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Abstract The effect of incident shock wave strength on the
decay of interface introduced perturbations in the refracted
shock wave was studied by performing 20 different simula-
tions with varying incident shock wave Mach numbers (M ~
1.1-3.5). The analysis showed that the amplitude decay
can be represented as a power law model shown in Eq. 7,
where A is the average amplitude of perturbations (cm), B is
the base constant (cm~¥~1)_ § is the distance travelled by
the refracted shockwave (cm), and E is the power constant.
The proposed model fits the data well for low incident Mach
numbers, while at higher mach numbers the presence of large
and irregular late time oscillations of the perturbation ampli-
tude makes it hard for the power law to fit as effectively.
When the coefficients from the power law decay model are
plotted versus Mach number, a distinct transition region can
be seen. This region is likely to result from the transition of
the post-shock heavy gas velocity from subsonic to super-
sonic range in the lab frame. This region separates the data
into a high and low Mach number region. Correlations for the
power law coefficients to the incident shock Mach number
are reported for the high and low Mach number regions. It is
shown that perturbations in the refracted shock wave persist
even at late times for high incident Mach numbers.
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1 Introduction

Shock waves are fluid mechanics phenomena that occur in
many different engineering and scientific applications. They
can be characterized by a nearly discontinuous jump in the
thermodynamic properties (pressure, temperature, density)
between the leading and trailing edges of the wave. The inter-
action of a shock wave with an interface between two gases is
a very complicated problem which has been studied widely
since it was first examined in 1960 [1]. At a fluid interface the
diffusion layer between different gases or liquids creates a
density gradient. When the shock wave interacts with the per-
turbed fluid interface, vorticity is deposited on the interface
due to the misalignment of the pressure and density gradi-
ents. This can be seen in the vorticity equation (Eq. 1) in
the baroclinic term, where V p is the gradient of density and
V p is the gradient of pressure, @ is the vorticity, Do/ Dt is
the substantial derivative of @, u is the velocity, and v is the
kinematic viscosity. The misalignment of the pressure and
density gradients is necessary for instability and can stem
from perturbations in the fluid interface or in the shock front.

1
Dw/Dt = ® - Vu + V20 I:—sz x Vp]
p Baroclinic term

ey

The hydrodynamic instability created from this misalign-
ment of the pressure and density gradients was studied first
analytically by Richtmyer [1] and then experimentally by
Meshkov [2] and is termed the Richtmyer—Meshkov insta-
bility (RMI). The vorticity deposited by the shock wave will
lead to stretching of the fluid interface, and thus cause the two
fluids to mix and diffuse at an increased rate. The strength
of the density gradients will affect the rate of mixing that is
created by the RMI. The Atwood number (A) is used as a
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measure of the density contrast between the two fluids and is
defined in Eq. 2, where py, and pj are the densities of the heavy
and light fluids, respectively. The Atwood number tends to 1
for fluids with very different densities and to O for fluids that
have very similar densities.

A = (pn — p1)/(pn + p1) For the light-heavy case. 2)

The RMI is fundamentally important in many applications
including supersonic combustion and astrophysics, [3,4] but
the area where it is currently receiving the highest attention
is in inertial confinement fusion (ICF). In the case of ICF, the
RMI along with the Rayleigh—Taylor instability (RTI) cause
turbulent mixing of the high density fuel with low density sur-
rounding material leading to a reduction in the fusion yield
[5]. Accurate modeling of the RMI is vital in controlling mix-
ing and improving the performance of ICF. Summaries of the
RMI are presented by Brouillette [3] and Zabusky [6].

Experiments on the RMI have been performed for var-
ious types of interface perturbations including an oscillat-
ing sinusoidal interface [7-9], a bubble interface [10-12], a
gas curtain interface [13, 14], and a thin membrane separated
interface [2, 15]. Numerical and analytical work has been per-
formed to describe the growth rate of characteristic forma-
tions in the RMI known as spikes and bubbles [16,17]. The
behavior of the RMI at higher Mach numbers [11, 18], multi-
mode interfaces [19,20], and after the passage of the shock-
wave reflected off the end wall through the interface, called
re-shock [21,22], have been studied. In addition, computa-
tional simulations of the RMI using several different codes
[23-25] have allowed the researchers to gain a greater knowl-
edge and understanding of the physics underlying compress-
ible flow while reducing the cost of experimentation.

