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Abstract A dense, solid particle flow is numerically stud-
ied at a mesoscale level for a cylindrical shock tube problem.
The shock tube consists of a central high pressure gas driver
section and an annular solid powder bed with air in void
regions as a driven section with its far end adjacent to ambi-
ent air. Simulations are conducted to explore the fundamental
phenomena, causing clustering of particles and formation of
coherent particle jet structures in such a dense solid flow. The
influence of a range of parameters is investigated, including
driver pressure, particle morphology, particle distribution and
powder bed configuration. The results indicate that the phys-
ical mechanism responsible for this phenomenon is twofold:
the driver gas jet flow induced by the shock wave as it passes
through the initial gaps between the particles in the innermost
layer of the powder bed, and the chaining of solid particles
by inelastic collision. The particle jet forming time is deter-
mined as the time when the motion of the outermost particle
layer of the powder bed is first detected. The maximum num-
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ber of particle jets is bounded by the total number of particles
in the innermost layer of the powder bed. The number of par-
ticle jets is mainly a function of the number of particles in the
innermost layer and the mass ratio of the powder bed to the
gas in the driver section, or the ratio of powder bed mass (in
dimensionless form) to the pressure ratio between the driver
and driven sections.

Keywords Particle clustering · Particle jetting ·
Inelastic collision

1 Introduction

It is widely observed in volcanic eruptions, supernovae and
heterogeneous explosive detonations that the expansion of
condensed-phase particles forms clusters and coherent jets.
A coherent jet due to heterogeneous explosive detonation
as shown in Fig. 1 consists of many clusters of particles.
In the case of detonation of an explosive mixture containing
densely-packed solid particles, particle clustering and jetting
are generated at the very early stage of the particle dispersal
process, which then persist for a long time (see, e.g., Fig. 1)
[1–4]. The fundamental physics of this phenomenon puz-
zles many researchers, who have studied dense solid particle
flows to-date. As a result, considerable efforts and research
interests have been incurred in both experimental studies
and numerical simulations to understand jetting formation
mechanisms. Based on the experiments of spherical miti-
gated charges that consist of a central explosive surrounded
by mitigants, Milne et al. [1] postulated that the jet struc-
tures must have already formed before the outer surface of
the powder bed became unstable. Since the interface between
the explosive charge and mitigants was invisible from their
radiographs, the exact timing of the “early” time cannot be
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Fig. 1 Explosive dispersal of a 2L cylindrical charge that consists of a small cylindrical C4 explosive packed in a central glass tube surrounded by
an annulus of atomized dry aluminum particles [4]

determined experimentally. They also investigated the time
scale associated with the instability, which contributed to the
formation of jets, and speculated that the Rayleigh Taylor
instability was not likely the cause of the formation of jet
structures. Frost et al. [3] carried out a series of exploratory
experiments of both spherical and conical charge configu-
rations to gain insights into what caused the jet formation
in densely-packed particle dispersion. They observed that
the diameter and material density of the particle in a packed
powder bed and the explosive mass significantly influenced
the development of instabilities at the outermost surface of
the expanding powder bed. They postulated that the number
of jets formed was governed by a subtle balance between
the detonation expansion (which tended to fracture layers of
particles) and the viscous resistance of the shock-compacted
powder bed. The ratio of particle expanding inertial force to
viscous force during the shock compaction of the particle lay-
ers was represented by a particle compaction Reynolds num-
ber. When the compaction Reynolds number was below a cer-
tain threshold, the outer surface of the powder bed expanded
smoothly and no jet structures were observed in the experi-
ments. Zhang et al. [4] conducted a number of particle dis-
persal experiments using a cylindrical explosive surrounded
by either a pure liquid, dry solid particles as exemplified
in Fig. 1 or a mixture of both. A careful analysis of these
trial data indicated that the powder bed fragmentation or the
incipient number of particle jets was mainly dominated by
the initial expansion velocity of the powder bed [5]. The
experimental initial particle expansion velocity was found to
be in good agreement with the so-called “Gurney velocity”,
which was determined by the mass ratio of the powder bed
to the explosive. After the jet formation stage, the number of
particle jets decreased with the dispersal distance from the
center of the charge due to the late clustering and merging
of particles as observed in the experiments, likely affected
by the aerodynamic forces acting on particles. Ripley et al.
[5] further performed two-phase CFD simulations incorpo-
rating a simple particle attraction model, which was designed
to be proportional to the gradient of particle volume fraction
and applied only in the jet formation phase. Their macro-
scopic numerical modeling results demonstrated that either
the initial perturbations at the material interface or the simple

particle attraction model could lead to clustering of particles
and, hence, formation of coherent jets.

Despite the progress made to date in dense solid particle
multiphase flow simulations, the true mechanisms causing
particle jetting are still unknown due to the complex phe-
nomena involved in the early phase of detonation expansion,
including shock-particle interaction, particle collision and
turbulence. Experimental visualization or diagnostics for the
particle-jetting formation process at mesoscale are still very
challenging. The mesoscale CFD simulations (albeit the total
number of particles in the simulations is limited by the com-
puter resources available), on the other hand, may be applied
to track and visualize the particle trajectories caused by
shock-particle and particle-particle interactions, thus helping
elucidate the mechanisms that lead to clustering of particles
and formation of particle jets. This tool can also be used to
assist the development of improved drag-force and heat trans-
fer models required in macroscopic multiphase-flow CFD
codes, in which particle clustering and jetting are merely
modeled through the momentum and energy exchange source
terms in their respective momentum and energy equations.

In the present paper, a cylindrical shock tube using a
packed annular particle bed (also referred to as a “powder
bed” herein) placed in the driven section with its far end adja-
cent to ambient air is investigated. Note that any solid particle
in the present shock tube problem is analogous to a large clus-
ter of particles formed in an expanding powder bed in hetero-
geneous explosive detonation (see, e.g., Fig. 1). Numerical
studies at mesoscale are performed over a range of parame-
ters, including driver gas, particle morphology, particle dis-
tribution, and powder bed configuration, in order to under-
stand the fundamental phenomena and physical mechanisms
responsible for the clustering of particles and the formation
of particle jet structure in the dense, solid particle flow as
a result of shock compaction and expansion. The HLLC3D-
IBM code is used, which is based on the monotone integrated
large eddy simulation (MILES) approach [6] combined with
the ghost-cell immersed boundary method (GCIBM) [7].
A novel multiple-particle collision model is proposed here
to resolve explicitly shock-particle, particle-wake/boundary-
layer and turbulence-particle interactions and inelastic par-
ticle collision. This code has been employed to conduct a
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preliminary investigation of the physical mechanisms caus-
ing particle collision in post-detonation flows [8].

