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Numerical investigations of shock waves in gas-particle mixtures
Evaluation of numerical methods for dusty-gas shock wave phenomena
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Abstract. The propagation of shock waves in gas-particle mixtures in one- and two-dimensional geometries
is numerically investigated. Two schemes for approximating conservation laws for particles, which are
collectively treated as a continuum medium, are compared and discussed. Different models of the drag
coefficient and Nusselt number, directly affecting the interaction between the gas and particle phases, are
used for obtaining shock profiles, and the results are compared. The oblique shock reflections at a solid
wedge in a gas-particle mixture are simulated. The results demonstrate that the reflection pattern changes
as the shock propagates along the wedge, revealing strong non-selfsimilarity of the phenomenon.
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1 Introduction

Over many decades, numerous scientists have investigated
the dynamics of two phase flows of gaseous media loaded
with small solid particles (dusty gases). The research field
is directly linked to some important applications, such as
shock wave interactions with solid particles in a solid-fuel-
booster nozzle, high speed flights in the rain, snow, dust
etc. The studies of the mechanism of accidental explosions
in coal mines or grain silos are also important for estab-
lishing better safety measures. As a result, there are many
publications devoted to different aspects of the phenom-
ena as well as review articles (Nettleton 1977; Igra and
Ben-Dor 1988).

High-speed flows of dusty gases, especially non-statio-
nary ones, are quite different from their pure gas coun-
terparts due to momentum and energy exchange between
the two phases. The solid particles cannot follow rapid
changes in the gas velocity and temperature, exhibiting
non-equilibrium shock regions behind shock wave fronts.
The thickness and structure of the non-equilibrium shock
regions were investigated by Carrier (1958), Kriebel (1964)
and Rudinger (1964). Rudinger (1965) also investigated
the effect of particle volume on the flow. The non-stationa-
ry phenomena of shock wave interactions in dusty gases
were studied numerically by Otterman and Levine (1974)
and Miura and Glass (1982). As more and more computa-
tional power became readily available, numerical simula-
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tions of multi-dimensional complex dusty-gas flows, such
as two-dimensional nozzle flows and the flows with bound-
ary layers, were performed (Saurel et al. 1994; Sainsaulieu
1995; Igra et al. 1999; Thevand et al. 1999; Slater and
Young 2001).

The study of shock reflections at a solid wall is one
of the important and fundamental research subjects. Kim
and Chang (1991) numerically simulated the oblique shock
reflections and investigated the effects of particle size and
loading ratio on the reflection pattern of single Mach re-
flection (SMR). Ben-Dor et al. (2001) also studied oblique
shock reflections in dusty gases, considering not only SMR
but also transitional Mach reflection (TMR), double Mach
reflection (DMR) and regular reflection (RR).

Despite the extensive research efforts in the past, quite
a lot of dusty-gas problems are still unsolved. In the nu-
merical simulations of shock wave interactions or propaga-
tion in dusty gases, many assumptions are usually made.
Some of them are reasonable, while others are accepted
solely for the convenience of numerical analysis. In order
to reduce the number of such assumptions in the dusty-gas
flow simulations, it is necessary to propose a good mathe-
matical model for each physical process and substantiate
it with reliable experimental data.

In this study, we first compare two different numer-
ical schemes for solving the particle phase. The effects
of different mathematical models for the drag coefficient
and Nusselt number are then investigated. The numeri-
cal analysis of oblique shock reflections is carried out at
the next stage, demonstrating their non-selfsimilarity. The
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information gained from the series of numerical analysis
provides a valuable precept for designing dusty shock wave
experiments which is now being prepared in our labora-
tory.

2 One-dimensional dusty-gas flows

Numerical analysis of one-dimensional dusty-gas flows is
described in this section. The interaction between the gas
and solid particle phases is effected by the drag force and
heat exchange. These are included as source terms into the
basic conservation equations for the two phases. There-
fore, it is possible to employ different numerical schemes
for each phase as long as they can handle the source terms
properly. In this study, the weighted average flux (WAF)
finite-volume method of Toro (1989) is used for the gas
phase. As to the solid particle phase, two different schemes
are implemented. The numerical results are compared and
discussed for a simple shock tube problem. Many different
mathematical models for the drag coefficient and Nusselt
number have been proposed in the past, and the evalua-
tion of those models is also done in this section.