In the case of RMI, the initial perturbations on the gas-
eous interface also produce imprints of the perturbations on
the shock wave itself. The behavior and decay of pertur-
bations on the refracted shock wave pose many interesting
questions to be studied, but these perturbations have received
limited attention in published works so far. One study that
did examine the perturbations introduced on the refracted
shock wave was that of Aleshin et al. [26]. Extended details
of this work were presented by Aleshin et al. [27] in a tech-
nical report. The authors performed experiments in which a
shock wave interacted with a single mode sine wave pertur-
bation created on an interface using a thin film. The purpose
of the experiments was to explore how the transmitted shock
would be perturbed by this interface perturbation and how
the transmitted shock wave perturbation would evolve over
time and space. In these experiments the Atwood number
and the amplitude to wavelength ratio effects were explored.
Schlieren images were used to make measurements of the
transmitted shock wave location. While this was the best
experimental technique available at the time, the resolution
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Fig. 1 Damping of perturbations on the shock front: reproduced from
Aleshin et al. [26]. Transmitted shock Mach number in experiments is
4, line 1 is the power law fit for a helium over Xenon interface where
symbols /, /1, and /11 in the legend correspond to experimental data for
wavelengths of 7.2, 3.6, and 2.4 cm, respectively, line 2 is the power
law fit for Argon over Xenon

of the measurements was severely limited and the measure-
ments were subject to some human interpretation.

The evolution of the transmitted shock wave perturbation
was found to be of the form shown in Eq. 3, where « is the
amplitude (amplitude will be defined as half the peak to peak
amplitude in this paper) of the perturbation, C is a constant,
S is the distance travelled by the refracted shockwave, A is
the interface perturbation wave length, and n is the decay
constant. Equation 4 gives the predicted initial amplitude of
the refracted shock wave perturbation a*, where ay is the ini-
tial interface sine wave perturbation amplitude, and w; and
wy are incident and refracted shock wave speeds. Figure 1
shows the experimental data with the regression fitting the
local oscillation peaks. In this study the Atwood number of
the interface was varied to find a relationship for n.

aja* = C(S/M)", 3)
a* = ap(l — wi/wy). “4)

The current work seeks to extend the previous work on
refracted shock wave perturbations and the RMI discussed
above by exploring the effect of incident shock wave Mach
number. The evolution of perturbations introduced by the
since wave interface on the transmitted shock wave has sel-
dom been reported in the literature. The decay rate of these
perturbations is important for multilayer fluid systems, such
as those found in many ICF fuel capsule designs, in which the
perturbed shock will interact with additional density gradi-
ents. In systems such as these, density gradient perturbations
in one layer will cause pressure gradient perturbations which
will complicate the RMI generated in subsequent density
gradients.

The effect of incident shock wave strength on the decay
of interface introduced perturbations in the refracted shock
wave was studied in this paper for the first time using
simulations. Simulations were performed using the ARES



Effect of incident shock wave strength

hydrodynamics code, described in Sect. 2. Twenty incident
Mach numbers ranging from 1.1 to 3.5 were studied in simu-
lations which required approximately 20,000 cpu hours each.
In the previous experimental work the incident shock wave
Mach number was not independently varied and its effect
was not explored. The detail provided by these simulations
allows features of the flow field not visible in the previous
experimental work to be examined. Results for the refracted
shock wave perturbation amplitude as a function of distance
and initial Mach number are reported below. The emphasis of
this paper rests in developing a model to describe the decay
of these perturbations and determine what relation, if any,
exists between incident Mach number and the decay rate of
these perturbations.

2 Computational method

The present study was performed using a staggered mesh
arbitrary Lagrange Eulerian (ALE) hydrodynamics code,
named ARES, which is under active development at Law-
rence Livermore National Laboratory (LLNL). The ARES
code is described in detail by McFarland et al. [25]. The
Lagrange time advancement is second-order-corrector and
uses the Gauss Divergence theorem to give the discrete
finite difference equations [25,28]. All numerical differences
are fully second order in space. Velocities are defined at
mesh nodes while internal energy and density are defined
at the zone centers using piecewise constant profiles. Artifi-
cial viscosity is used to suppress spurious oscillations [28].
A second-order remap [29] to the Eulerian mesh is applied
after the Lagrange step.