The paper is organized as follows: In Sect. 2, the numer-
ical algorithms employed in the HLLC3D-IBM code for
mesoscale simulations are described. In Sect. 3, the simu-
lation results for a reference case, referred to as the “Basic”
case, are then presented and the mechanisms responsible for
the formation of particle jets are discussed. Extensive para-
metric studies to pinpoint the underlying physics, which con-
trols the number of particle jets are addressed in Sect. 4.
Finally, concluding remarks are drawn in Sect. 5.

2 Numerical approaches for mesoscale simulations

A two-dimensional cylindrical shock tube with a high-
pressure driver section and a packed annular particle bed
placed in the driven section with its far end adjacent to ambi-
ent air is investigated. The HLLC3D-IBM code is employed
for the present study to model particle collision and agglom-
eration processes. The two-dimensional governing equa-
tions, satisfying mass, momentum and energy conservation
laws, are given below,

∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

= 0 (1)

where U is the vector of conservative variables (ρ, ρu, ρv,
ρE), and E and F are given below

E =

⎛
⎜⎜⎝
ρu
ρu2 + p − τxx

ρuv − τxy

(ρE + p)u + ψx

⎞
⎟⎟⎠ F =

⎛
⎜⎜⎝
ρv

ρuv − τxy

ρv2 + p − τyy

(ρE + p)v + ψy

⎞
⎟⎟⎠

(2)

with

ψx = − uτxx − vτxy + qx

ψy = − uτxy − vτyy + qy
(3)

The viscous stress tensor τi j , heat flux qi and the equation of
state (EOS) are written as:

τi j = μ

[
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

(
∂uk

∂xk

)
δi j

]

qi = −k
∂T

∂xi

p = (γ − 1)ρ

[
E − 1

2

(
u2 + v2

)]
(4)

whereμ is the dynamic viscosity, k is the thermal conductiv-
ity and γ is the specific-heat ratio. The HLLC approximate
Riemann solver [9], combined with the MUSCL-Hancock
method and an explicit time-stepping scheme, is used to
achieve second-order accuracy of solutions in both space and
time (details can be found in [10]).

A mesh containing highly-stretched cells adjacent to walls
is usually required for a “wall-resolved” large eddy simula-
tion (LES), which is computationally expensive and imprac-
tical to be considered for the present work involving many
randomly moving particles on a (background) uniform Carte-
sian grid. Instead, the following simple log-law-based wall
model (see, e.g., Sagaut [11]) is employed here:

U+
t = Ut

Uτ
= 1

κ
ln(Ey+) (5)

where Ut is tangential velocity, Uτ is the friction velocity,
E(≈ 9.8) is an empirical constant,κ ≈ 4.2 is the von Karman
constant, and y+ is defined as

y+ = ρUt y

μ
(6)

where y is the distance normal to the surface of a cylindrical
particle. Based on the above assumptions, the above wall
model can be implemented as follows:

1. Make an initial guess for Uτ .
2. Calculate y+ using (6).
3. Calculate λ:

λ = μ

y
, if y+ ≤ 11.6

λ = ρUτ κ

ln
(
Ey+) , if y+ > 11.6

(7)

4. Calculate Uτ =
√
λUt
ρ

.

5. Compare Uτ with its value in the previous iteration. If
the difference is greater than the convergence threshold,
go to step (3).

6. Calculate the additional source terms in the x- and y-
momentum equations:

Sx = −AREAxρU 2
τ ut/ |Ut |

Sy = −AREAyρU 2
τ vt/ |Ut |

(8)

where ut , vt are the x- and y-components of the tangen-
tial velocity vector Ut , and AREAx and AREAy are the
x- and y-projected areas on a solid boundary.

Equations (1)–(6) allow a high-resolution total variation
diminishing (TVD)-based Navier–Stokes code to be used as
the main numerical tool for the present simulations based on
the concept of the MILES [12] in order to increase the overall
computational efficiency. Here, we assume that the numer-
ical viscosity associated with the 2nd-order TVD scheme
based on the “minmod” limiter behaves like the sub-grid-
scale (SGS) viscosity, and is sufficient to drain the turbulence
energy in high-wave-number regimes.
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Fig. 2 Two sample cases in
IBM to deal with an image point
adjacent to a slanted wall: a four
fluid cells surrounding the
image point; b one of the cells
surrounding the image point is a
ghost cell

Image point

2

4

3

1

(a) (b)
ghost cell

Image point

2

4

3

1

ghost cell

To effectively simulate moving circular particles on a
(background) Cartesian mesh, the GCIBM proposed by
Tseng and Ferziger is implemented in the code [7]. The key
idea of GCIBM is to calculate the numerical boundary con-
ditions in the ghost cells, and it involves two major steps.
The first step is to use the “ray-tracing” technique to flag the
ghost cells, and the second step is to determine the image (or
mirror) point in the fluid region corresponding to the centroid
of each ghost cell lying in the solid region. The numerical
value of the solution variable at each image point is evaluated
by using a bilinear interpolation based on the four surround-
ing nodal values. Specific implementation details for a two-
dimensional inviscid flow are described below by reference
Fig. 2a for illustration purposes:

1. The velocity vector at solid boundaries, UB = ut
Bet +

un
Ben (where et and en are the unit vectors tangential

and normal to walls, respectively) is split into its tangen-
tial and normal components (ut

B, un
B) satisfying the “slip

condition” and the “impermeability condition”:

∂ut
B

∂n
= 0 � ut

I − ut
G


n
, un

B = 0 � 1

2

(
un

G + un
I

)
(9)

The subscripts “G” and “I ” in (9) denote the value at the
“ghost” and “image” locations, respectively, and 
n is
the normal distance between the ghost and image nodes.
Equation (9) above can be re-written as follows to deter-
mine the boundary conditions at ghost cells:

ut
G = ut

I , un
G = −un

I (10)

where ut = uny −vnx , un = unx +vny , and n = nx ex +
nyey is the unit vector normal to walls. ex and ey are the

unit vectors in the x- and y-directions, respectively. Note
that the velocity vector U = ut et + unen = uex + vey .

