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Abstract The results of an experimental and numerical
investigation into the behaviour of the spiral vortex generated
by shock wave diffraction over edges yawed to the incident
shock wave are presented. Three-dimensional numerical sim-
ulations reveal significant distortion and bending of the free
vortex in regions near the boundary of the flow domain, so as
to meet it at a right angle. The results of numerical simula-
tions were found to mimic the experimentally obtained pho-
tographs very well. The numerical results are used to explain
the various features of the resultant flow fields, with particular
emphasis placed on the behaviour and properties of the spiral
vortex, as it evolves with time. The effects of bending on the
structure of the vortex are examined. The rate of circulation
production for the three-dimensional shock diffraction cases
was calculated, and the trends observed correlated with those
for the much published two-dimensional diffraction case.

Keywords Vortex · Spiral vortex · Shock diffraction

1 Introduction

The formation of a spiral vortex during the diffraction of
a shock wave over a convex corner has been noted and
observed for many decades, with many studies published
describing the basic flow features [2,4, and many others].
However, until recently, very little work has been undertaken
with specific aims of attempting to quantify the parame-
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ters evident in such vortex flows, and the majority of the
work that has been published to date has been limited to
two-dimensional cases. This can be attributed to a num-
ber of factors, but is primarily due to the fact that it has
only become practical to obtain numerical solutions, of suf-
ficient resolution, to the governing equations of such com-
plex three-dimensional flows using modern, high powered
computers and software. Sun and Takayama [5] showed
that numerical solution of the compressible Euler equations
was able to represent the vortex formed in two-dimensional
shock wave diffraction very well, and from the results, vor-
ticity and vorticity production were quantitatively calcu-
lated. Tseng and Yang [6] provided the same results for the
solution of the laminar Navier–Stokes equations. Solution of
the two sets of equations yielded very little difference in the
results.

No published work has been found on the three-dimen-
sional shock diffraction case, and the compressible three-
dimensional vortex formed as a result.

The present study investigates the shock diffraction case in
three dimensions. Experimental and numerical studies were
undertaken so as to quantify the flow parameters present in
shock wave diffraction over straight edges yawed to the shock
propagation direction, and of curved edges of parabolic pro-
file. The straight edges were arranged in a ‘V’ configura-
tion, with the tip of the ‘V’ being the final point of shock
diffraction. Particular attention was paid to the spiral vor-
tex, the bending it exhibits in regions close to the wall, and
the distortions caused when two vortices meet. Tests were
performed for incident shock Mach numbers Ms of 1.42
and 1.65.

A discussion and description of the experiment and test
cases is given in Sect. 2, and a brief discussion of theory relat-
ing to three-dimensional compressible vortices and vorticity
is given in Sect. 3.
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Fig. 1 Features of shock diffraction, a Ms ∼ 1.3, b Ms from ∼1.45
to 1.7

2 The experiment

The basic two-dimensional flow field for a shock wave dif-
fracting over a convex wedge is shown in Fig. 1. This problem
has become a standard test case for many numerical schemes.
For incident shock Mach numbers of less than approximately
1.45, the diffraction pattern is typically that shown in Fig. 1a.
For shock Mach numbers between 1.45 and 1.7, a pattern
similar to that shown in Fig. 1b is evident. The two cases
are similar, save for the appearance of a few additional flow
features as the incident shock Mach number is increased.
The λ shocklets appear for Ms > 1.33, becoming stronger
and more visible as the incident shock strength is increased.
These merge as the incident shock strength is increased fur-
ther. The slipstream is formed due to the inability of the high-
speed gas behind the shock wave to negotiate the corner. This
forms a vortex sheet, a narrow flow region across which there
is a discontinuity in tangential velocity, which extends from
the tip of the diffracting edge. This rolls up to form the spiral

Fig. 2 Test models

vortex (labelled as vortex in Fig. 1). This feature is the primary
focus of this study. For higher incident shock Mach numbers
(around 1.6 and greater), secondary and tertiary shocks form
in the vortex, so as to decelerate and guide the supersonic
flow around the vortex.

