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Abstract In this work, we investigate the growth of inter-
face perturbations following the interaction of a shock wave
with successive layers of fluids. Using the Discontinuous
Galerkin method, we solve the two-dimensional multifluid
Euler equations. In our setup, a shock impacts up to four adja-
cent fluids with perturbed interfaces. At each interface, the
incoming shock generates reflected and transmitted shocks
and rarefactions, which further interact with the interfaces.
By monitoring perturbation growth, we characterize the
influence these instabilities have on each other and the fluid
mixing as a function of time in different configurations. If the
third gas is lighter than the second, the reflected rarefaction at
the second interface amplifies the growth at the first interface.
If the third gas is heavier, the reflected shock decreases the
growth and tends to reverse the Richtmyer–Meshkov insta-
bility as the thickness of the second gas is increased. We
further investigate the effect of the reflected waves on the
dynamics of the small scales and show how a phase differ-
ence between the perturbations or an additional fluid layer
can enhance growth. This study supports the idea that shocks
and rarefactions can be used to control the instability growth.
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1 Introduction

Hydrodynamic instabilities play important roles in high-
energy-density physics (HEDP) problems [14], such as
in inertial confinement fusion (ICF) [27] and supernova
collapse [23]. The Richtmyer–Meshkov instability (RMI)
occurs in flowswhere a shock interactswith a perturbed inter-
face between two fluids of different densities. At interfaces,
the incoming shock deposits baroclinic vorticity that drives
the perturbation growth [5]. ICF capsules and supernovae
both consist of concentric layers of different materials in a
spherical geometry. As a result of high-energy lasers or star
collapse, shocks are generated and interact with these multi-
ple layers. The interfaces, already unstable to the shock inter-
action, further experience accelerations due to the converg-
ing geometry [16]. As a result, situations in which a heavy
material is accelerated into a lightmaterial are alsoRayleigh–
Taylor (RT) [36] unstable. These hydrodynamic instabilities
govern the subsequent hydrodynamics of the ICF capsule
and the supernovae. In ICF capsules, mixing between the
outer ablator shell and the inner fuel is one of the dominant
limitations preventing fusion burn [25].

The canonical RMI, consisting of a single planar shock
wave interactingwith a single planar interface separating two
fluids, has been studied extensively in the past, both exper-
imentally [11,21,29,37] and numerically [20,22,26,31,34].
While some of these studies have considered late-time mix-
ing, most have focused on the early time dynamics. Further-
more, little attention has been given to shocks interacting
with multiple interfaces, a set-up relevant to ICF and super-
nova collapse. Most of the research involving multiple layers
focused on gas curtains, as in [4,28,35],which consider a thin
layer of fluid within another fluid.

Systematic studies involving shocks interactingwith three
or more different fluids have yet to be performed. Following
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the interaction of a wave with an interface, a reflected and a
transmitted wave are produced. Depending on the acoustic
impedance of each fluid and the incoming wave, the waves
resulting from this interaction may be compressions or rar-
efactions. For systems with many layers, many such inter-
actions occur, and whether the growth of a given perturbed
interface is enhanced or inhibited depends on the direction
of the baroclinic vorticity deposited by all the waves. Thus,
although perturbations are expected to grow due to the RMI
of the incoming shock, this growth may be inhibited or
enhanced by rarefactions (i.e., transient acceleration fields
due to a varying pressure) depending on whether the system
is RT-stable. Furthermore, the growth may be enhanced by
additional RMI due to subsequent shock interactions. Even-
tually, these instabilities contribute to mixing between the
layers.

Our objective is to use numerical simulations to inves-
tigate the interaction of a shock wave with successive
perturbed interfaces, and specifically Richtmyer–Meshkov
(due to shocks) and Rayleigh–Taylor (due to rarefactions)
growth. We are interested in determining whether perturba-
tion growth is enhanced or inhibited due to the fluid prop-
erties (acoustic properties of the gases and separation). We
consider multiple adjacent ideal gases separated by single-
mode perturbed interfaces. We use the high-order accurate
Discontinuous Galerkin method to solve the multifluid Euler
equations [18,19]. Using two-dimensional simulations, we
analyze the effects of the shocks, rarefactions, and the sepa-
ration distance on the mixing between the three fluids. The
manuscript is organized as follows. First, the physical model
and numerical model are presented, followed by a valida-
tion study. We then investigate the perturbations growth for
our baseline problem (a shock interacting with three adjacent
gases), and quantify the mixing and small-scales dynamics.
We close with a discussion of phase differences between the
perturbations and the addition of a fourth fluid layer.

