
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Fig. 19 Numerical schlieren images (top) and filled pressure contours
(bottom) of the breakup of a 4.8 mm cylinder at t∗ = a 0.017 b 0.171
c 0.262 d 0.444 e 0.626 f 0.808 g 1.036 behind a Mach 1.47 shock.

Isocontours are shown for αl ≥ 0.9. Grid resolutions correspond to
600x300 (left), 1,200 × 600 (middle), and 2,400 × 1,200 (right) cells
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Fig. 20 Center-of-mass drift measurements at three grid resolutions

Appendix B: Experimental visualization comparison

The holographic interferograms of [19] used in Fig. 6 were
originally stated to be at t = 23µs and t = 43µs after “the
interaction between the incident shock wave and the water
column” [19]. We interpret this to mean the time after the
shock reaches the leading edge of the water cylinder. A com-
parison of the experimental interferograms and the numeri-
cal schlieren images from our simulations at these times is
shown in Fig. 21. It is clear from the figure that any compar-
ison is difficult to make since the images appear to be taken
at different times. In an attempt to reconcile the discrepancy,
digital measurements of the distance traversed by the inci-
dent shock were taken from the interferograms. Our mea-
surements indicate that the times should perhaps be closer
to 16 and 32µs, respectively. Numerical schlieren images at
these modified times are compared to the experimental inter-
ferograms in Fig. 6, and are seen to match the incident and
reflected shock locations. There is an inherent uncertainty

in the exact location of the boundary of the water cylinder,
owing to the thick ring on the holographic interferograms.
Measurements to obtain times of 16 and 32µs were taken
by assuming the boundary to be located in the middle of the
thick ring. Measurements taken from the edge of the ring
resulted in alternate times of approximately 22 and 42µs,
respectively, which are closer to the reported times in [19].
It is unclear whether this discrepancy in time is a result of a
reporting error in the original work, or a misinterpretation,
on our part, of what is meant by “the interaction between the
incident shock wave and the water column” [19].
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