2. The values of ut and un at the image point are determined
by using the following bilinear interpolation formula:

φ(x, y) = C1 + C2x + C3 y + C4xy (11)

in which φ = ut or un . The coefficients C1–C4 can be
obtained from

⎡
⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

1 x4 y4 x4 y4

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
φ1

φ2

φ3

φ4

⎤
⎥⎥⎦ (12)

where φ1, φ2, φ3, φ4 are φ at the centroid of four cells
surrounding the image point, and then φ at the image
location can be calculated by

φI = C1 + C2xI + C3 yI + C4xI yI (13)

3. The Cartesian velocity components (u, v) at the ghost
point, used as the boundary conditions for the momentum
equations, are

uG = ut
I ny − un

I nx , vG = − (
ut

I nx + un
I ny) (14)

However, if one of the four cells surrounding the image point
is a ghost cell, a special treatment is needed as explained
below by reference to Fig. 2b. As seen, φ4 ≡ φG is a ghost
cell. If φG = ut

G = ut
I (satisfying the slip condition) from

(11), we can derive
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⎡
⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

0 xG − xI yG − yI xG yG − xI yI

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
φ1

φ2

φ3

0

⎤
⎥⎥⎦

(15)

Similarly, ifφG = un
G = −un

I (satisfying the impermeability
condition), then

⎡
⎢⎢⎣

C1

C2

C3

C4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

2 xG + xI yG + yI xG yG + xI yI

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣
φ1

φ2

φ3

0

⎤
⎥⎥⎦

(16)

Once we have determined ut
I and un

I by (13), (15) and (16),
we can calculate uG and vG from (14). If two or more cells
surrounding the image point are ghost cells, similar special
treatments can also be derived.

The test case of shock diffraction over a circular cylin-
der at Mach number 2.81 was performed on four different
grids of 200 × 200, 250 × 250, 300 × 300 and 400 × 400
nodes, respectively. Only results for the last two fine grids are
shown in Fig. 3. As seen, a triple point occurs where the inci-
dent, Mach shock and reflected shock intersect. The triple-
point path is tangent to the cylinder at an angle of 30.6◦ on a
mesh of 300 × 300 nodes and 30.7◦ on a mesh of 400 × 400
nodes, an observation/result which agrees fairly well with the
result of 30.8◦ reported by Ripley et al. [12] obtained with
an unstructured-grid method.

A multi-particle collision model is crucial in the investi-
gation of mechanisms for clustering and agglomeration of
particles and formation of particle jets in a dense solid par-
ticle flow. The traditional collision model described in (17)
below is only valid for a two-particle collision. When two
particles collide with each other, particle velocities at pre-
and post-collision instants can be determined by the fol-
lowing model, which assumes that the two hard, spherical
particles can instantaneously change their velocities upon
collision [13]:

u′
p,1 = up,1 − meff

mp,1
(1 + ε)(up,12 · e)e

u′
p,2 = up,2 + meff

mp,2
(1 + ε)(up,12 · e)e,

(17)

where the effective mass is

meff = mp,1mp,2

mp,1 + mp,2
(18)

and ε is the restitution coefficient. The velocity vector with
the superscript of prime stands for the post-collision velocity
vector. Note that for ε = 1, the total kinetic energy is con-
served, and the collision occurs elastically. e = r1−r2|r1−r2| =

Fig. 3 Shock diffraction over a circular cylinder at Mach 2.81 on two
different grids: 300 × 300 nodes (top) and 400 × 400 nodes (bottom).
XC and YC are nondimensionalized based on the cylinder diameter

r12|r12| , where r12 is the vector which joins the centers of par-
ticles at the very moment when they come into contact.
up,12 = up,1 − up,2 is the relative velocity of two particles
before collision. For two particles with the same size, the
post-elastic collision velocity can be derived from (17) and
(18) as,

u′
p,1 = up,2

u′
p,2 = up,1

(19)

If ε = 0, the complete energy associated with the rel-
ative motion is lost or dissipated, and the particles are
bound together after a collision, which is classified as an
inelastic collision. For two particles with the same size, the
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Fig. 4 Illustration of collision of multiple particles at a given time step

Table 1 A list of two-particle collision scenarios shown in Fig. 4

Collision no. Particle no. Particle no.

Collision #1 1 2

Collision #2 2 3

Collision #3 2 5

Collision #4 7 8

Collision #5 8 9

Collision #6 4 6

post-inelastic collision velocity can be derived from (17) and
(18) as,

u′
p,1 = u′

p,2 = 1

2

(
up,1 + up,2

)
(20)

Equations (17) and (18) are extended to handle multiple par-
ticle collisions in this work. If several particles collide inelas-
tically at the same time, the post-collision velocity of all par-
ticles involved is the (weighted) average of the pre-collision
particle velocities. A group of colliding particles sticking
together will form as observed in the experiments. In the
next time step, however, the group of (agglomerated) parti-
cles will possibly collide with other particles, which were not
involved in the previous collision, or two or more groups of
particles may collide and merge to form an even bigger group.
This can introduce significant algorithmic complexity when
implementing the GCIBM method. A recursive approach is
therefore required to check each particle group until all par-
ticles in the post-collision phase satisfy the (numerical) col-
lision criterion; namely, collision is considered occurring if
the distance between centroids of two adjacent cylindrical
particles is less than about 1.1dp. The factor 1.1 here is some-
what arbitrary, depending on the number of grid cells used to
explicitly resolve each particle in the computational domain.

Figure 4 exemplifies multiple particle collisions in a
particle-laden flow. According to the above collision crite-
rion, the number of two-particle collisions can be counted
and listed in Table 1. The two-particle collision scenarios
listed in Table 1 can be subdivided into three groups as illus-
trated in Table 2, in which the particle numbers (by reference
to Fig. 4) involved in each group are given. Take group #1

Table 2 A list of multi-particle collision groups shown in Fig. 4

Group no. Particle no. Particle no. Particle no. Particle no.

Group #1 1 2 3 5

Group #2 7 8 9 −
Group #3 4 6 − −

Table 3 The number of particles
for each collision group shown in
Fig. 4

Group no. Number
of particles

Group #1 4

Group #2 3

Group #3 2

involving 4 particles as an example. From Table 1, we notice
that particle 2 is involved in two-particle collision scenarios
#1 and #2. This implies that particles 1, 2 and 3 can form a
group of three particles. Since particle 2 is also involved in
two-particle collision scenario #3, we then increase the size
of the aforementioned group by including particle 5 as well.
This results in group #1 in Table 2, containing particles #1,
#2, #3 and #5. Similar arguments apply to groups #2 and #3
in Table 2. Finally, the number of total particles involved in
each group due to multiple particle collisions is counted and
listed in Table 3, based on the results given in Table 2.