2 Physical model and numerical method

We consider the two-dimensional Euler equations,

∂ρ

∂t
+ ∂

∂x j

(
ρu j

) = 0, (1a)

∂(ρui )

∂t
+ ∂

∂x j

(
ρuiu j + pδi j

) = 0, (1b)

∂E

∂t
+ ∂
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[
u j (E + p)

] = 0, (1c)

where ρ is the density, ui is the velocity, E = ρe + 1
2ρuiui

is the total energy, e is the internal energy, p is the pressure
and δi j is the Kronecker delta. The system is closed by the

ideal gas equation of state relating the internal energy to the
pressure, ρe = p

γ−1 , where γ is the specific heats ratio. Here,
physical diffusion processes are neglected since we consider
high Reynolds number flows.

To avoid spurious pressure oscillations in flows with vari-
able γ , it is necessary to solve an additional non-conservative
transport equation for γ to capture interfaces [1],

∂

∂t

(
1

γ − 1

)
+ u j

∂

∂x j

(
1

γ − 1

)
= 0. (2)

We extended this approach to the Discontinuous Galerkin
method [18,19]. The Discontinuous Galerkin method [6–10]
is a numerical method for solving partial differential equa-
tions which combines the advantages of the finite element
and finite volume methods. In contrast with previous RMI
studies using finite difference and finite volume methods
[20,22,26,28,34], the numerical solution is represented in
each computational cell of the domain with high-order poly-
nomial basis functions. The method is therefore high-order
accurate and is superconvergent in the cell averages at a rate
of 2N +1 [2,3], where N +1 is the number of basis function
in each cell. Themethod’s compact stencil, i.e., cells commu-
nicate only with their direct neighbors, enables a highly scal-
able implementation for parallel architectures. Additionally,
the Discontinuous Galerkin method is naturally amenable to
unstructured grids. At cell interfaces, a Riemann solver is
implemented to calculate the fluxes between the cells. In this
paper, the cell fluxes are calculated by the approximate Rie-
mann solver ofRoe [33].Additionally, a limiting procedure is
required to avoid solution oscillations at flow discontinuities.
We use a non-oscillatory, conservative, and high-order accu-
rate limiting procedure based on hierarchical reconstruction,
which has been suitably modified to prevent spurious pres-
sure oscillations [19]. Solution limiting is performed gradu-
ally and hierarchically from the highest polynomial degree
to the lowest to retain as much of the high-order accuracy of
the method as possible. In contrast with other limiters, e.g.,
[7], the present limiter does not reduce the solution to first
order in the flow domain but is (N + 1)st order accurate. At
discontinuities, the scheme reduces to first order, as do all
finite volume, finite difference, and Discontinuous Galerkin
method shock-capturing schemes. The system is evolved in
time using the standard explicit fourth-order Runge-Kutta
method [24] with a Courant number of 0.5.

Taking advantage of the method’s compact stencil [7], a
highly parallel version of the method on graphics process-
ing units (GPU) is implemented. This allows for simulations
completing approximately two orders of magnitude faster
than on a single CPU. The high-resolution simulations in
this paper completed in approximately one hour. The simu-
lations were performed on GPUs at the Flux cluster at the
Center for Advanced Computing at the University of Michi-
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Fig. 1 Density (left), density
gradient (numerical schlieren,
middle), and vorticity fields
(right) for the single-interface
RMI. Shock wave moving
downwards. Air (top)–SF6
(bottom). a t = 0.1ms.
b t = 0.5ms. c t = 2.5ms.
d t = 6.5ms

gan.Mesh generation and post-processing visualizationwere
carried out with Gmsh, a three-dimensional finite element
mesh generator with built-in pre- and post-processing facil-
ities [15]. Our code has been used previously to simu-
late HEDP experiments of blast-wave-driven shear flow
[13].

3 Single-interface RMI validation

We use the single-mode RMI experiments of [11] to val-
idate our numerical method. Two gases, air and SF6, lie
in a shocktube at atmospheric pressure, and the interface
between the two is sinusoidally perturbed. The properties
of air are ρair = 1.351kg/m3, γair = 1.276, and those of
SF6 are ρSF6 = 5.494kg/m3, γSF6 = 1.093 [26]. The initial
amplitude and wavelength of the interfacial perturbations are
a0 = 0.183 cm and λ = 5.933 cm, respectively. The mean
air-SF6 interface is initially at y = 0. AMach 1.21 shock ini-
tialized in air impinges upon the perturbed interface, thereby
initiating the RMI growth.

For these simulations, the domain is one perturbation
wavelength wide in the x-direction and 20cm long in the
y-direction. The boundaries are periodic on the sides, and
we impose non-reflecting boundary conditions, modeled as
zero gradient boundary conditions, at the entrance and exit
of the shock tube. The domain is discretized uniformly in

x and y. The number of cells per wavelength is 128. We
use a linear polynomial basis (N = 1) for the Discontinuous
Galerkin method, resulting in third-order accuracy in smooth
regions. An exponential diffusion function is used to initial-
ize a thermodynamically consistent diffuse interface between
the gases [26], with a thickness set to 0.5cm. To avoid a large
spatial domain, we add a constant upward velocity calculated
from an exact Riemann solver so that the post-shock upward
mean velocity is zero and the interfaces remain in the domain.
As we are interested in the mixing layer width, the perturba-
tion amplitudes in this paper are measured as half the differ-
ence between the maximum and the minimum y-position of
the perturbation. The perturbation location is found by taking
the 0.5 contour level of the mass fraction field. This measure
of the amplitude does not take into account the phase of the
perturbation.