The test models are shown in Fig. 2. The black, trailing
edge portion of the model forms the wedge that the shock
wave diffracts over. These models are enclosed in the test
section of a shock tube, down which the incident shock wave
propagates. There is thus a solid boundary on either side of
the models. The wedge angle (δ, as defined in Fig. 1) was
165◦ for all models. Two models (Fig. 2a, b) incorporating
two straight edges aligned at 45◦ to the incident shock, form-
ing a ‘V’ and an ‘inverted-V’ diffracting edge were used.
Two further models with edges of parabolic profile (Fig. 2c,
d) were also tested. The width of the models was 76 mm, with
the tip of the ‘V’ on the centre plane of the test section (i.e.
38 mm from either wall). The parabolic edge was defined by
the relation y = 0.0285x2, where x and y are in millimeters.

3 Compressible vortices

Vorticity is defined as

ω = ∇ × u (1)

where u is the velocity.
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Unsteady three-dimensional compressible vortex flows 163

A simplified form of the vorticity equation, applicable to
inviscid compressible flow, is given by (2) [1].

ρ
D

Dt

(
ω

ρ

)
= (ω · ∇)u + ∇T × ∇s (2)

where ρ is density, T is temperature, and s is entropy.
Equation 2 describes the rate of change of vorticity for a

fluid element. The first term on the right hand side states that if
a vortex line is stretched, the rate of vorticity production will
increase. This term is obviously zero for two-dimensional
flows. The second term on the right-hand side describes an
increase in vorticity if a non-zero entropy gradient is present.
Whilst it is practically impossible to solve the above equation
for an arbitrary flow field, it does nevertheless provide some
physical explanation as to what one observes in vortex flows.
It should be noted that the primary source of vorticity in the
shock diffraction case is the slipstream, which is created by
the singularity at the tip of the diffracting edge. This is not
predicted by (2) [5].

The three laws of vortex motion were proposed by Hem-
holtz in 1858. An important result of the Hemholtz laws,
applicable to the current study, is that the circulation around
a vortex tube is constant [3]. As a result of the Stokes theo-
rem the vorticity flux through a vortex tube is constant, or in
other words, the sum of the vorticity taken on a plane perpen-
dicular to the vortex axis inside the vortex tube is constant
along the vortex axis. As such, if a vortex tube is to terminate
at a solid boundary, the vortex axis would have to meet that
boundary at a right angle.

This result also ties in with the first term on the right-hand
side of (2), in that if a vortex tube is stretched, it will con-
tract, and to conserve angular momentum, the rotational rate
will increase. A local maximum of the vorticity vector would
occur at the waist.

4 Methodology

4.1 Experimental

Experimental testing was performed in a shock tube. The test
section was 180 mm tall and 76 mm wide, and had schlie-
ren quality viewing windows of 300 mm diameter. The flow
field was visualized through means of oblique schlieren pho-
tography. Schlieren images were obtained for different time
instances, so as to investigate the evolution of the flow field
with time. Sets of images were obtained for different viewing
angles, so as to more clearly visualize the flow field, and val-
idate the numerical results against the experimental results.

A single schlieren image was taken for each test per-
formed, using a Fujifilm FinePix S3 Pro digital camera at
a resolution of 12 megapixels. In the results that follow,
sequences of images obtained for different time delays are

presented. Note that each image is obtained for a separate
firing of the shock tube.

Air was used as the test gas.

4.2 Numerical

The numerical results were used to explain the various fea-
tures of the resultant flow fields.

Numerical simulations were performed using the com-
mercially available Fluent 6.3.26 code. In this paper, solu-
tions of the three-dimensional, compressible, Euler equations
are shown. An explicit density-based solver, incorporating
an explicit unsteady time formulation was used. A segre-
gated solver and second-order upwind scheme were speci-
fied. An initial unstructured mesh of hexahedral cells was
applied to the flow domains, with a dynamic mesh adap-
tion scheme based on pressure gradients implemented. The
adapted meshes were limited to a maximum of approximately
3.5 million hex cells, with the cell edge length in the order of
0.25 mm in the areas of maximum refinement. The dynamic
grid adaptation scheme was found to track the spiral vor-
tex and shock front satisfactorily. The computational domain
corresponds to that in the experiment. Initial two-dimen-
sional simulations were performed, so as to verify the solver
settings that were to be used in the three-dimensional simu-
lations. These two-dimensional results compared favourably
with previous work by Skews [4] and Sun and Takayama [5].
Post-processing was performed in Tecplot 360.

