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Abstract Micro shock tube flows were simulated using
unsteady 2D Navier–Stokes equations combined with
boundary slip velocities and temperature jumps condi-
tions. These simulations were performed using the par-
allel version of a multi-block finite-volume home code.
Different initial low pressures and shock tube diameters
allow to have the scaling ratio ReD/4L vary. The numer-
ical results show a strong attenuation of the shock wave
strength with a decrease of the hot flow values along the
tube. When the scaling ratio decreases the shock waves
can transform into compression waves. Comparison to
the existing 1D models also shows the limit of these
models.

Keywords Micro shock tube · Navier–Stokes
equations · Slip conditions · Finite-volume method

PACS 47.15 Gf · 47.45 Gx · 52.35 Tc

1 Introduction

In the past, the flow-field in a shock tube has been widely
studied from theoretical, experimental and numerical
points of view (see Glass and Sislian [1]). The hot flow
parameters are well described by the Hugoniot’s rela-
tions in the most classical shock tubes. It is also well
known that for a given diameter D of the tube, when the
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initial pressure P1 of the driven gas decreases, the un-
steady wall boundary layer development in the hot gas
may strongly modify the behavior of this flow [2]. In par-
ticular, one can notice a decrease of shock wave strength
Ms and an increase of the contact velocity to a limiting
regime where the shock and contact surface move at
the same velocity and the distance between them tends
to a constant value Lm. In the hot flow the parameters
are not constant, due to the boundary layer interaction
with the hot flow. It was shown that this distance Lm
is proportional to P1D2 and the quantity Lm/(DRe1)

with Re1 = �aD/µ, tends to a constant value when Ms
increases [3,4]. A detailed comparison between experi-
ments and numerics in the case of 5 cm shock tube diam-
eter and low initial driven gas pressure can be found in
Zeitoun and Imbert [5]. It is important to notice that in
all these studies, the shock tube flow is split in an inviscid
core flow and a wall boundary layer.

In the last decade, due to the development and design
of certain microelectromechanical systems (MEMS), a
lot of studies were published for a better understanding
of the gas dynamic flows in these microscale geome-
tries. But few works concern shock wave propagations
or high-speed flows [6,7] in these microscales where the
Reynolds number is low and where the viscous and heat
effects play an important role compared to the convec-
tion ones. Recently, shock wave propagation with initial
Ms = 1.2 in 2D narrow channels with height rang-
ing from 1 to 16 mm was performed numerically and
experimentally [8]. In this paper, the authors claimed
that ‘viscous effects in channel become noticeable for
height lower than 4 mm, even at atmospheric pressure’.
In the same way, Brouillette [9] studied the flow-field
in a micro shock tube with 5.3 mm diameter and differ-
ent driver/driven pressure ratios. He showed, through
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pressure measurements, that the effects are stronger
than those given through his 1D modeling and the cou-
pling between the size and the initial pressure can be
characterized by the following scaling ratio (Re1D/4L).
The lower this quantity is, the stronger the effects are.
But as pointed out by Brouillette [9], the choice of the L
value (distance between the shock and the contact sur-
face) in this scaling ratio is problematic because it is not
known and can be very short for a low-pressure shock
tube.

In these microflows, it is well known that the Reynolds
number is connected to the Knudsen number Kn = λ/D
(λ is the mean free path of the molecule) by the fol-
lowing relation Kn � M/Re and the unsteady Navier–
Stokes equations modeling these flows are valid only if
Kn ≺ 0.01 with no-slip boundary conditions and can be
extended to Kn � 0.1 with slip boundary conditions [10].

This paper describes the application of the unsteady
axisymmetric Navier–Stokes equations with the classical
or velocity slip and temperature jump boundary condi-
tions to these micro shock tube flows. H2/N2 are the
driver/driven gas and the ratio between the length and
the diameter of the driven tube is L/D = 100. This ratio
is usual in the classical shock tube. The first case consid-
ered is to study these unsteady flows with two diaphragm
pressure ratios corresponding to theoretical Mach num-
bers equal, respectively, to 5 and 3. The second case is
focused on Msth = 3 with a decrease of initial pressure
where the slip boundary conditions are included in the
computations and where the initial pressure and diam-
eter are modified by keeping the same value of P1D2.