Upon interaction with the interface, the shock generates
baroclinic vorticity due to the misalignment of the density
and pressure gradients (Fig. 1a, b). As a result, the perturbed
interface grows in time, leading to bubbles of light fluid
penetrating the heavier one, and spikes of heavy fluid pen-
etrating the lighter one (Fig. 1c, d). Figure 2 compares the
early-time experimental growth (before reshock, at 6.6ms in
the experiment) of the instability with the simulation growth
at different resolutions. As the grid is refined, the results
(amplitude) converge in an integral sense, with good agree-
ment with the experimental data. The numerical results in
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Fig. 2 Instability growth versus time for the single-interface RMI.
Black squares experimental data from [11]. Lines simulation results
at 16 (solid red), 32 (dash green), 64 (dash-dot blue), 128 (dot orange),
and 256 (dash-dot-dot purple) cells per wavelength

this paper were performed using the grid with 128 cells per
wavelength.

4 Shock interaction with two successive interfaces

Our baseline problem consists of a shock interacting suc-
cessively with two interfaces separated by a distance h. Our
set-up can be described as three adjacent gases (A, B, and
C) with interfaces initially perturbed with the same single
mode, and a shock initialized in the first gas (Fig. 3). For com-

Fig. 3 Baseline multi-layered problem setup

Table 1 Relevant properties for the third gas (C)

Case Gas A Gas B ρC [kg/m3] γC

Nominal [11] Air SF6 – –

1 Air SF6 0.178 5/3

2 Air SF6 10 5/3

parison with single-interface RMI studies [11], we choose
air for gas A, SF6 for gas B, and a shock Mach number of
1.21. The goal is to understand how the physics depend on
the nature of the third gas (heavy or light—see Table 1). In
particular, we study the effect of increasing the thickness
of gas B (i.e., the distance separating gas A from gas C)
measured by the non-dimensional distance h

λ
, where λ is the

perturbation wavelength. We also change the density of gas
C, Table1, to create either a reflected rarefaction or shock
at the second interface. The nominal case (no gas C) cor-
responds to the experiment in [11] with no reshock, as in
Sect. 3.

4.1 Light third gas

We first consider a third gas (C), whose properties corre-
spond to helium and is lighter than SF6 (B). Figure 4 shows
the waves produced during the process in an x − t diagram,
and Fig. 5 provides a qualitative illustration of the effect these
waves have on the dynamics of the interfaces through con-
tours of density, density gradient (displayed as a numerical
schlieren image) and vorticity.When the shock interacts with
the first interface and deposits baroclinic vorticity (Fig. 5a),
a transmitted and a reflected shock are created; the reflected

Fig. 4 Wave diagram from a one-dimensional simulation for the base-
line problem with a light third gas (initial shock coming from the right,
h
λ

= 1). Solid red air-SF6 interface; dashed green SF6-light third gas
interface
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Fig. 5 Density (left), density gradient (numerical schlieren, middle),
and vorticity (right) fields for the baseline problem with a light
third gas and h

λ
= 1. Shock wave moving downwards. Air (top)–

SF6 (middle)–light gas (bottom). a t = 0.1ms. b t = 0.4ms.
c t = 0.5ms. d t = 0.8ms. e t = 2.5ms. f t = 6.5ms

shock eventually leaves the domain. The transmitted shock
then impinges upon the second interface, and deposits vortic-
ity (Fig. 5b). From this latter interaction, a reflected rarefac-
tion and another transmitted shock, which eventually leaves
the domain, are produced (Fig. 5c). The reflected rarefac-
tion propagates back towards the first interface and interacts
with the evolving instability (Fig. 5c). Given the sign of the
vorticity already present along the interface due to the first
shock interaction, this rarefaction further increases the vor-
ticity (Fig. 5d). Alternately, this process can be understood
as an accelerated interface in an RT-unstable configuration
due to the transient passage of the rarefaction. This overall
process thus initiates two spikes moving in opposite direc-
tions: one into gas A (produced by the incoming shock and
reflected rarefaction) and the other into gas C (due to the
transmitted shock). The nonlinear evolution of the perturba-
tions is visible in Fig. 5e, f. Eventually the reflected waves
diminish in strength and do not affect the dynamics of the
interfaces anymore.