All interfaces were treated as miscible numerically, but
a diffusion model was not applied. This allowed the initial
interface to be diffuse but did not allow for additional diffu-
sion to take place as the interface evolved which would have
little effect on the transmitted shock front. Artificial viscosity
was applied but boundary layers were not included in the sim-
ulation. The boundary conditions of the simulation domain
were constructed such that the right wall (downstream) was
areflective boundary in the streamwise direction, and the top
and bottom walls were reflecting slip walls with no viscous
boundary layer (Fig. 2). The left wall (upstream) contained
an inflow source in the streamwise direction at post shock
conditions which sustained the incident shock wave. When
the interface reflected shock wave intersected the upstream
boundary it would reflect as a non-physical expansion wave
which would reintersect the refracted shock wave at a later
time. This time was well beyond the simulation time over
which data was taken and so this non-physical expansion
wave had no effect on the results.

The test domain was chosen to measure 250 cm long with a
height that varied for each simulation set. The initial location
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Fig. 2 Schematic of simulation boundary conditions

of the shock wave, and interface as well as the initial interface
diffusion thickness and perturbation were set uniquely for
the different simulations described below. The resolution
for the different simulation sets was chosen so that the num-
ber of nodes was constant for the different computational
domain sizes used. This resolution was selected on the basis
of previous work [25] which incorporates a detailed reso-
lution study. For all simulations the initial temperature and
pressure were chosen as 298 K and 0.5 atm, respectively,
to match the experimental conditions of Aleshin et al. [26].
A simulation of an experiment performed by Aleshin et al.
is presented below for comparison and validation.

3 Simulation of experimental work

To begin the computational work, experimental results from
Aleshin et al. [27] for helium over xenon interface with an
incident shock wave with Mach number of 2.89 were com-
pared to a two-dimensional ARES simulation under the same
initial conditions. The simulation domain had a height of
7.2 cm which corresponded to the shock tube cross section
used in the experiments. The interface perturbation was a
single mode sine wave with wave number of approximately
1.75 cm~! and amplitude of 2 cm, where the wave number,
k, is defined in Eq. 5. The initial conditions of the experiment
633B are summarized in Table 1. The resolution for this sim-
ulation was set to 72 wm. The interface and shock wave were
initialized at 20 and 10 cm from the left wall, respectively,
and the initial interface diffusion thickness was set to 0.2 mm.
The experiments used a thin film to separate the gases and
this diffusion thickness was chosen to attempt to approximate
the diffusion that would take place through the thin film

k = 27/h. 5)

Table 1 Initial conditions of Aleshin experiment 633B

Initial Mach number 2.89
Gas pair He—Xe
Atwood number (A) ~0.94
Interface wavelength (1) 3.6 cm
Interface amplitude (a) 2 cm
Channel height 7.2 cm
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Fig. 3 Density plot showing the location of characteristic points
defined by Aleshin et al. in the experimental work

Aleshin et al. measured the velocity of four characteristic
points in the system as shown in Fig. 3. C'is the tip of a bub-
ble, D is the end of a spike, B is the point on the shock wave
at the same vertical location as the tip of a spike, and A is
the point on the shockwave at the same vertical location as
the tip of the bubble. The simulation showed a flow field not
just dominated by a single characteristic spike structure, but
by a spike which had a 2 point forked tip. D* was measured
as a second possible location of the end of the spike. It is
difficult to determine if this forked tip was produced in the
experiments, due to the low resolution imagining techniques
available at the time. It appears that in some experiments
that the forked tip developed while in others it did not. The
simulation was carried out to 186 s where the interface had
sufficiently evolved to compare it to the experimental results.

The results of the simulation can be seen in Table 2. The
uncertainty in measurement of experiment 633B is 5 %.
Characteristic points A and C fall within the experimen-
tal uncertainty while points B and D do not. Point D was
affected by the diverging spike tip, which caused it to slow.

Table 2 Table of velocity measurements taken from Aleshin et al. [27]
experiment 633B and derived from ARES simulation of experiment
633B

Aleshin et al. ARES Relative error (%)
Va 0.865 Va 0.85 1.73
Vg 0.945 Ve 0.891 5.71
Ve 0.65 Ve 0.634 2.46
Vp 0.406 Vb 0.452 11.33
Vp+ 0.367 9.61

Units are cm/ps
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The placement of point D by ARES did not agree with the
experiments; and the comparison of the velocities of points
D and D* in ARES to the velocity of experimental data point
D shows a higher error.

Because the behavior of point D is inconsequential to the
study of the perturbations on the refracted shock wave, and
it is unclear if it was produced in experiments, the ARES
simulations were used to predict the behavior of additional
experimental parameter sets not explored in the experiments
of Aleshin et al. One possible explanation for the difference in
the ARES simulations and the experiments is that the simula-
tions were performed in 2D. As the interface evolves beyond
the linear regime, traditionally defined as a/A < 1, three-
dimensional effects become increasing important to accurate
modeling of the flow.