2 Governing equations and numerical description

Compressible laminar unsteady viscous flows are gov-
erned by the Navier–Stokes equations coupled with the
multi-species conservation equations for a mixture. This
set of equations may be written in a compact integral
conservative form as∫

V

∂U
∂t

dV +
∫

S

F dS −
∫

S

G dS = 0,

where the volume of a computational cell is denoted by
V and its surface by S and

U = [ρi, ρV, E]T,

F = [ρi(V · n), ρV(V · n)+ pn, (E + p)(V · n)]T,

G = [ρiVd
i , τ s, τ s · V + qs · n]T,

τ s = ¯̄τ · n.

Quantities ρi, p,V = [u, v]T and E are, respectively,
the density of the ith species, the pressure, the velocity

vector and the total energy per unit volume; Vd
i being

the diffusion velocity of the ith species and

E = ρ

(
e + V2

2

)
,

where e is the internal energy per unit mass defined by

e =
N∑

i=1

Yiei(T).

Yi = ρi/ρ is the mass fraction of each species, ρi is the
density of each species, the subscript i = 1, 2 represents
the species involved in the driver/driven mixture, ρ is
the density of the mixture and

ei(T) = 3
2

RiT + ψi(erot,i(T)).

ψi = 0 for atoms or 1 for molecules. p is the pres-
sure of the mixture determined from the Dalton law
p = ∑

i pi, where pi is the partial pressure of the ith spe-
cies, assumed to behave as a perfect gas following the
relation Pi = ρi(R/Mi)T, where Mi is the mass per mole
of the ith species. ρi = ρYi being the mass of ith species,
per unit volume and R denotes the universal perfect gas
constant. τ and qs are, respectively, the viscous stress
tensor and the heat flux vector.

The computations of these equations were performed
by using the parallel version of a multi-block finite-
volume home code (named CARBUR, Burtschell et al.
[11]) with an exact Riemann solver coupled with AUSM-
DV solver and second-order MUSCL extrapolation for
the inviscid fluxes. The viscous and heat transfer terms
were discretized using a central difference scheme. Grid
cells were refined near the wall and the mesh size is
(400×60) in x, y directions with a minimum non-dimen-
sional y/D step equal to 1×10−2 at the wall which leads
to an integration time step of 10−9 s when the initial low
pressure is 100 Pa.

2.1 Boundary conditions for continuum approach

On the solid walls the following boundary conditions
were used:

u = v = 0, T = Tw,
∂p
∂n

= 0,

where the subscript w refers to the wall quantities.
To take into account the effects of rarefaction when

the initial low pressure decreases, the slip velocity and
temperature jump boundary conditions for the contin-
uum approaches were used. Different expressions of
these boundary conditions can be found in the litera-
ture, but most of them have the same structure and differ
not significantly in values of the numerical coefficients.
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In the present paper, the following slip velocity and tem-
perature jump boundary conditions are employed [12]:

us − uw = 1.012
ρ

√
2

RT
µ

(
∂uτ
∂n

)
w

,

Ts − Tw = 1.173
γ

γ − 1
1

Pr

√
π

ρ
√

8RT
µ

(
∂T
∂n

)
w

.

Here the subscript s refers to the gas quantities near the
wall; uτ is the tangential velocity, Pr the Prandtl number
and γ the ratio of specific heats.

3 Numerical results and discussion

The initial conditions of the different test cases are given
in Table 1. The initial temperatures of the driven and
driver gases are equal to 300 K and is the same for all
cases. The scaling ratio Re1D/4L varies between 0.25
and 0.025. The shock tube diameter and the length of
the driven tube are, respectively, 5 mm and 50 cm. The
subscript ‘1’ refers to the driven tube conditions.

Figure 1 represents the evolution of the shock wave
location along the tube for two first test cases which
correspond to theoretical Mach numbers Msth, respec-
tively, equal to 5 and 3. In this figure the diaphragm is
located at the origin of the x axis. Due to the consid-
ered tube length, the second case Msth = 3 leads to a
stronger attenuation of the Mach number and its value is
about 1.02 after a distance of 42 cm along the tube. This
unsteady evolution shows that to calculate an exper-
imental Mach number in this tube, the two pressure
transducers have to be close. For this case, the tem-
perature and pressure profiles along the tube axis are
plotted for different times in Fig. 2. The strong attenua-
tion is also clearly visible. At the last computational time
t = 7.8310−4 s, the maximum of temperature behind the
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Fig. 1 Shock wave location versus time for the cases 1 and 2
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Fig. 2 Temperature profiles along the shock tube at different
times for case 2

shock wave is 337 K and does not correspond to the value
given by Hugoniot’s relation with the local Mach num-
ber. It can also be noticed that the pressure increases
continuously, which can be seen from the pressure pro-
file, without a plateau behind the shock wave. This was
pointed out experimentally by Brouillette [9]. For this
time, Fig. 3 shows the temperature iso-contours in the
tube. The zone of higher temperature is confined to the
central part of the tube and this indicates that the vis-
cous and dissipation effects play an important role. It is
also clear that the flow cannot be split into an inviscid
part and a wall boundary layer and that all approaches
based on this assumption do not work.