The perturbation growth at both interfaces is shown in
Fig. 6 for different non-dimensional spacings h

λ
between the

interfaces.We start by considering the first interface (Fig. 6a).
Until the reflected rarefaction reaches it, the growthof thefirst
interface is that of the nominal case. A transition immediately
follows where the growth is nonlinear and increases dramat-
ically. This behavior is caused by rarefactions reflected from

the second interface and interacting with the first. These rar-
efactions deposit vorticity at the first interface in the same
direction as the initial shock, thus amplifying the initial
growth. Thesewaves have the effect of accelerating the heavy
fluid into the light fluid, an unstable configuration that leads
to transient RT growth. As h

λ
is increased, these waves reach

the first interface at later times. As a result, the perturbation
amplitude is largerwhen the rarefaction reaches the interface,
thus enhancing the baroclinic vorticity generation. Addition-
ally, the rarefactions have spread more, increasing the inter-
action time with the interface. In this RT unstable set-up,
the acceleration is applied for a longer time. For these two
reasons, the growth rate of the first interface increases with
increasing h

λ
. After t > 3ms, the growth rate is constant; it

is higher for larger values of h
λ
due to the larger amplitude at

the time of interaction. By then, the reflected and transmitted
waves have left the domain or decreased in amplitude such
that their effect on the growth is negligible.

The morphology and evolution of the second interface is
different and strongly depends on h

λ
(Fig. 6b). In the case of

h
λ

= 0.5, a single SF6 spike moves downward while the
air and helium interfaces start interacting on the sides of
the spike, (Figs. 6b, 7). The evolution of this interface for
h
λ

= 1.5 is very different. An initial central SF6 spike moves
downward. The interface then experiences a phase reversal
following interaction with the compression generated by the
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(a) (b)

Fig. 6 Interface growth versus time for the baseline problemwith a light third gas for different thicknesses of gas B. aAir-SF6 interface. b SF6-light
third gas interface

Fig. 7 Density gradient (numerical schlieren) for the baseline prob-
lem with a light third gas for h

λ
= 0.5. a t = 0.6ms. b t = 2.5ms.

c t = 5ms

reflection of the rarefaction at the first interface (Figs. 6b, 8).
This effect is less important for the h

λ
= 1 case, Fig. 6b. At

later times, interface proximity effects affect the flow dynam-
ics by enabling or preventing the phase reversal. In addition,
reflecting waves in the SF6 interact with higher amplitude
perturbations as the separation distance increases, thereby
increasing the baroclinic vorticity generation.

4.2 Heavy third gas

We now consider a third gas (C), which is heavier than SF6
(B). Figure 9 shows the different transmitted and reflected
waves in an x − t diagram, and Fig. 10 provides a qualitative
illustration of the effect these waves have on the dynamics of
the interfaces. In this set-up, the transmitted shock from the
first interface leads to a reflected and transmitted shock at the
second interface (Fig. 10a). Upon interaction with the evolv-
ing RMI at the first interface, the reflected shock decreases

Fig. 8 Density gradient (numerical schlieren) for the baseline prob-
lem with a light third gas for h

λ
= 1.5. a t = 2.5ms. b t = 3.8ms.

c t = 6.5ms

the amount of vorticity at the first interface by depositing
vorticity in the opposite direction (Fig. 10b). Both perturba-
tions grow in the same direction, with the first spike moving
slowly into gas A (Fig. 10c).

Figure11a illustrates the growth of the RMI at the first
interface for different h

λ
. The growth follows that of the nom-

inal case until the reflected shock from the second interface
reaches it. The growth and growth rate decrease thereafter,
more so as h

λ
increases. Because the reflected shock moves

from a dense to a less dense gas, the reflected shock deposits
vorticity in the opposite direction as the initial shock. Fur-
ther amplifying this effect, the greater distance implies that
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Fig. 9 Wave diagram from a one-dimensional simulation for the base-
line problemwith a heavy third gas (initial shock coming from the right,
h
λ

= 1). Solid red air-SF6 interface; dashed green SF6-heavy third gas
interface

the perturbation has grown more before interacting with the
reflected shock. As h

λ
increases, the growth rate becomes

negative, indicating a phase reversal of the RMI. Although
the set-up is analogous, the growth of the perturbation ampli-
tude does not increase as significantly as in experiments with
reshock [11] because of the weaker transmitted shock and
smaller interface perturbations at the time of interaction, as
in the previous section. The monotonic attenuation in the
amplitude with increasing h

λ
is most likely limited to cases

when the second shock interacts with the interface before
the perturbation becomes nonlinear. It is to be expected that
a reflected shock interacting with a nonlinear interface leads
to a large increase in the perturbation amplitude and increased
mix. For h

λ
=1.5, we observe “freeze-out” of the growth due

to the multiple wave interactions [28]. This supports the idea
that shell thickness and shock timing could be used advanta-
geously tominimize the amount of mix and spike penetration
in ICF capsules [14]. The second interface (between the SF6
and the heavy gas) exhibits continuous growth and no phase

Fig. 10 Density (left), density gradient (numerical schlieren, middle), and vorticity (right) fields for the baseline problem with a heavy third gas
and h