Let us assume all particles have the same mass, size and
shape, and only inelastic collision (ε = 0) is considered
here. In the case of two-particle collision, from (17) and
(18), the post-collision particle velocity is equal to the arith-
metic average of two pre-collision particle velocities. Simi-
larly, according to the conservation of momentum, the post-
collision particle velocity in multi-particle collision scenarios
can be derived to be the arithmetic average of all pre-collision
particle velocities involved:

upost =
∑n

i=1 ui
pre

n
, (21)

where upost is the post-collision velocity for all particles and
ui

pre is the pre-collision velocity for particle i .
An upper limit for the time step is required in the simula-

tions in order to keep the code numerically stable. This upper
limit is given below:


t = CFL
√
(
x)2+(
y)2

2(√
u2 + v2

)
max

(22)

where 
x and 
y are the grid cell dimensions in the x- and

y-directions, respectively,
(√

u2 + v2
)

max
is the maximum

post-collision velocity of particles, and CFL ≈0.5.
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Fig. 5 Dimensionless density
contours of particle dispersal at
four different times for the
“Basic” test case with 300
particles in the solution domain.
Dimensionless groups are
defined in (24).
Time = 0 corresponds to the
initial condition, where density
and pressure ratio are defined in
Table 5

To compute numerous scenarios efficiently for the present
shocked dense particle flows, the HLLC3D-IBM code is par-
allelized and run on a shared-memory machine in SHARC-
NET (https://www.sharcnet.ca) using OpenMP.

3 Mechanisms for the formation of particle jet structure

The computational domain for the baseline test case (referred
to as the “Basic” case in Table 5) of the present cylindrical
shock tube problem is depicted in Fig. 5 (at t = 0 and at
three other times). The domain includes a circular high pres-
sure gas driver section and an annular driven section, the
latter consisting of a solid powder bed filled with air in void
regions adjacent to the driver section. In the far field of the
driven section, the standard temperature and pressure (STP)
condition for air is assumed: 1 atm and 25 ◦C. The air is
assumed to follow the ideal gas law. This “Basic” test case
contains 300 particles in 7 layers, and the corresponding par-
ticle volume fraction in the powder bed is 0.33. Table 4 lists
the total number of particles in each ring-shaped layer and
the radius of each layer from the center of the (cylindrical)
driver section. The polar angle from the center of the particle
to a horizontal datum line passing through the center of the
driver section is defined by,

Table 4 The configuration of
particle layers in a powder bed
for the “Basic” test case

Layer no. Number
of particles

Radius

1 25 0.684

2 31 0.832

3 40 0.980

4 43 1.128

5 48 1.270

6 54 1.414

7 59 1.560

θi = i
2π

N
(23)

where i is the i th particle in the layer counted from the hori-
zontal datum line in the counter-clockwise direction, and N
is the total number of particles in that layer. Equation (23)
ensures uniform angular distribution of particles in different
layers, each with a different radius as indicated in Table 4.
The size of the computational domain is 9.6×9.6 (in dimen-
sionless units) covered with 1,000 × 1,000 structured grid
cells for all test cases in this paper. The Neumann boundary
conditions are applied to all far-field boundaries.

The typical grid resolution to cover a particle in the present
study is about 25 × 25. Although LES should be three-
dimensional and there is no doubt that “two-dimensional”
(or 2-D) LES is fundamentally incorrect (key features, such

123

https://www.sharcnet.ca


626 T. Xu et al.

Table 5 The test matrix and conditions

Test case
title

Total
particles
in domain

Gas pressure
and density
ratio

Particle
radius

Restitution
coefficient

Randomness Particle
density

Number of
particle jets

Number of
particle jets
from (34)

Particle
volume
fraction

Basic 300 100:1 0.05 0 No 10 23 23 0.33

Layer3a 96 100:1 0.05 0 No 10 25 24 0.30

Layer5b 187 100:1 0.05 0 No 10 24 23 0.31

Particle density 300 100:1 0.05 0 No 10 and 50 22 23 0.33

Particle size 300 100:1 0.05 and 0.03 0 No 10 23 22 0.22

Pressure2 300 10:1 0.05 0 No 10 18 18 0.33

Pressure3 300 1000:1 0.05 0 No 10 25 24 0.33

Random 300 100:1 0.05 0 Yes 10 21 − 0.33

Restitution 300 100:1 0.05 0.5 No 10 23 − 0.33

Inner layerc 183 100:1 0.1 0 No 10 17 15 0.56

The radius of the driver section is 0.5 for all cases except the “Inner layer” case, where the corresponding radius is 0.8 to accommodate larger
particles. All quantities in the table are dimensionless as defined in (24)
a The first 3 layers in Table 4 are included in the domain
b The first 5 layers in Table 4 are included in the domain
c 6 particle layers and 17 particles in the innermost layer of the powder bed, while all other cases in Table 5 have 25 particles in the innermost layer

as transition and vortex stretching cannot be captured by any
2-D LES), the reason why we still performed 2-D LES on a
grid of 1,000 × 1,000 cells in the present study was mainly
due to the limitation of computational resources available
for numerous runs over a long period of time. It is noted that
Bouris and Bergeles [14] reported in their 2-D LES for a
turbulent flow over a square cylinder that the Strouhal num-
ber, drag coefficient, and mean velocity and total fluctua-
tion energy (periodic plus turbulent) were fairly well pre-
dicted against the experimental data, which were much bet-
ter in comparison with several RANS solutions. Therefore,
we believe that the present 2-D LES based on the MILES
approach can still be used to investigate qualitatively the
mechanisms in relation to the formation of particle jets at
mesoscale.

Note that the initial conditions and results presented in
this paper are dimensionless. The dimensionless groups are
defined as:

t∗ = tar

Dc
; ρ∗ = ρ

ρr
; u∗ = u

ar
; p∗ = p

ρra2
r
;

F∗ = F

ρra2
r D2

c
; M∗ = M

ρr D3
c

(24)

where t∗, ρ∗, u∗ and p∗ are the dimensionless time, density,
velocity, pressure, force and mass, respectively. ar is the ref-
erence speed of sound (346 m/s here), Dc is the diameter
of the circular driver section and ρr is the reference density
(i.e., the air density in the STP condition). The dimensionless
symbol “∗” is removed hereafter for simplicity. The parame-
ters corresponding to the “Basic” test case are listed in the
first row of Table 5.

Figure 5 shows the simulated particle dispersal process for
the “Basic” test case at four different (dimensionless) times:
t =0, 0.74, 1.11 and 1.51. At the beginning, the high pres-
sure driver gas is squeezed into the powder bed, and several
micro gas jets between the solid particles are formed within
the first layers. The resulting shock fronts are propagating
radially in voids between particles (at t = 0.74). At the same
time, the high pressure gas drives particles to form a chain
of particles (see, e.g., t =1.11 and 1.51) through collision.
This results in the motion of particles in the outermost layer
of the powder bed ahead of shocks. The shocked flow driven
by the gas jets emanating from voids between particles, and
the solid chaining of particles generated by collision fracture
the powder bed, thus forming clusters of particles (or particle
jets) as shown in Fig. 5 at t =1.11. The total number of parti-
cle jets remains the same in the present case at a later time of
t =1.51. Note that the “staircase” structure observed in the
contour plots of Fig. 5 (and Figs. 6, 7, 8, 9 later) is an artifact
due to the plotting utilities used. This is because the solutions
are obtained at centroids of the background Cartesian mesh
when IBM is employed. There are no contours (viz., only
the background white color is shown) inside particles. We
use the “Blanking” function in tecplot (http://www.tecplot.
com/) to skip the data inside the particles.