For studying the effect of the scaling ratio Re1D/4L
on the shock wave propagation, this ratio is red
uced by a factor of 10 through the initial pressure
(P1 = 10 Pa) (see case 3 in Table 1.) and is equal to 0.025.
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Fig. 3 Temperature iso-contours at t = 7.8310−4 s for the
test case 2
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Table 1 Initial conditions of the test case computations

Case Msth P4/P1 P1 (Pa) Re1D/4L

1 5 156 100 0.25
2 3 25.04 100 0.25
3 3 25.04 10 0.025
4 3a 25.04 10 0.025
5 3a 25.04 40 0.1

aWith slip boundary conditions

The unsteady computations are conducted with the clas-
sical or velocity slip and temperature jump boundary
conditions. In this case, the computational time step is
also reduced by a factor of 10. The shock Mach number
evolutions along the tube are plotted in Fig. 4 for the
same initial pressure ratio with the classical or velocity
slip and temperature jump boundary conditions in the
computations. These curves confirm that the shock wave
attenuation is a function of pressure for the same tube
diameter. The more the initial pressure decreases the
stronger this attenuation is. This is due to the boundary
layer thickness which is inversely proportional to the
low pressure chamber and the mass and energy losses in
the core flow increase when this thickness increases. The
shock wave vanishes and transforms into compression
waves and the Mach number tends to a constant value
equal to 0.54. Moreover, the slip boundary conditions
reduce this effect slightly as shown in Fig. 5 where the
isotherms are plotted at the same time after the dia-
phragm opening. This indicates that the slip boundary
conditions reduce the viscous effects and lead to a core
flow which is more pronounced behind the shock wave
with a higher temperature value and a distance behind
the shock and the contact surface more clearly visible.

Another case (case 5 in Table 1) with the scaling ratio
Re1D/4L equal to 0.1 has been computed and the shock
location evolution along the tube is compared to the
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Fig. 4 Shock wave location versus time for the two different initial
low pressures: cases 2 and 3
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Fig. 5 Temperature iso-contours at t = 1.810−4 s for the without
and with slip condition: cases 3 and 4

other cases in Fig. 6. This evolution is about the same as
the previous case with Re1D/4L = 0.025 and tends to
the same slope value of 0.54 at the end of the computa-
tional time. This result seems to predict a limiting regime
of wave propagation when the scaling ratio decreases.

Now, a shock tube with 50µm diameter is used and
the initial pressure is taken equal to 105 Pa in order to
keep constant the scaling ratio Re1D/4L = 0.025 with
the same value L = 0.5 m. It is obvious that this value
of L is too long. It is the reason why the computational
domain is limited to a value equal to 0.05 m. The cell
number is the same as before and the slip boundary
conditions are also included in the present computa-
tions. The evolution of the shock wave location is plot-
ted in Fig. 7 with the results of test cases 3 and 4 given
in Table 1. The shape of this evolution along the tube is
nearly the same but the values are slightly lower than in
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Fig. 6 Shock wave location versus time for Msth = 3 and different
low initial pressure
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Fig. 7 Shock wave location versus time for Msth = 3

the previous case 4. It is to note that these two cases have
the same value of P1D2. Figure 8 presents a compari-
son of the isotherms between the fourth case of Table 1
and this last case. The shock wave appears thinner and
the effect of the slip boundary conditions are less pro-
nounced in this last case. This is mainly due to the initial
pressure of the driven gas which modifies the Reynolds
number Re1 and a value of L = 0.05 m which leads to
Re1D/4L = 0.25, more appropriate in regard to the
results plotted in Fig. 3.