λ
= 1. a t = 0.5ms. b t = 0.7ms. c t = 5ms

(a) (b)

Fig. 11 Interface growth versus time for the baseline problem with a heavy third gas for different thicknesses of gas B. Black lines impulsive
model [32] for the growth after the interaction with the first shock and the reflected shock. a Air-SF6 interface. b SF6-heavy third gas interface
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Table 2 Density, velocity, and pressure from solving the shock inter-
actions with an exact Riemann solver for the baseline problem with a
heavy third gas (SI units)

Interaction Air SF6 Heavy third gas

Shock at 1st interface

ρ 1.87 5.5 10

u 103.6 0 0

p 1.52 × 105 105 105

Transmitted shock at 2nd interface

ρ 2.07 9.02 10

u 71.75 71.75 0

p 1.72 × 105 1.72 × 105 105

Reflected shock from 2nd interface at 1st interface

ρ 2.07 10.1 14.79

u 71.75 55.43 55.43

p 1.72 × 105 1.95 × 105 1.95 × 105

Post-shock refraction

ρ 2.21 9.74 14.79

u 50.21 50.21 55.43

p 1.87 × 105 1.87 × 105 1.95 × 105

reversal (Fig. 11b). The growth rates are similar since the
subsequent waves interact weakly with this interface after
the transmitted shock interaction.

In Fig. 11a, we compare the impulsive model [32] to the
initial growth rate of the instability and the growth rate after
the interaction with the reflected shock. The impulsivemodel
growth rate is given by

da

dt
= k�uA+a+

0 , (3)

where a(t) is the perturbation amplitude, a+
0 is the post-

shock amplitude, k is the perturbation wave number, A+ =
(ρ+

1 − ρ+
2 )/(ρ+

1 + ρ+
2 ) is the post-shock Atwood number,

and �u is the velocity jump at the interface following shock
refraction. For the nominal case, the growth rate is 7.4m/s
[26]. We solve three Riemann problems using an exact Rie-
mann solver to calculate the numerical values of A+ and
�u to determine the growth due to the reflected shock from
the second interface: (i) the initial shock interacting with the
first interface; (ii) the transmitted shock interacting with the
second interface; and (iii) the reflected shock from the sec-
ond interface interacting with the first interface. The various
states of the gases are reported in Table2. The a+

0 ismeasured
from two-dimensional simulations right after shock refrac-
tion: a+

0 = 0.38 cm for h
λ

= 0.5, a+
0 = 0.42 cm for h

λ
= 1,

and a+
0 = 0.58 cm for h

λ
= 1.5. We subtract the growth rate

due to the reflected shock from the initial nominal growth
rate to obtain the growth after reflected shock interaction:
da
dt = 5.49m/s for h

λ
= 0.5, da

dt = 6.07m/s for h
λ

= 1, and

da
dt = 8.38 m/s for h

λ
= 1.5. From Fig. 11a, the impulsive

model accurately predicts the initial growth rates after both
shock interactions and deviates from the simulation results
at later times, as expected. In Fig. 11b, the impulsive model
agreeswell with the initial growth rate of the second interface
for the three separation distances.

5 Fluid mixing

Although physical diffusion is neglected, we are interested
in mixing between the different fluids through fluid entrain-
ment and dispersion, i.e., at large and intermediate scales. For
analysis purposes, we use metrics analogous to those used to
measure chemicalmixing.We quantify the amount ofmixing
between the fluids using two different approaches.

We first define the mix between fluid A and B as

MAB =
∫

S
ρ2YAYB dS, (4)

where Y(i) is the mass fraction of fluid i . This equation rep-
resents the total reaction rate in a chemical reaction between
fluid A and B with a temperature invariant reaction rate
[17,30,38]. The total mix, M , in the system is defined as

M = MAB + MBC + MAC , (5)

where fluid A is the air, fluid B is the SF6, and fluid C is the
third gas.

To study mix without the effect of the density difference
between the first and second interface and to distinguish
between mixed gas and unmixed entrained gas, we use the
ratio of the total chemical product formed by the mixing
fluids and the entrainment length [12]. The chemical product
formed by a chemical reaction between fluid A and B limited
by the lean reactant and, with a stoechiometric coefficient of
0.5, is

YAB =
{
2YA, if YA ≤ 0.5,

2YB, if YB < 0.5.
(6)

The total chemical product in the system from this reaction
is equal to

PAB =
∫ ∞

−∞
〈YAB〉 dy, (7)

where 〈·〉 denotes the average in the (transverse) x-direction.
The maximum chemical product possible resulting from
complete mixing (homogenization) of the two fluids in each
y-plane is

hAB =
∫ ∞

−∞
YAB(〈YA〉, 〈YB〉) dy. (8)

This quantity is the entrainment length [12], which is also
a measure of mixing layer thickness. Another measure of
mixing can be defined as
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(a) (b)