Grid convergence was difficult to assess in these cases, due
to the use of the mesh adaption scheme, the need to fine tune
the mesh adaption settings during simulations, and the rela-
tively low maximum number of cells that the computer hard-
ware available could handle. Consistent results were obtained
for models using different initial unstructured mesh densities,
however, and it is felt that the results presented here repre-
sent the best that could have been achieved with the available
hardware.

5 Results

The experimental and numerical results are discussed for
both the parabolic and ‘V’ diffracting edges first. A discus-
sion on the behaviour of the spiral vortex, and the vorticity
production then follows. Discussion and data are based on the
numerical results. The experimental photographs were pri-
marily used to validate the numerical results, through com-
paring the schlieren images and various plots of the numerical
results.

5.1 Description of flow field for parabolic models

Schlieren images for the parabolic model for Ms = 1.65 are
given in Fig. 3. These images were obtained with an optical
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Fig. 3 Flow development, parabolic model, schlieren images taken at
optical roll of 10◦ (optical axis rolled about the test section, so as to look
down on the model at an angle of 10◦ to the horizontal), �t = 25 µs
between images

roll axis inclined at 10◦ to the flat upper surface of the test
models. The diffracted shock wave is clearly visible where it
meets both the near and far windows, and on the centre plane.
The behaviour of the diffracted shock wave is generally con-
sistent with the two-dimensional diffraction case. The vortex
is clearly defined in the schlieren images, and assumes a para-
bolic profile similar to that of the diffracting edge away from
distortions caused by the presence of the windows. The vor-
tex expands with time as it propagates downstream, and by
Fig. 3h, has become less clearly defined. Secondary shocks
form in the vortex in the region near the windows, so as to
decelerate and guide the supersonic flow above the slipstream
around the vortex. A secondary and tertiary shock form in

Fig. 4 Flow development, parabolic model, CFD results images, sur-
faces of constant density and lines of constant density (black centre
plane, red near boundary) plotted (Ms = 1.65). Data are presented at
an optical roll angle of 10◦, and at the same time instants as the data in
Fig. 3

a region near the centre plane, but are not evident anywhere
else in the flow domain, aside from the region near the win-
dow. Significant distortion to the vortex is evident in a region
near the windows. Here, we can see that the vortex has bent
so as to meet the window, which acts as a solid boundary,
at a right angle. The flow features discussed above are more
clearly seen in the sequence of images generated from the
numerical solution, given in Fig. 4. In the figure, the vortex
is represented by the blue/green surface, and lines of constant
density are shown against the near boundary in red and on
the centre plane in black. The data in Fig. 4 are presented
at the same optical roll angle (10◦) and time instants as the
schlieren images presented in Fig. 3.
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Unsteady three-dimensional compressible vortex flows 165

Fig. 5 Experimental and numerical results comparison, parabolic
model, Ms = 1.65

The images in Fig. 4 clearly show the distortion caused
by the presence of the boundary on the vortex. Contraction
of the vortex, as implied by (2), as the vortex core/axis is
extended in the region near the boundaries as it is forced to
bend so as to terminate at the boundary at a 90◦ angle, is
also clearly illustrated. The presence of a secondary shock
in the vortex is indicated in the red density contour lines at
the near boundary. The slight distortion to the black contour
lines to the right and left of the vortex indicates the presence
of a secondary and tertiary shock, respectively, on the centre
plane. Further investigation of the numerical results reveals
these features to only be present in a small region near the
solid boundary and centre plane. These features are indicated
on the schlieren image in Fig. 5, and in Fig. 6 the extent to
which they exist across the flow domain can be seen.

Validation of the numerical results against the experimen-
tally obtained photographs was performed from visual com-
parisons. The correlation between the two sets of results is
striking, and the complicated flow field and features were
well captured in the numerical results for all models and
time instants investigated. A comparison of the experimental
and numerical images is given in Fig. 5, and the flow features
discussed are labelled. A labelled illustration of a typical flow
field for the parabolic model is given in Fig. 6a. Figure 6b
gives a representation of the flow field for the inverted par-
abolic model for Ms = 1.65, for the incident shock wave at

Fig. 6 Illustrations of typical flow field, a parabolic edge, b inverted
parabolic edge (Ms = 1.65)

a similar distance away from the most upstream point of the
diffracting edge as in Fig. 6a.