4 Comparison with previous models

In an ideal shock tube, the fixed initial conditions in
high and low pressure chambers allow to calculate the
final state properties and wave speeds of the shock tube
flow. As an example the diaphragm pressure ratio P4/P1
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Fig. 8 Temperature iso-contours at t = 0.8510−4 s (upper =
P1 = 105 Pa, D = 50µm, lower=P1 = 10 Pa, D = 5 mm)

required for a given Mach number Ms is obtained as[
P4

P1

]
ideal

=
[

1 + 2γ1

γ1 + 1

(
M2

s − 1
)]

,

[
1 − γ4 − 1

γ4 + 1

(
a1

a4

) (
Ms − 1

Ms

)]−2γ4/(γ4−1)

,

where a is the speed of sound. But it is well known
that when the low pressure in the driven tube or/and its
diameter decreases, the real-gas effects play an impor-
tant role through the interaction between the boundary
layer development and the core flow. This effect was
experimentally observed by Duff [2] who proposed the
following expression in order to take into account:[

P4

P1

]
Duff

=
[

P4

P1

]
ideal

,

(
1 + M2

s + β1 − 1
(β1 − 1)[M2

s (β1 + 1)− 1]
)(β1+1)/2

,

where β1 ≡ (γ + 1)/(γ − 1).
This effect also leads to an unsteady evolution of the

flow parameters to a steady state, where the shock wave
and the contact surface move with the same velocity.
Unsteady computations with boundary layer/core flow
coupling were made for describing this evolution along
the shock tube [5]. From these computations a modified
value of β = 2.2 seems more adapted and will be used in
the previous expression. It is to note that this modified
value is not connected to γ . More recently, from com-
bining the conservation relations including viscous and
heat transfer effects in 1D model, Brouillette [9] pro-
posed two equations. One is the Raleigh line equation
given by

P2

P1
= 1 + γ1

[
M2

s + 4L
DRe

Ms

] (
1 − ρ1

ρ2

)
.

The second one is the implicit equation for the Hugoniot
curve which can be expressed as

P2

P1
= ρ2

ρ1

{
1 + γ1 − 1

2
M2

s

[
1 +

(
ρ1

ρ2

)2
]

−
(

4L
DRe

)
1

MsPr

[
P2

P1

ρ1

ρ2
− 1

]}
.

The intersection of the Raleigh line with Hugoniot’s
curve can be computed to obtain the ‘jump conditions’
for a given value of the scaling ratio ReD/4L. These con-
ditions have to be connected to the diaphragm pressure
ratio by an unsteady expansion. In Fig. 9 the diaphragm
pressure ratio is plotted for different Mach numbers and
the value of ReD/4L given by Brouillette’s model. The
curves given the modified Duff’s model and the ideal
theory are also reported. It can be pointed out that the
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Fig. 9 Diaphragm pressure ratio versus Mach number from
different theories (γ1 = 1.4)

curve given by Brouillette’s model with ReD/4L = 1
is identical to the one given by the modified Duff’s
model. It can also be deduced that the following relation
Ms = Mideal

s (1 − 1/β1) given by Mirels [4] describes
approximately the discrepancy between the ideal the-
ory and Duff’s relation. These curves also show that
to obtain a given Mach number in a shock tube the
diaphragm pressure ratio should strongly increase when
ReD/4L decreases. As an example with ReD/4L = 0.05,
the diaphragm pressure ratio has to be one order higher
to obtain a Mach number Ms = 2 in the shock tube.

Now for a given diaphragm pressure ratio or ideal
Mach number Mideal

s , it is possible to plot the Mach
number function of ReD/4L as shown in Fig. 10 for
Mideal

s = 3. In this figure, the Mach number obtained by
the present computations is also plotted for the differ-
ent test cases. The numerical results show that the shock
wave attenuation is stronger than those given by previ-
ous theories. This is due to the important unsteady 2D

Fig. 10 Mach number function of the scaling ratio ReD/4L for a
Mideal

s = 3

behavior of the flow along the tube with a strong inter-
action between the boundary layer and the hot flow.

5 Conclusion

The creation and the propagation of a shock wave in
micro shock tube has been investigated numerically for
different initial pressure ratios and diameters. The atten-
uation of the shock wave intensity is stronger for lower
initial pressure or/and for smaller tube diameter. These
shock waves can be transformed to compression waves
along the tube. The flow-field behind the shock wave
cannot be split in to inviscid/viscous part as used in the
previous models. The slip boundary conditions become
important for the computational results at low values
of the scaling. In order to compare different shock tube
flows through the scaling ratio Re1D/4L, the choice of
L has to be specified. Finally, it is not easy to produce
experimental results in the micro shock tube but they
will be useful to validate the analytical or numerical
description of these flows.
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