Fig. 12 Mixing metrics versus time for the baseline problem with a light third gas for different thicknesses of gas B. a M . b �

(a) (b)

Fig. 13 Mixing metrics versus time for the baseline problem with a heavy third gas for different thicknesses of gas B. a M . b �

�AB = PAB

hAB
. (9)

This quantity is close to unity when the fluids are com-
pletely mixed, i.e., PAB ≈ hAB , and close to zero when the
fluids are segregated, i.e., PAB � hAB . It, therefore, distin-
guishes between mixed fluids and unmixed entrained fluids.
We quantify the total mixing in the system as

� = Pm
hm

= PAB + PBC + PAC

hAB + hBC + hAC
. (10)

For the light third gas case, M is shown in Fig. 12a. M
is larger for the light third gas case than the nominal case.
This is due to the large perturbation growth from the RT-
unstable phase driven by the rarefactions and the presence of
two interfaces mixing. M increases as h

λ
increases because

of the high growth of the first interface for larger h
λ
. Because

of the high density at the air-SF6 interface relative to that
at the SF6-light gas interface, M mostly measures the mix-
ing of the air with the SF6. Figure 12b shows the temporal
evolution of �. This quantity starts at a high value because
the perturbed interfaces are initially diffuse and no small-
scale features are present. The decrease in �, after the shock
and rarefaction interactions, is due to the entrainment of
the fluids that do not mix on these time scales as the mix-
ing region width increases. As time increases, the mixing
between the fluids increases, as does �. As h

λ
is varied, �

does not change significantly, indicating that an increase in
entrainment length is balancedwith a corresponding increase
in unmixed interpenetrating fluids. The mix between the first
and third gases, MAC and �AC , is essentially zero for all
cases.
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(a) Light third gas. (b) Heavy third gas.

Fig. 14 Enstrophy versus time for the baseline problem for different thicknesses of gas B. a Light third gas. b Heavy third gas

(a) Light third gas. (b) Heavy third gas.

Fig. 15 Turbulent kinetic energy versus time for the baseline problem for different thicknesses of gas B. a Light third gas. b Heavy third gas

For the heavy third gas case, because of the density weigh-
ing, M is dominated by the mixing at the second interface
(Fig. 13a). As h

λ
increases, the transmitted shock reaches the

second interface later in time. By then, the second inter-
face has stretched more before being shocked. The increased
length of this diffusion layer results in increased M with h

λ

after the transmitted shock interaction. M is almost constant
after the shock interaction because there is little entrainment
of the fluids. For the heavy third gas, � is generally much
lower than that for the light third gas (Fig. 13b). There is little
mixing of the fluids relative to the entrainment of the fluids.
When freeze-out occurs ( h

λ
= 1.5), there is a sharp reversal

of the downward trend in� because the interface is diffusing
numerically and no longer growing. For all cases, there is no
mix between the first and third gases.

6 Characterization of the dynamics at the small scales

To characterize the small-scale dynamics, we present the
time evolution of the mass-weighted enstrophy in the whole
domain,

Ω =
∫

S
ρω2 dS, (11)

where ω = ∇ × u is the vorticity (Fig. 14). The curl is
computed using the Gmsh Curl plugin which evaluates the
derivatives of the Lagrange shape functions in each cell. The
derivative operator for the present simulations is, therefore,
second-order accurate. Ω varies with resolution for inviscid
calculations but the overall trend, main features, and conclu-
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(a) (b)

Fig. 16 Interface growth versus time for the baseline problem with a light third gas and h
λ

= 1 for different phase misalignments. a Air-SF6
interface. b SF6-light third gas interface

(a) (b)

Fig. 17 Interface growth versus time for the baseline problem with a heavy third gas and h
λ

= 1 for different phase misalignments. a Air-SF6
interface. b SF6-light third gas interface

sions remain unchanged when comparing to higher resolu-
tion simulations.

For both the heavy and the light third gas, the shock pas-
sage creates a jump in enstrophy due to baroclinic vortic-
ity deposition at the interfaces and the generation of small
scales. These small-scale features are more prevalent in the
light third gas case, as indicated by the higher enstrophy
(Fig. 14a). The increase in enstrophy by the reflected rar-
efaction waves as explained in Sect. 4.1 is clearly noticeable.
For this case, increasing h

λ
further amplifies the small scales

in the domain because the rarefaction interacts with a larger
perturbed interface for a longer time.