The results that have been dealt with here are for the Ms =
1.65 case. The solution is similar for Ms = 1.42, save for
the lack of the secondary and tertiary shocks in the vortex.
This was found to have negligible impact on the arrange-
ment and profile that the vortex assumes. The flow field for
the inverted parabolic diffracting edge revealed no further
phenomena than that for the parabolic diffracting edge did.
As a result, these results are not discussed in detail.

5.2 Description of flow field for ‘V’ models

The flow fields resulting from shock wave diffraction over
the straight, ‘V’, edges are generally consistent with those
mentioned above for the parabolic edges. The discontinuity
in the diffracting edge (at the tip of the ‘V’) allowed for the
meeting of two vortices with axes at an angle to one another
to be investigated. The angle between the edge and the solid
boundary was larger for the ‘V’ edges, 45◦, whereas it was
25◦ for the parabolic edged model discussed previously. A
set of schlieren images for Ms = 1.65 is given in Fig. 7.
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Fig. 7 Flow development, ‘V’ model, schlieren images taken at optical
roll of 10◦. �t = 25 µs between images, Ms = 1.65

The images in Fig. 7 show that the vortex assumes an
almost conical envelope away from the distortion caused by
the presence of the windows. This is disrupted once the inci-
dent shock has fully diffracted over the edge, and the vortices
on either side of the ‘V’ have met. From Fig. 7c onwards the
distortion at the tip of the ‘V’, and that caused at the wall for
that matter, propagates along the vortex axis, which appears
curved along its entire length from Fig. 7e onwards. The
behaviour of the vortex is discussed further in Sect. 6.

As with the previous case, numerical simulations have
captured the flow features very well. Again, there is very little
difference between the Ms = 1.65 and Ms = 1.42 cases. The
only apparent difference is the presence of secondary and ter-
tiary shocks in the vortex for Ms = 1.65. These have little
effect on the shape and structure of the vortex, however. This

Fig. 8 ‘V’ model, comparison of Ms = 1.65 and Ms = 1.42 flow
fields. Vortex shown in blue, density contours plotted (black cen-
tre plane, red boundary), secondary and tertiary shocks in green.
a Ms = 1.65, b Ms = 1.42

can be seen in Fig. 8, where plots of the numerical results
are given for both incident shock Mach numbers, with the
incident shock in roughly the same position.

6 Vortex behaviour

All data pertaining to the spiral vortex is obtained from the
numerical simulations. Top views of the evolution of the par-
abolic edge solution for Ms = 1.65 with time are given
in Fig. 9. The incident shock wave is represented by the
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Fig. 9 Top view of vortex development, parabolic edge, Ms = 1.65,
vortex core shown as broken black line

horizontal line, and the vortex cores, as extracted by Tecplot
360, are shown as a broken black line. The core extraction
algorithm in Tecplot has some limitations, and as a result, the
cores are not represented as a continuous line in the images
that follow. The time instant t = 0 corresponds to the instant
that the incident shock wave reaches the outer extremes of
the diffracting edge, and begins to diffract.

The vortex has assumed a complicated geometry near the
boundary, with the core bending so as to meet the boundary at
a 90◦ angle. In the region between the distortions caused by
solid boundaries on the left and right of the domain, the vor-
tex assumes a near conical profile, although obviously its axis
bends so as to conform to the diffracting edge profile. The
vortex evolution appears almost self-similar in this region,
as one would expect, based on the fact that the two-dimen-
sional diffraction case and vortex produced are self-similar
with time [4,5].

The structure of the vortex and the effects that bending
has on it are demonstrated by data presented on two slices.
These are taken perpendicular to the vortex axis from the top
view taken through the vortex. The first (plane I) is taken

through the region away from the distortion caused by the
walls, and the second (plane II) through a region of bending.
These planes are indicated in Fig. 9e. The data are taken on a
horizontal line passing through the vortex core on each plane,
the data are transformed such that the axial velocity compo-
nent is in the vortex core direction at the cut (perpendicular to
the plane). This data are presented in Fig. 10. Vorticity flood
plots, showing the structure of the slipstream, are given on
each of the two planes, at two time instants. The horizontal
white line on these plots corresponds to the line on which
the data are taken, and passes through the vortex core. The
tangential, radial (positive to the right with reference to the
images in the figures), axial velocity (positive out of the plane
of the images in the direction of the vortex core, towards the
nearest solid boundary), and normalised pressure plots are
given. Note that the magnitude of the tangential velocity is
given in the plots, with the flow in an anti-clockwise sense
with reference to the images in the relevant figures. Data for
the two time instants shown in the vorticity flood images is
plotted. The vortex core is at zero on the x-axis in the plots.
Note that the vortex core is not necessarily stationary. A small
tangential and radial velocity is indicated at the vortex core in
the plots that follow. It was decided to not subtract the vortex
core velocity in presenting the data. This would misrepresent
data from other parts of the flow field.