4 Incident shock wave strength study
4.1 Simulation initial conditions

The effect of incident shock wave strength on the decay
of interface introduced perturbations in the refracted shock
wave was studied by performing multiple simulations with
varying incident shock wave Mach numbers. The interfa-
cial perturbation was sinusoidal in shape with wave number
~0.94 cm™! centered vertically in the channel 30 cm from the
left boundary (Fig. 4). The amplitude of the wave was 2.5 cm.
The initial diffusion thickness in the mixing layer was set to
1 mm to simulate a membrane-less experiment. The shock
wave was initialized at 10 cm from the left boundary. For this
Mach number study, the gas pair was chosen to be Air-SFg,
as many of the RMI studies in the past have been carried out
for this specific gas pair. In these simulations the molecular
weight of air and SF is taken to be 30 and 146 g/mol, respec-
tively. The specific heat ratio (gamma) for air and SFgis set to
1.4 and 1.09, respectively. The spatial resolution in the sim-
ulation was 100 pm, using a mesh with unity aspect ratio.
This gives 1,000 zones across the 10 cm channel. The ini-
tial conditions of the incident shock wave strength study are
summarized in Table 3. The initial Mach number in the study
was varied between 1.1 and 3. 5 (Table 4).

Interface centered
at 30cm

Post shock air

Origin
/ 5

LS -]

Pre-shock SF6

20 40 . 60
X distance (cm)

Fig. 4 Density plot of initial conditions for all Mach numbers
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Table 3 Initial conditions of shock strength study

Air-SF6
~0.67
~6.67 cm
2.5cm

Gas pair

Atwood number (A)
Interface wavelength (1)
Interface amplitude (a)

Channel height 10 cm

4.2 Data processing

In order to evaluate the decay of perturbations in the refracted
shock wave, the position of the shock wave, and amplitude of
the perturbations in it need to be tracked throughout the sim-
ulation. For each case, the leading edge of the shockwave was
isolated at every time step as a series of discrete spatial points
using the data visualization and analysis software package,
Vislt. The average of the horizontal coordinates of the points
was taken to be the mean location of the refracted shockwave
at a given time step. The amplitude of the perturbation can be
expressed as the sum of the absolute values of the deviation
at every point of the shock wave location, as seen in Eq. 6,
where n is the number of points on the leading edge of the
shock wave, X; is the horizontal coordinate of the nth point,
and X is the mean location of the shockwave.

l n
=D 1% — xil. 6)
n 1

The location of the shock wave was then plotted as the
distance it had travelled from its origin, the mean location
of the initial interface (30 cm). Graphs of the perturbation
amplitude as a function of the mean shock wave location
were constructed, as seen in Fig. 5. The fluctuating nature of
the perturbation amplitude is due to the reverberating shock
waves which traverse the flow field and are normal to the
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Fig. 5 Average amplitude of perturbations versus distance travelled by
refracted shockwave for Mach 1.5 with power law regression shown as
dashed line
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Fig. 6 Times series of plots for incident shock wave Mach number
of 1.5. Series A shows density plots. Series B shows pressure gradient
plots. Images /-7 are for refracted shock front travelled distances of
1.75, 3.75, 8.75, 13.75, 18.75, 28.75, 48.75 cm, respectively

refracted shock wave (Fig. 6). These fluctuations form local
maxima points shown in Fig. 5.

Figure 6 shows a time series of density and pressure
gradient plots taken for various distances travelled by the
refracted shock front. These plots illustrate the flow field
structures which affect the perturbation amplitude. The tra-
versing shock waves are clear in Fig. 6-B4. In Fig. 6-B6 it
can be seen that the refracted shock front has nearly replana-
rized at a travelled distance of 28.75 cm. The density plots
show similar flow features discussed in the previous section
for reproduction of Aleshin et al. experiments. It should be
noted that the forking in the spike tip is clearly visible in this
case also. This has been highlighted in Fig. 6-A3.