For the heavy third gas case, the small-scale features are
not as prevalent (Fig. 14b). The reflected shock interacts with
a heavy-light interface, as opposed to the initial shock, and,

therefore, the density gradient direction is opposite to that of
the initial shock. As a result, this reflected shock generates
baroclinic vorticity in the direction opposite to that of the
initial shock, thereby reducing the amount of enstrophy in
the domain (Fig. 14b). For this case, the enstrophy decreases
as h

λ
increases because the perturbation is larger, amplifying

the baroclinic vorticity generation of the reflected shock.
At the time of interaction with the second interface, the

curvature of the shock wave depends on the distance it has
traveled since the first interaction. For h

λ
= 0.5, it retains

some curvature upon interaction due to the first interface
interaction. For large values of h

λ
, the shock wave adopts a

planar configuration by the time it reaches the second inter-
face. This effect may account for the observed differences in
the growths of the second interface (Fig. 11b) as a curved
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(a) (b)

Fig. 18 Air-SF6 interface growth versus time for the baseline problem, h
λ

= 0.5 for different phase misalignments. a Light third gas. b Heavy
third gas

Fig. 19 Density (left), density gradient (numerical schlieren, middle) and vorticity (right) fields for the baseline problem and a light third gas( h
λ

= 0.5 and �ϕ = λ
2

)
. a t = 0.5ms. b t = 1ms. c t = 3ms

Fig. 20 Density (left), density gradient (numerical schlieren, middle) and vorticity (right) fields for the baseline problem with a heavy third gas( h
λ

= 0.5 and �ϕ = λ
2

)
. a t = 0.5ms. b t = 2ms. c t = 7ms

shock deposits more baroclinic vorticity at the interface.
Higher enstrophy is in fact observed for h

λ
= 0.5 while the

other twodistances have similar enstrophyprofiles (Fig. 14b).
Calculating the energy of the small-scale motions can fur-

ther expand our understanding of the energy at the small
scales. We denote the average velocities in each horizontal
cross section (spanwise direction) ū and v̄ and calculate the

“turbulent kinetic energy” (TKE),1

TKE =
∫

S

1

2
ρ

[
(u − ū)2 + (v − v̄)2

]
dS, (12)

1 Since the present simulations are two-dimensional, they cannot rep-
resent vortex stretching, and thus turbulence. By TKE, our intent is to
describe the energy contained in the small scales.
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Fig. 21 Density (left), density gradient (numerical schlieren, middle) and vorticity (right) fields for the baseline problem with a light third gas( h
λ

= 0.5 and �ϕ = λ
4

)
. a t = 0ms. b t = 0.5ms. c t = 5ms

(a) (b)

Fig. 22 Air-SF6 interface growth versus time at h
λ

= 1 with a fourth gas. a Light third gas. b Heavy third gas

(a) (b)

Fig. 23 Mixing metrics versus time for the light third gas case at h
λ

= 1 with a fourth gas. a M . b �
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(a) (b)

Fig. 24 Wave diagram from a one-dimensional simulation for the light
third gas case with a fourth gas (initial shock coming from the right,
h
λ

= 1). Solid red: air-SF6 interface; dashed green: SF6-light third gas

interface; dashed-dot blue: third-fourth gas interface. a Lighter fourth
gas. b Heavier fourth gas

(a) (b)

Fig. 25 Mixing metrics versus time for the heavy third gas case at h
λ

= 1 with a fourth gas. a M . b �

shown in Fig. 15. In the case of a light third gas, the initial
shock and subsequent reflected rarefaction greatly increase
the TKE in the domain with respect to the nominal case
(Fig. 15a). This is due to the effect of the reflected rarefaction
as detailed previously. However, for the heavy third gas case,
the reflected shock causes a significant drop in TKE when it
deposits vorticity in the opposite direction as the initial shock
(Fig. 15b). For all cases, the slight decrease in enstrophy and
TKE as a function of time is most likely due to numerical
diffusion.

7 Effect of a phase difference between successive
interfacial perturbations

In the problems to this point, we aligned the interfaces so
that the initial perturbations are in phase. In this section, we

investigate the effect of a “misalignment” on the perturba-
tion growth. Because of the periodic nature of the problem,
we restrict our study to a phase difference between the first
and second interfaces �ϕ ∈ [0, λ

2 ]. Specifically, we choose
�ϕ = λ

4 and λ
2 to compare to our baseline problem, where

�ϕ = 0.
The effect of the phase difference depends on the sepa-

ration distance between the interfaces. When the interfaces
are separated by a distance larger than h

λ
= 1, the effect of

�ϕ on the growth of either interface is negligible for both
the light and heavy third gas cases (Figs. 16, 17). A slight
asymmetry in the interface perturbation appears at late times
but it is not very noticeable.

When the interfaces are closer to each other, e.g., h
λ

= 0.5,
the effect of �ϕ is more noticeable. For the light third gas
case, the growth of the perturbations is enhanced (Fig. 18a).
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(a) (b)

Fig. 26 Wave diagram from a one-dimensional simulation for the
heavy third gas case with a fourth gas (initial shock coming from the
right, h

λ
= 1). Solid red air-SF6 interface; dashed green SF6-heavy

third gas interface; dashed-dot blue third-fourth gas interface. a Lighter
fourth gas. b Heavier fourth gas

When �ϕ = λ
2 , the vorticity is deposited in the same direc-

tion at both interfaces in each half of the domain (Fig. 19),
thereby increasing the growth. This happens to a lesser
extent for �ϕ = λ

4 . The case �ϕ = λ
2 with a light third

gas is analogous to the SF6 gas curtain presented in [28]
when the amplitudes of both interfaces are equal and oppo-
site. Although our setup differs in the shock Mach num-
ber, initial perturbation amplitudes, and density ratios, [28]
observes the same qualitative perturbation growth at both
interfaces.