Considering the tangential velocity data on plane I, the
first peak on the left is the outer spiral of the slipstream.
The second peak is the beginning of the region of continuous
vorticity magnitude that lies inside the slipstream spiral. The
trough between the two peaks represents the region between
the slipstream spirals. The apex of the trough thereafter is
the vortex core. The final peak is the rightmost portion of the
slipstream. The tangential velocity profile approximates that
of a Rankine vortex, i.e. the tangential velocity is proportional
to distance away from the core, near the core of the vortex.
However, the slipstream disturbs this slightly by introducing
variations into the tangential velocity. The bending of the
vortex causes a greater gap between the outer spiral and core
region of the slipstream, as can be seen by comparing the
vorticity plots and the tangential velocity plots.

There is quite clearly a similarity between the data sets for
the two time instants on plane I. This would imply a degree
of self similarity in the evolution of the vortex with time in
that region. There are obviously some slight discrepancies
between the two data sets, caused by the non-uniform flow
over the diffracting edge and the fact that this is a highly
complicated three-dimensional flow field.

With regard to the data on plane I, the plots of radial veloc-
ity indicate a radial flow away from the core of the vortex.
For t = 86 µs this is more pronounced than at the later time
instant t = 170 µs. Note that the vortex core is not stationary,
but move at approximately 30 m/s for both time instants to
the left with reference to Fig. 10a and b.
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Fig. 10 Vorticity plots and vortex property plots, parabolic edge, Ms = 1.65
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The plots of axial velocity show significant differences on
either side of the vortex core. For the plane I data, at t = 86 µs
the velocity is approximately −150 m/s to the left of the core,
and −20 m/s to the right of the core. At this location and time
instant, the axial velocity at the core is approximately zero.
At the later time instant t = 170 µs, the trend in the curve is
similar. However, the velocity is now negative to the left of
the core and positive to the right of the core.

The plane II data show that the bending of the vortex has
had significant implications to the radial velocity distribu-
tion. On comparing the radial and axial velocities, and the
pressure with that obtained previously, we see that a further
trough now exists in the data due to the greater gap between
the outer spiral and core region of the slipstream.

Plots of pressure, normalised by the reference pressure in
front of the incident shock, are also given. The bending of
the vortex distorts this plot slightly. A value of around 0.3 is
typical at the core of the vortex. The pressure trends correlate
quite closely with those published in the literature [1] for two
dimensional vortices in the region away from the bend.

Figure 11 gives top views of the development of the vor-
tex with time for the ‘V’ diffracting edge. Again, we see that
the core has bent so as to meet the boundary at a 90◦ angle.
There is a straight portion of the core, in the region away from

Fig. 11 Top view of vortex development, ‘V’ edge, Ms = 1.65, vortex
core shown as broken black line

the distortion caused by the presence of the solid boundary,
before the vortices from either side of the ‘V’ have met. As
the two vortices from either side of the ‘V’ meet each other,
their cores bend so as to join and form a continuous curve.

Data is plotted for two slices, shown in Fig. 11e, taken
through the vortex, in a similar manner to the results given
above. Plane I corresponds to the portion of the vortex where
the core is straight, and undisturbed by distortions at the wall
or centre of the flow domain. Plane II is taken through the vor-
tex as it bends in the region near the solid boundary. Again,
the data represented by the plots are taken on a horizontal
line through the vortex core on each of the two planes.

Again, in the data taken on plane I, there is a similarity
between the data taken at the two time instants. The velocity
plots indicate a fair degree of self-similar vortex development
in the regions away from the distortions to the vortex.