In order to better understand the physical mechanisms
resulting in particle clustering and jetting, two rectangular
(spatially-fixed) Eulerian zones are taken from the “Basic”
test case as shown in Fig. 5 (at t = 0): zone A in the 6 o’clock
(or south) direction and zone B in the 3 o’clock (or east) direc-
tion. The density contours of zones A and B from t = 0 to
t = 1.91 are presented in Figs. 6 and 7, respectively. Note
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Fig. 6 The time evolution of dimensionless density contours in Zone
A for the “Basic” test case. Dimensionless groups are defined in (24).
Time = 0 corresponds to the initial condition, where density and pres-
sure ratio are defined in Table 5

Fig. 7 The time evolution of dimensionless density contours in Zone
B for the “Basic” test case. Dimensionless groups are defined in (24).
Time = 0 corresponds to the initial condition, where density and pres-
sure ratio are defined in Table 5

Fig. 9 Particles involved in a particle jet in Zone A are numbered for
the “Basic” test case. Density (or “rho”) is nondimensionalized using
(24)

that Zones A and B were selected arbitrarily for illustration
purposes, and the size of these zones was deliberately chosen
so that at least one particle jet could be observed.

As shown in Fig. 6, the driver gas centered at the loca-
tion of (x, y) = (4.8, 4.8) in Zone A is released after t =
0. The interface between the driver section and the powder
bed is disturbed due to the passage of the shock. The spike-
like structures of gas at the interface emerge in void regions
between particles in the innermost layer of the powder bed,
and develop into incipient micro gas jets, which can be
observed at t = 0.38. As the shock fronts propagate through
the powder bed, the expanding gas jets and the flow ahead
separate the particles, while the inelastic collision results in
agglomeration of particles. The particle-to-particle interac-
tions cause the outermost layer of the densely-packed powder
bed to move ahead of the shock fronts as seen at t = 0.74. It is

Fig. 8 Initial perturbations of
dimensionless density contours
near the interface between the
high-pressure and high-density
driver section and particle
layers. Dimensionless groups
are defined in (24)
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clear from the subfigure at t = 0.74 that the incipient particle
jets have already formed. Based on this observation, the exact
time corresponding to the formation of particle jet structure
can be defined as the time when the outer surface of the pow-
der bed is being perturbed. The spikes [i.e., the heavy (or
high-density) fluid penetrating into the light (or low-density)
fluid [15]] or bubbles (i.e., the light fluid penetrating into the
heavy fluid [15]) disturbed by shocks lead to large shears
between particles and their surrounding fluid, thus providing
additional lateral forces acting on the particles. At t = 1.05,
the voids between clusters of particles (or particle jets) due
to inelastic collision can be clearly seen. The inter-particle
forces at this time cancel each other within the agglomerated
particles. At a time between 1.52 and 1.91, the jet structure is
maintained and, each particle jet (typically containing 7–15
particles) moves outwards (or radially) in time.

The spike-like gas structures between the moving parti-
cles are initially induced by the passage of shocks, which
develop later into the incipient micro gas jets. The micro-
jet structure as observed in the innermost layer of the pow-
der bed is triggered as the interface between heavy gas
(in the driver section) and light gas (in the driven section)
is impulsively accelerated. Most of the research about the
Richtmyer–Meshkov (RM) instability was focused on single-
phase flows, and analysis of multiphase RM instability is still
in its infancy (see, e.g., [16,17]). The Rayleigh–Taylor (RT)
instability between the high density gas in the driver section
and its surrounding low density air is not likely the under-
lying mechanism for the formation of particle jets, because
the time scale corresponding to the fracturing of the pow-
der bed demonstrated here is much smaller than that for
the growth of RT instability [1]. Furthermore, the present
mesoscale results show that the maximum velocity of the
gas jets is about 1.9, while the maximum velocity of parti-
cles in Zone A is about 1.0 at t = 0.38. This suggests that
large velocity differences (or shears) exist between particles
and their surrounding fluid. A very strong mixing associated
with large velocity differences can also be seen in Fig. 6 (at
t = 1.05) between the spike- and bubble-like structures near
the interface. Figures 6, 7, 8 show that whenever a particle
jet is formed, neighbouring gas jets are always accompanied
on either side of the particle jet. This phenomenon suggests
that the formation and then growth of particle jets is subse-
quently promoted by the shear originating from the velocity
differences between particles and their surrounding fluid. In
general, the mesoscale results suggest that the initial fluid
motion at the interface between the driver and the driven
sections are triggered by the shock due to the presence of
the densely-packed particles, which result in the formation
of micro gas jets within voids in the innermost layer of the
powder bed. At the same time, the outward motion of the
innermost layer of particles, initially driven by the high pres-
sure driver gas, results in a sequential inelastic collisions to

chain particles radially, while the shears due to particle/gas-
jet interactions cause the motion and inelastic collision (or
clustering) of particles laterally. The heterogeneous nature of
a fluid in the powder bed (with a high particle-to-fluid density
ratio) also makes particle velocities significantly lower than
those of the surrounding incipient gas jets at the early stage
of shock acceleration. The velocity and density differences
between the high-speed gas jets and the low-speed moving
particles result in large shears. This further promotes cluster-
ing and agglomeration of particles into a coherent particle-
jet structure and transfers the energy from shock waves to
the disseminated particles. Overall, we believe that the most
probable underlying causes for the formation of particle jet
structures are the driver gas jet flow induced by the shock
wave as it passes through the initial gaps between the parti-
cles in the innermost layer of the powder bed, and the chain-
ing of solid particles by inelastic collision. The subsequent
shear flow between particles and surrounding fluid further
accelerates the particle jet formation and growth.