Extensive non-linear regression analysis was performed
on the entire data set. The analysis showed that the ampli-
tude decay can be represented as a power law model shown in
Eq. 7, where A is the average amplitude of perturbations (cm),
B is the base constant (cm~ £ ~1), § is the distance travelled
by the refracted shockwave (cm), and E is the power constant.
It should be noted that while this is the same form as that pro-
posed by Aleshin et al. [26,27] and reported on in Sect. 1,
a dimensional form of the equation was used here instead
since Atwood number and amplitude to wavelength ratios
were not explored, and the curve fit was applied to the entire
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data set instead of just the peak locations. These modifica-
tions to the methods of the previous work resulted in a better
defined curve fit with less human interpretation required. The
choice of the power law decay model was purely empirical
in that it provided the best fit to data. Data points were taken
starting at the moment the incident shock had fully refracted
into the SF¢. The average horizontal location of the shock
front at this moment varied for different incident Mach num-
bers. This location was estimated as 31.25 cm with an error
of below 1 % for all incident shock Mach numbers. It should
be noted that the data start location can have a large effect
on the power law coefficients for low Mach numbers. The
coefficients for the power law regression of the Mach 1.5
data set is shown in Fig. 5 with its associated coefficient of
determination (R?) value. The R? value and its interpretation
will be discussed in the next section.

A=BxSE, @)
4.3 Results and discussion

Simulations were carried out for 20 different incident shock-
wave Mach numbers from 1.1 to 3.5. The data was processed
to find the coefficients for a power law regression of the per-
turbation amplitudes as discussed above in Sect. 4.2. Table 4
lists the power law constants for each case according to Eq. 7
and the R? values.

Figure 7 shows the R? values of the power regression over
the range of Mach numbers, where R? is one minus the ratio
of the variance of the model error to the variance of the data,
and shows how well the regression predicts the behavior of
the data. Equation 8 defines RZ%, where Y; is the data point,
Y is the average of the data, and f; is the value predicted by
the regression equation. The primary contribution to the deg-
radation of the R? value comes from the oscillatory nature

1.0

09{e e o %
o ° %,
ic e ()
z %
5
5 081 *
2
[e]
a.
5] *
8 0.7_
[}
E
2 * o
o~ <
& 06

.
0.5 T T T T T 1
1.0 15 2.0 2.5 3.0 35 4.0

Incident Shock Wave Mach Number

Fig. 7 R? values of power regression for each Mach number case
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Fig. 8 Average amplitude of perturbations versus distance travelled by
refracted shockwave for Mach 3.5 with power law regression shown as
dashed line

Table 4 List of power law constants derived by power law regression
for each Mach number case

Mach B E R?

1.100 1.631 —1.094 0.900
1.250 1.635 —1.099 0.900
1.500 1.603 —1.054 0.898
1.550 1.504 —1.015 0.883
1.650 1.312 —0.953 0.860
1.750 1.502 —1.003 0.864
1.800 2.095 —1.135 0.908
1.850 1.948 —1.098 0.897
1.900 1.764 —1.033 0.892
1.950 1.602 —0.968 0.883
2.000 1.419 —0.881 0.874
2.050 1.362 —0.840 0.863
2.100 1.246 —0.776 0.849
2.150 1.179 —0.738 0.838
2.250 1.210 —0.721 0.810
2.500 1.279 —0.653 0.717
2.750 1.183 —0.602 0.647
3.000 1.056 —0.533 0.637
3.250 1.080 —0.517 0.621
3.500 0.954 —0.448 0.522

of the data sets which produces an increased variance of the
model error. For high Mach numbers at late times the oscil-
lations become large, with larger periods (Fig. 8). As shown
in Table 4, these high Mach number sets produce lower R?
values (0.52 at Mach 3.5). Considering the large variance in
the high Mach number data sets where the R? value drops,
and the oscillatory nature of the data, it is believed the power
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Fig. 9 a Base constant of power regression versus Mach number.
b Power constant of power regression versus Mach number

law regression is adequate for describing the behavior of the
decay.

RE=1-30 = ) [t = 12 ®

When the base and power constants are plotted against
Mach number (Fig. 9), a clear transition region can be seen
between approximately Mach 1.75 and 2. This transition
region seems to divide the data into two regions with sep-
arate correlations, one for high incident Mach number, and
another for low incident Mach number. This transition region
is caused by a resonance in the secondary shock waves that
traverse the primary shock front. This resonance seems to
peak at an incident mach number of 1.85.