The tangential velocity plots show a fairly similar trend
for a comparison of the data between the two planes. Similar
observations to those made for the parabolic model above
apply here. The radial velocity plots are fairly similar in
nature, and there appears to be a slight correlation between
the trends in the data sets taken on each plane. The plots of
axial velocity show that there is significant and complicated
axial flow within the vortex. As was highlighted previously,
the velocity is lower to the left of the core than it is at the
right of the core. The axial velocity is typically a maximum
at the vortex core. The normalised pressure plots are similar
to those for the parabolic model given above, and a value 0.3
is typical at the vortex core (Fig. 12).

7 Vorticity production

The rate of vorticity production in a two-dimensional shock
diffraction case has been studied by numerous authors, most
notably by Sun and Takayama [5]. Vorticity production data
for all of the test models, each for incident shock Mach num-
bers of 1.42 and 1.65, were calculated.

A three-dimensional ‘circulation’ (�′, normalised by RT0,
where R is the universal gas constant and T0 the temperature
in front of the incident shock) is evaluated by integrating
the vorticity magnitude across the entire flow volume, this is
plotted against time. Figure 13 gives a plot of the results.

The data for each shock Mach number tested tend to the
same linear trend, after the initial curved portion of the plot,
during which the shock wave is still in the process of diffract-
ing over the edge. This would tend to indicate that the total
rate of circulation production is independent of the diffract-
ing edge profile, and that the fact that whether the edge is
continuous or not (i.e. the parabolic edges vs. the ‘V’ edges)
has little effect on the results.

There is a slight change apparent in the gradient of the
linear portion of the curves in the region of t = 150 µs
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Fig. 12 Vorticity plots and vortex property plots, ‘V’ edge, Ms = 1.65
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Fig. 13 Normalised circulation
versus time

and t = 135 µs for the Ms = 1.42 and Ms = 1.65 cases,
respectively. This anomaly is caused by the reflection of the
expansion wave off of the top wall of the flow domain. The
expansion wave first starts to reflect off of the top wall at
approximately t = 142 µs for Ms = 1.42, and at approxi-
mately t = 135 µs for Ms = 1.65. This process appears to
induce a slight downward curve in the data. As the reflected
wave processes more of the flow volume, so the gradient of
the curve appears to reduce further.

8 Conclusions

The numerical solutions captured the flow features very well,
and good correlation between them and the experimental
schlieren images was obtained. The spiral vortex was found
to behave and bend in accordance with theoretical relations
and laws given in the literature.

The vortex core bends so as to meet the solid boundaries
at a 90◦ angle. The meeting of two vortices generated by a
‘V’ shaped diffracting edge was investigated, and the vor-
tex cores were found to bend so as to form a continuous
curve where the two vortices meet. The process and vortex
behaviour were consistent with the bending in the region
of a solid boundary. The vortex development and behaviour
was, in general, consistent across the different incident shock
Mach numbers tested (Mach 1.42 and 1.65) and four models
tested. As would be expected, based on the previous two-
dimensional shock diffraction studies, secondary and tertiary
shocks appeared in the vortex for an incident shock Mach
number of 1.65. These were only apparent in a region near

the centre plane of the flow domain (all models tested were
symmetrical about the centre plane) and the regions near the
solid boundaries. They did not extend across the entire flow
domain.

Flow properties (tangential, radial, and axial velocities,
and the pressure profile) at different locations along the
length of the vortex were presented, so as to investigate the
effect that bending has on the structure of the vortex. Data
were plotted for a conical region of the vortex apparently
unaffected by distortions to the vortex, and for the region
where the vortex is distorted and bends in the region near
the solid boundary. The results showed a fair indication
of self-similar vortex development with time in the region
away from the distortions. The plots were distorted in the
region of bending, where it was found so that a larger veloc-
ity magnitude existed on the side of the vortex towards the
centre of curvature of the bend. The vortex was found to
contract in the region of the bend, as if the core had been
stretched.

The vorticity production was calculated for all the test
models. The rate of vorticity production tended to a constant
value once the incident shock wave had fully diffracted over
the edge. The shape of the diffracting edge appeared to have
no discernible impact on the results.

The meshes used in the three-dimensional simulations pre-
sented here were coarser than those used in the solution of
typical two-dimensional diffraction cases published in the lit-
erature. Nevertheless, the results of the simulations presented
here appear to have captured the flow field sufficiently well,
as is evidenced by the good correlation obtained between the
numerical and experimental work.
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