As observed above, the particle jet structure emerges in a
very early time. A clear definition of the particle jet forming
time will help the researchers working on macroscopic (mul-
tiphase) simulations to determine the start and end times dur-
ing which the “effective drag” models (see, e.g., [5]) can be
applied. Two options of determining the particle jet forming
time are suggested here based on the present mesoscale simu-
lations. The first option is to use the time when the divergence
of particle velocity is zero (viz., all particles in a particle jet
move at the same speed) except at t = 0:

∇ · Vp = 0. (25)

A particle jet in Zone A illustrated in Fig. 6 is further
analyzed below, and the particles in question are numbered
as shown in Fig. 9. For each labeled particle within the par-
ticle jet, the time histories of the aerodynamic force exerted
on each particle and particle velocity are obtained from our
mesoscale simulations and illustrated in Figs. 10 and 11 for
their x- and y-components, respectively. As shown in both
figures, after initial perturbations in an early time when par-
ticle jets are formed, the x- and y-components of the aero-
dynamic force, |Fx | and |Fx |, decrease towards zero, sug-
gesting that all particles move at almost the same speed (i.e.,
∇ · Vp → 0) when t ≈ 0.4, at which clusters of particles
are formed through collision. Hence, the time when (25) is
satisfied may be considered as the jet forming time.

While the jet structures inside the powder bed are forming,
the outer surface of the powder bed is expanding ahead of
the shock fronts between t = 0.38 and 0.74 as shown in
Figs. 6 and 7. The corresponding time can also be chosen as
the second option to determine the jet forming time. Since
the movement of the outer surface of the powder bed can be
detected in both experiments and numerical simulations, the
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Fig. 10 The x-component of
the dimensionless aerodynamic
force and particle velocity.
Dimensionless groups are
defined in (24)

Fig. 11 The y-component of
the dimensionless aerodynamic
force and particle velocity.
Dimensionless groups are
defined in (24)

jet forming time defined in this way is likely more convenient
than that determined by (25).

Physically, the motion of the outer surface of the powder
bed is caused by the particle-to-particle collision and fluid
movement within the voids between particles. The jet form-
ing time based on the initial motion of the outer surface of the
powder bed can therefore be estimated based on the average
speed of the interstitial fluid within the voids of the powder
bed, U , as:

tjet = 1

2

Dp − Dc

U
(26)

where Dp is the diameter of the outer surface of the powder
bed and Dc is the diameter of the central circular charge,
which is the (high-pressure and high density) driver section
in the present work.

The Gurney velocity, VG, has been introduced in the past
to describe the expansion velocity of a solid layer during frag-
mentation caused by detonation [18]. If VG ≈ U is assumed,
then:

VG = √
2EG

(
M

C
+ 1

2

)− 1
2

(27)

where EG is the Gurney constant mostly determined by the
total energy of the charge (explosive or driver section) and
M/C is the mass ratio of powder bed to charge. In this work,
U in (26) is estimated using the shocked fluid velocity, and
the corresponding jet forming time is determined to be at
around t = 0.6 for the “Basic” test case, which is larger than
that at around t = 0.4 obtained with (25) based on ∇ ·Vp = 0.

4 Parameters affecting the number of particle jets

In the experiments of a packed bed of solid particles dispersed
through detonation of a cylindrical explosive, the number of
the particle jets increases with the diameter (i.e., the mass)
of the explosive and decreases with the thickness or the mass
of the powder bed [5].

For a given mass and configuration of a powder bed, there
is a threshold mass of explosive corresponding to a threshold
particle expansion velocity, below which the outer surface of
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the powder bed remains smooth and above which incipient
instabilities develop to form particle clusters and coherent
jet structures [3]. Frost et al. [3] introduced a compaction
Reynolds number and found that the threshold corresponded
to a critical compaction Reynolds number, above which
the number of particle jets increased with the compaction
Reynolds number. This Reynolds number was defined as the
ratio of the inertial force of particles to the viscous force
during the shock compaction of the powder bed,

Recompact = ρpVpLp

μc
(28)

where ρp, Vp, Lp, and μc are the concentration of particles,
maximum expansion velocity of particles, layer thickness
and the effective compaction viscosity of the particle layer.
μc = γscsds, in which γs, cs and ds are the material density,
sound speed and diameter of a solid particle. While the com-
paction Reynolds number was found to be related to the total
number of particle jets, a quantitative empirical correlation
for the total number of particle jets is yet to be determined.

Ripley et al. [5] analyzed the data in [4] and fitted the
experimental number of particle jets into a function of the
Gurney velocity, which was the expansion velocity at the
outer surface of the powder bed or into a function of the fluid
pressure, Pfluid, at the outer surface of the powder bed based
on their numerical simulations at macroscale:

N j = 87 + VG/9.3 + V 2
G/20,000 (29)

or

N j = 129P0.13
fluid (30)

where VG is in mm/µs and Pfluid is in GPa. Note that (29)
and (30) have been fitted to the atomized aluminum particles
above the threshold mass ratio of explosive to powder bed,
and cannot be applied extensively to other types of particles,
for which material density of particles, restitution coefficient
and other morphology parameters are different.

To explore the dependence of the number of particle
jets on various parameters, mesoscale simulations using the
HLLC3D-IBM code have been carried out for a variety of
cases listed in Table 5. The parameters varied include the
total number of particles, particle size, particle material den-
sity, pressure ratio between the driver and the driven sec-
tions, random versus uniform particle distributions, restitu-
tion coefficient [recall (17)], and the number of particles in
the innermost layer of the powder bed. For each test case, we
change one parameter at a time in order to compare the results
with the “Basic” test case discussed in the previous section.
For instance, for the test case entitled “Pressure2” in row 6
of Table 5, the pressure ratio of 10:1 is employed instead of
100:1 as in the “Basic” test case. The test case entitled “Parti-
cle density” contains half of the particles with the dimension-
less particle material density of 10, and the other half of the

particles with the dimensionless particle material density of
50. If the “Randomness” test case is labeled as “no”, it means
that particles are uniformly distributed for all layers, and all
particles distributed in the same (ring-shaped) layer are at the
same radius from the center of the driver section. Since the
size of the computational domain is fixed to be 9.6 × 9.6 in
a dimensionless unit, the particle size listed in the “Particle
size” test case in row 5 of Table 5 is 0.05 in radius for evenly
numbered particles, and 0.03 in radius for oddly numbered
particles. The restitution coefficient is introduced in the colli-
sion model described in (17). The zero restitution coefficient
for the “Restitution” test case in Table 5 means that colli-
sion is fully inelastic, while collision is partially elastic and
partially inelastic when the restitution coefficient is equal to
0.5 for two-particle collision scenarios. To reduce program-
ming efforts, the restitution coefficient is assumed to be zero
for multiple particle collision scenarios, involving more than
two particles. The purpose of these tests was to find the rela-
tionship between each parameter (such as the total number
of particles, pressure ratio, density ratio, particle size, resti-
tution coefficient, etc.) and the number of particle jets.