As seen in Fig. 9a, the base constant trends downward
before turning less steeply downward after the transition
region. In Fig. 9b, the power constant trends upward before
the transition region and then resumes its upward trend at a
slightly increased slope after the transition region.
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Fig. 10 a Base constant versus Mach number. b Power constant ver-
sus Mach number. Low Mach numbers follow a linear trend between
Mach 1.1 and 1.75. High Mach numbers follow a linear trend between
Mach 2 and 3.5

Figure 10a shows the trends of the base constant in the two
Mach regions. The linear trend is nearly continuous through
the transition region if the transition data points are neglected.
The base constant is related to the post shock interface ampli-
tude since the peaks of the oscillating perturbation amplitude
are scaled by the base constant. As the incident shock strength
increases the post shock interface amplitude decreases as
does the base constant. Theoretically, this means the base
constant should be a simple function of the post shock ampli-
tude but in practice it is complicated at late times by interac-
tions with the decay rate of the perturbations.

In Fig. 10b, the trend of the power constant at low and
high Mach numbers can be seen to be linear like the base
constant. If the transition region data are ignored again the
power constant data can be seen to also have a nearly contin-
uous linear trend. The power constant is driven by decay of
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Fig. 11 Gradient of pressure plots for 3 Mach numbers. a Mach 1.5,
b Mach 1.85, ¢ Mach 2.5, at a refracted shock travelled distance of
28.75 cm

the perturbation waves as they interact with each other. The
high Mach number perturbation waves possess more energy
and are able to persist through more wave interactions allow-
ing them to remain stronger at greater distances downstream
from the initial interface location. This is why the power
constant increases with incident shock strength.

The existence of the transition region may be due to the
complexities of the transition to a supersonic post-shock flow
and the increasingly coupled flow caused by it. These sec-
ondary shock waves may complement or interfere with the
refracted shock wave amplitude depending on the phase of
the perturbations on the refracted shock wave. This kind of
interaction can cause the resonance observed in the Mach
1.85 shock wave flow field. Figure 11 shows the complexity
and strength of these secondary waves is much higher for
the Mach 1.85 case where resonance occurs. According to
1D gas dynamics this transition should occur near an inci-
dent Mach number of 1.5, but for a 2D flow this transition
Mach number is less definite and can occur at higher Mach
numbers.

At low Mach numbers the constants act to create a fast
decay in the perturbation of the refracted shock with small
amplitude perturbation remaining to late times (Fig. 10). The
low Mach number cases correspond to large (more negative)
power constants and larger base constants. The large power
constants cause a faster decay and the large base constants
result in small amplitudes lingering at late times.
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Fig. 12 Average amplitude of perturbations versus distance travelled
by refracted shockwave with local maxima shown as dots and a power
law regression of local maxima as dashed line for an incident shock
Mach number of 2.5

In the high Mach number regime, the decay is character-
ized by small power constants and smaller base constants.
Small power constants cause slow decay (Fig. 10). By this
token, the effect of perturbing the shock wave by the den-
sity interface is more significant at late times for high Mach
number cases. For example, in the simulation for incident
Mach number of 1.5 (Fig. 5), the average amplitude of per-
turbations at approximately 1.0 m from the initial location of
the refracted shockwave was ~0.01 cm, whereas for Mach
2.5 (Fig. 12) the amplitude was ~0.07 cm. This amplitude is
~10 % of the initial refracted shock wave amplitude, and is
~3 % of the initial interface perturbation, which may be large
enough to create noticeable effects in the baroclinic vorticity
production if it intersects a second interface or returns as a
reshock.

5 Conclusions

The results presented here show that the power law decay
method, similar to the one proposed by Aleshin et al. [26],
can be used to describe the decay of the perturbations pres-
ent on the shock wave created when it encounters a perturbed
variable density interface. The proposed model fits the data
for low incident Mach numbers well while at higher mach
numbers the presence of large and irregular late time oscil-
lations of the perturbation amplitude make it hard for the
power law to fit as effectively. When the coefficients from
the power law decay model are plotted versus Mach number,
adistinct transition region can be seen. This region is likely to
result from the transition of the post-shock SFg velocity from
subsonic to supersonic range in the lab frame. This region
separates the data into a high and low Mach number regions.
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These regions each have their own correlation between the
coefficients of the power law decay and the incident shock
Mach number. At high Mach numbers, perturbations induced
on the refracted shock wave will persist even at late times,
and may act as a secondary source of baroclinic vorticity
production in shock tube experiments after reshock. There-
fore, one needs to be careful when pursuing reshock studies
for the RMI at high Mach numbers. The end-wall should be
far enough from the initial interface, which guarantees the
planarity of the refracted shock wave before reaching the
wall.

Further work remains to be done to explore the transition
region experimentally and verify the results of the simula-
tions presented here. Also, the strength of the refracted shock
wave perturbations after reshock and their effect on the fluid
interface should be explored further with experimental and
simulation work.
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