For the heavy third gas case, the growth diminishes as�ϕ

increases (Fig. 18b). For �ϕ = λ
2 , the vorticity is deposited

in the opposite direction at both interfaces in each half of
the domain (Fig. 20), thereby decreasing the growth. This
happens to a lesser extent for �ϕ = λ

4 . When �ϕ = λ
4 ,

there is a clear asymmetry in the evolution of the interfaces
(Fig. 21). This behavior is due to asymmetricwave reflections
and interface proximity effects.

8 Effect of a fourth gas

In this section, we study the effect of a fourth gas on the
growth of the instability at the first interface. For the light
third gas case, we use air as a heavier fourth gas and a gas
with ρ = 0.05kg/m3 and γ = 5

3 as a lighter gas. For the
heavy third gas case, we use air as a lighter fourth gas and a
gas with ρ = 15kg/m3 and γ = 5

3 as a heavier gas.
The presence of a fourth gas can significantly change the

growth. For a heavier fourth gas (Fig. 22a), growth of the
first interface is enhanced. However, the amount of mix does

not change significantly (Fig. 23). The heavier fourth gas has
little effect on the mix. The wave dynamics are such that
the reflected rarefactions are stronger and affect the interface
for a longer period of time (Fig. 24). A lighter third gas sup-
presses the growth and the mixing as the reflected waves
are weaker and their interactions decrease the baroclinic
vorticity.

For the heavy third gas case, the growth is enhanced
when using a lighter fourth gas (Fig. 22b). At the third inter-
face, a rarefaction is reflected back towards the first interface
(Fig. 26a), initiating a Rayleigh–Taylor growth phase at the
first interface. When using a heavier fourth gas, a shock is
reflected at the third interface, further amplifying the effect
of the first reflected shock by depositing vorticity in the oppo-
site direction as the initial shock and thereby decreasing the
growth. Since the growth is small, � increases because there
is a small amount of entrained fluid relative to the mixed
fluid (Fig. 25). For both the heavier and lighter fourth gas
cases, M is larger because of the density weighing of the
mass fractions. Though the perturbation growth for the heav-
ier fourth gas case is smaller, there is increased mix in the
domain.

9 Conclusions

In this work, we used a high-order accurate Discontinuous
Galerkin method to simulate the interaction of a shock wave
with successive interfaces separating different gases. In par-
ticular, we investigated the effect of the acoustic impedance
(and density) of the third gas on the growth of the RMI at the
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different interfaces. Through this study, we make the follow-
ing conclusions:

– If the third gas is lighter than the second gas, the reflected
rarefaction at the second interface amplifies the growth
at the first interface for two main reasons: the reflected
rarefaction deposits vorticity in the same direction as the
incoming shock and the perturbation amplitude at the time
of interaction with the rarefaction has grown. If the third
gas is heavier, the reflected shock decreases the growth and
tend to reverse the perturbation growth as the thickness
of the second gas increases. This behavior is governed
byRichtmyer–Meshkov (instantaneous acceleration of the
interface) and Rayleigh–Taylor (acceleration of a heavy
fluid into a light one) instabilities, which are both transient
in this problem.

– The results strongly depend on the separation distance
between the interfaces.We observed freeze-out in the case
of a heavy third gas. This study supports the idea that
perturbation growth may be controlled using rarefactions
and shocks [27].

– We characterized fluid mixing through two different met-
rics. The light third gas resulted in higher fluid mixing
relative to entrained unmixed fluid than the heavy third
gas case.

– To represent the behavior at the small scales, we character-
ized the temporal evolution of enstrophy and energy of the
small scales by relating this to the effect of the reflected
waves.

– The phase difference between the perturbations does not
affect the growth if the interfaces are far from each other.
Because of baroclinic vorticity and interface proximity,
the phase difference has a significant affect on the growth
if the interfaces are initially close to each other.

– By adding a fourth gas, we can significantly increase
the growth in a light-heavy-light-heavy or a light-heavy-
heavier-light configuration. This effect is due to the
RT-unstable phase of the growth induced by reflected
rarefactions.

The present work presents an exploration of a small range
of the parameter space; future exploration of the number of
layers, gas properties and thicknesses, and amplitude prop-
erties are desirable to better understand this problem. This
study forms the basis for further three-dimensional studies
of randomly perturbed interfaces, transition to turbulence,
and late-time mixing evolution. A more in-depth investiga-
tion of such a set-upmay be beneficial to control perturbation
growth in ICF.
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