As shown in Table 5, there are 7 ring-shaped layers for
most test cases, and the number of particles for each layer is
listed in Table 4 with 300 particles in total in the computa-
tional domain. The number of particles increases gradually
as the radius of each layer increases. The test cases entitled
“Layer3” and “Layer5” employ only the first three and five
layers in Table 4, respectively. Therefore, the “Layer3” case
has 96 particles and the “Layer5” case has 187 particles in
total. While almost all the test cases in Table 5 have 25 par-
ticles in the innermost layer, the case entitled “Inner layer”
in the last row of Table 5 is an exception. The “Inner layer”
case involves 183 particles in total, with the particle size of
0.1 in radius. They are configured in 6 layers, in which 17
(instead of 25) particles are distributed in the innermost layer.
For all cases listed in Table 5, the particle volume fraction is
between 0.20 (for the “Particle size” case) and 0.56 (for the
“Inner layer” case).

From the mesoscale simulations, the total number of parti-
cle jets for each test case is counted when they are fully devel-
oped and are listed in the third last column of Table 5. The
patterns of the particle jets are maintained after the formation
of jet structure is completed in early times—a phenomenon
observed in the experiments as well [3–5]. As shown in the
first four rows of Table 5, the number of particle jets decreases
as the inertia of the powder bed increases (i.e., an increase
in either the total particle number or the material density
of particle) at a given driver pressure. The effect of parti-
cle size on the number of particle jets is not apparent within
the size range studied (only two sizes are investigated here).
Furthermore, as shown in the first, sixth and seventh rows of
Table 5, namely, the “Basic”, “Pressure2” and “Pressure3”
cases, the number of particle jets increases as the driver pres-
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Fig. 12 The number of particle
jets vs. the pressure ratio (left)
and the dimensionless total mass
of particles (right).
Dimensionless groups are
defined in (24)

sure increases. An increase in the driver pressure serves as
the main driving force for particle dispersal. The trends in
relation to how the total number of particle jets varies with a
change in inertia (or mass of the powder bed), driver pressure
and particle size are in good agreement with the experiments
in [3–5], although the high explosive used for the dispersal of
particles is simplified to a (high-pressure and high-density)
driver section without chemical reactions in this paper.
Figure 12 shows the number of particle jets as a function
of pressure ratio of driver gas to ambient air (left subfigure),
and as a function of total mass of particles in the powder
bed (right subfigure). Both subfigures are in good agree-
ment with the experimental fitting of (29) and (30) quali-
tatively, where the Gurney velocity VG is a monotonically
increasing function of the mass ratio of explosive to powder
bed.

The number of particle jets also depends on how parti-
cles are packed in the powder bed, as indicated in the “Ran-
dom” test case listed in row 8 of Table 5. In comparison with
the “Basic” test case, the number of particle jets is reduced
from 23 to 21, indicating that higher resistance exists for
the randomly-packed case compared to the uniformly-packed
case. The number of particle jets remains unchanged when
the restitution coefficient is increased from 0 (fully inelastic)
to 0.5 (partial inelastic). A value of the restitution coefficient
chosen to be between 0 and 0.5 appears realistic in the high
explosive dispersal of particles, where the shock pressure
can reach several gigapascals in the early compaction phase
of detonation, so that most of the particle collisions can be
considered as inelastic collision. More simulations, which
are numerically challenging due to very small time steps
required to ensure numerical stability, may still be needed
for the restitution coefficient to be above 0.5.

From all the cases investigated herein, it appears that the
maximum number of particle jets is closely related to the
number of particles in the innermost layer of the powder
bed. This is consistent with the mechanisms for the forma-

tion of particle jet structures studied in the previous section,
that is, the gas jet flow induced by the shock wave as it passes
through the initial gaps between the particles in the innermost
layer of the powder bed, and the chaining of solid particles by
inelastic collision. The number of micro gas jets at the inter-
face between the driver section and the powder bed must be
the same as the number of particles in the innermost layer of
the powder bed. As the number of particle layers increases
or the driver pressure decreases, for instance, some pertur-
bations at the interface caused by the passage of shocks may
not develop into micro gas jets. Alternatively, the micro gas
jets developed may not be strong enough and are damped out
rapidly as they pass through layers of particles, resulting in
a fewer number of particle jets than the number of particles
in the innermost layer of the powder bed. Among all the first
nine test cases (except the “Inner layer” case) in Table 5, the
innermost layer has 25 particles. Case “Layer3” (with the
least particle layers) and Case “Pressure3” (with the highest
pressure ratio) generates 25 particle jets, while the rest of the
cases produce fewer particle jets.

In order to further confirm that the maximum number of
particle jets must be consistent with the number of particles
in the innermost layer of the powder bed, a new test case
entitled “Inner layer” shown in the last row of Table 5 is
created with a powder bed configuration different from those
listed in Table 4. Figure 13 shows its mesoscale simulation
result at a late time (i.e., the particle jets are fully developed)
compared with the result of the “Layer3” case that has 25
(instead of 17) particles in the innermost layer of the powder
bed. The number of fully developed particle jets is 17 for the
“Inner layer” case and 25 for the “Layer3” case. This further
confirms that the maximum number of particle jets is solely
determined by the number of particles in the innermost layer
of the powder bed.

Following the above parametric studies to investigate the
mechanisms for the formation of particle jets, an empirical
formula to estimate the number of particle jets is proposed:
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Fig. 13 Dimensionless density
contours at t = 3.3 for the
“Inner layer” case with 17
particles in the innermost layer
(left), and at t = 1.4 for the
“Layer3” case with 25 particles
in the innermost layer (right).
Dimensionless groups are
defined in (24)

Njet = int

(
α
πDc

ds + β

)
(31)

where Dc, ds and β are the diameter of the driver section,
mean particle diameter and the average gap between particles
(0.025 in this work), respectively. The term πDc

ds+β represents
the maximum number of particles placed in the innermost
layers of a cylindrical powder bed to give a maximum or
upper bound of the total number of particle jets. This term
can be easily extended for a spherical configuration. In (31),
α is a function that depends on all other main parameters
(see Table 5) affecting the number of particle jets. Assuming
inelastic collision and without considering the influence of
random particle distributions for simplicity,α can be assumed
to be dependent upon the mass ratio of powder bed to charge
(or the driver section in this work), M/C . This includes the
total number of particles, the material density of the particle
and the mass of the charge (or the pressure ratio of driver gas
to air in this work). Note that the mass of the powder bed
shall also include the mass of interstitial fluid. In the follow-
ing, the mass of interstitial air is negligibly small compared
to the mass of solid particles. Therefore, M/C represents the
inertia force of the powder bed to the driving force in the
driver section. M/C determines directly the particle expan-
sion velocity of the outer surface of the powder bed [i.e., the
Gurney velocity defined in (27)]. Hence, α is postulated to
be correlated with M/C as:

α = 1 − m

(
M

C
+ b

)n

(32)

where m, n and b are the model constants. In this work, the
density ratio of driver gas to air is the same as the pressure
ratio. The charge mass in (32) is therefore replaced by pres-
sure ratio:

α = 1 − m

(
M∗

P∗ + b

)n

(33)

where M∗ and P∗ are the dimensionless mass of total par-
ticles and pressure ratio of driver gas to air, respectively.

Equation (31) used to estimate the total number of particle
jets is then rewritten in the following form:

Njet = int

[(
1 − 0.075

(
M∗

P∗ + 0.7

)1.02
)
πDc

ds + β

]
(34)

where the coefficients are obtained by curve fitting based
on our mesoscale results. The estimated numbers of parti-
cle jets based on (34) are listed in the second last column of
Table 5. For most cases listed in Table 5, a very good agree-
ment between the number of particle jets counted from our
mesoscale solutions and that estimated by (34) is achieved,
and the maximum discrepancy is by two jets (i.e., the “Inner
layer” case). More mesoscale simulations under different
configurations of powder bed and driver (e.g., different driver
sizes) are needed to further verify this formula.

5 Concluding remarks

The present work is stimulated by the interest in understand-
ing the physical mechanisms associated with explosive dis-
persal of dense solid particles, where the particle clustering
and coherent jet formation are observed in a number of exper-
iments. Clustering and coherent jetting of particles are fun-
damental phenomena in supersonic dense particle flows. To
gain a better understanding of jetting of particles, a cylindri-
cal shock tube problem, in which a central high pressure/high
density driver section surrounded by a densely packed pow-
der bed in air in the driven section, is investigated. Mesoscale
simulations are conducted to study this cylindrical shock
tube problem of dense solid particle flows by solving the
two-dimensional Navier–Stokes equation. The GCIBM and
a novel multi-particle inelastic collision model are incorpo-
rated in our HLLC3D-IBM code to perform numerous sim-
ulations. Parameters varied include the driver gas pressure,
particle distribution, particle morphology and packed pow-
der bed configuration; the last three include the number of
particle layers, number of particles in each layer, material
density of particle, particle size, uniform versus random par-
ticle distributions and restitution coefficient.
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The simulation results indicate that as the shock passes
through the interface between the driver section and powder
bed, micro gas jets are formed in voids between particles in
the innermost layer of the powder bed. The gas jets penetrate
the powder bed in a radial direction and propel the particles
laterally. These micro gas jets also incur a large shear due to
velocity differences between particles and their surrounding
fluid, a phenomenon which further propels particles laterally
to form clusters of particles. At the same time, the high pres-
sure driver gas pushes the particles in the innermost layer of
the powder bed to collide with particles in the subsequent
layers to form chains of solid particles by inelastic collision.
As a result, particles in the outermost layer of the powder bed
start to move while shocks are still immersed in the powder
bed. The number of micro gas jets at the interface between
the driver section and the powder bed must be the same as
the number of particles in the innermost layer of the powder
bed. In summary, we believe that the formation of micro gas
jets close to the interface induced by the shock wave as it
passes through the initial gaps between the particles in the
innermost layer of the powder bed, and the inelastic particle
collision are the dominant mechanisms for the clustering of
particles and formation of particle jets. The time for the jet
formation process is very short and the jet forming time is
estimated by the time when the motion of the particles at the
outermost layer of the powder bed is distinguishable.

Since the number of micro gas jets must be the same as the
number of particles in the innermost layer of the powder bed,
the latter provides a maximum or upper limit of the number
of particle jets as demonstrated in our mesoscale simulations.
As the mass of the powder bed (related to the total number
of particles, number of particle layers and material density
of particle) increases or the driver pressure decreases, some
weak perturbations at the interface between the driver sec-
tion and the powder bed, caused by the passage of the shocks,
may not develop into sustainable micro gas jets to fracture the
powder bed. This results in fewer particle jets than particles
in the innermost layer of the powder bed. Thus, the number of
particle jets after the jet forming time is mainly a function of
the number of particles in the innermost layer of the powder
bed adjacent to the driver section, and the mass ratio of pow-
der bed to charge or the ratio of the dimensionless powder
bed mass to the pressure ratio of driver to air. The random
distribution of particles could further reduce the number of
particle jets formed due to high local resistance. Scenarios
involving elastic collision will require further investigation
in the future.

The diverging shock tube problem (either cylindrical or
spherical), involving dense solid particles, is very fundamen-
tal. The real-world-scale dispersal of a densely-packed solid
particle bed through detonation of a central explosive is much
more complicated and will involve additional physical mech-
anisms not accounted for in the present model. The numerical

solutions of a two-dimensional cylindrical shock tube prob-
lem, involving densely-packed solid particles, and the under-
lying mechanisms studied herein may only provide insights
into some fundamental aspects of the very sophisticated real-
world-scale problems. For instance, the real world problems
may contain millions or trillions of solid particles, in which
the agglomerated super-particles at the explosive interface
might be considered as “particles” in the innermost layer of
the powder bed. In the real world problems, the explosive is
often contained in a thin casing made of metal, glass or card-
board. The fragments of the casing could also be regarded as
“particles” of the innermost layer. Furthermore, in the real
world problems, solid particles may need to be held in a con-
tainer. The fragmentation of the container would introduce
additional mechanisms, which further influence the particle
jet structure and number. Nevertheless, the driving power
(detonation of explosive and subsequent shock wave), par-
ticle morphology, particle distribution and the particle bed
configuration are always the main factors for the clustering
and formation of coherent jet structure in the resulting dense
solid particle flow. The diverging shock tube flow contain-
ing solid particles provides a good starting point to study
the fundamental aspects of a supersonic dense solid particle
flow, which remains an open area. Extension of the present
work to re-examine factors such as more particles in the pow-
der bed, higher pressure and density ratios corresponding to
high explosive, particle deformation, compaction effects that
occur at these pressures, particle casing effects, combustion
and finer meshes will require further investigations.

Finally, it should be emphasized here that the subject mat-
ter of the present study is about a dense solid particle flow
with a particle volume fraction of 0.1–0.6, where the direct
particle interactions and the intensive interactions between
the particles and void fluid are unique and critically impor-
tant. Recent studies related to multiphase RM instability (e.g.,
[17]) and clustering of particles (e.g., [19]) at macroscale
adapted a continuum approach of essentially dilute multi-
phase flow without the above-mentioned interactions, and
are different from the phenomena reported in the present
study. Other recent papers [20,21] discussing the clustering
of particles during explosive particle dispersal are cited here
for the purpose of completeness for interested readers.
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