2.1 Basic equations

The following assumptions are universally adopted in the
studies of dusty-gas flows. We follow them as well:
– the gas obeys the perfect equation of state;
– the number density of particles is large enough so that

the particles could be considered as a continuum;
– the particles’ volume is negligible;
– particles do not collide with each other so that they

do not contribute to pressure;
– particles are spherical and of the same diameter; the

density of particles’ material is constant;
– particles have the same specific heat; temperature is

uniform within each particle;
– particles are inert;
– the thermal and Brownian motions of particles are ne-

glected;
– the gravity and buoyancy forces acting on particles are

neglected;
– the effect of particles’ wakes is neglected;
– momentum and heat transfer are taken into account

only between the gas and particles.
Under these conditions, the basic equations governing

dusty-gas motion can be expressed as the conservation
laws of mass, momentum and energy for each phase:

∂Ug

∂t
+

∂F g

∂x
= −I , (1)

∂Ud

∂t
+

∂F d

∂x
= I , (2)

where

Ug =


 ρ

ρu
E


 , F g =


 ρu

ρu2 + p
(E + p)u


 , (3)

Ud =


 σ

σud

Ω
,


 , F d =


 σud

σu2
d

Ωud


 , (4)

I =
σ

m


 0

D
Q + udD


 , (5)

and E and Ω are the total energies per unit volume of the
gas and particles, respectively. They are expressed as

E = ρ

(
CvT +

1
2
u2
)

, (6)

Ω = σ

(
CmΘ +

1
2
u2

d

)
. (7)

The variables ρ, u, p and T represent the density, velocity,
pressure and temperature of the gas, respectively, while σ,
ud, Θ are the density, velocity and temperature of the dust
particles; m is the mass of a single particle, D is the drag
force acting on a single particle; Cv, Cm and Q are the
specific heat of the gas at constant volume, the specific
heat of the particle material and the heat transfer rate
per particle, respectively.

The equation of state for a perfect gas with the gas
constant R is expressed as

p = ρRT . (8)

The drag force D and the heat transfer rate Q are ex-
pressed via the drag coefficient CD and the Nusselt num-
ber Nu as

D =
1
8
πd2ρ (u − ud) |u − ud| CD , (9)

Q =
πdµCp

Pr
(T − Θ) Nu , (10)

where d is the particle diameter, Cp is the specific heat of
the gas at constant pressure. The drag coefficient CD and
the Nusselt number Nu depend on the particle Reynolds
number Re. The following formulas obtained by Gilbert
et al. (1955) and Knudsen and Katz (1958) are adopted:

CD = 0.48 + 28(Re)−0.85 , (11)

Nu = 2.0 + 0.6(Pr)1/3(Re)1/2 , (12)

where the particle Reynolds number is defined as

Re =
ρ d |u − ud|

µ
. (13)

In this study, it is assumed that the viscosity coefficient
and the heat transfer rate depend only on temperature.
The following formula by Chapman and Cowling (1961)
is used for the viscosity coefficient:

µ = 1.71 · 10−5
(

T

273

)0.77 [
N · s/m2] . (14)

The heat transfer rate is determined assuming that the
Prandtl number of the gas is constant:

Pr = 0.75 . (15)
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Fig. 1. Wave system of the HLLC approximate Riemann solver

2.2 Numerical methods

The terms representing the interaction between the gas
and particles are the source terms in the governing
Eqs. (1)–(5). These terms are handled using the operator
splitting technique (Toro 1997). The governing equations
are decomposed as follows:

∂Ug

∂t
+

∂F g

∂x
= 0 , (16)

∂Ud

∂t
+

∂F d

∂x
= 0 , (17)

dUg

dt
= −I , (18)

dUd

dt
= I . (19)

The solution is then obtained in two steps. The homoge-
neous Eqs. (16) and (17) are solved first with a second-
order numerical scheme, neglecting the interaction be-
tween the phases. Let us denote this operator as C(∆t),
where ∆t is the time step.

Then the solutions are modified by Eqs. (18) and (19),
taking into consideration the effect of the interaction. This
operator is denoted as S(∆t). The ordinary differential
Eqs. (18) and (19) are solved with the second order Runge-
Kutta method.

To ensure the second order accuracy of the whole pro-
cedure, the following solution-update strategy from the
time level n to n + 1 is used (Strang 1968):

Un+1 = S( 1
2 ∆t)C(∆t)S( 1

2 ∆t)Un . (20)

Under our assumptions, Eqs. (16) and (17) are inde-
pendent and, therefore, we can use different numerical
schemes for different phases.

2.2.1 Gas phase

The cell-centered finite-volume approach is used for the
gas phase. The weighted average flux (WAF) method de-
veloped by Toro (1989) is employed for the calculation

U
(1)

U
(2)

U
(3) U

(4)

S1

S2

S3
∆t

∆t/2

−∆x/2 ∆x/2O

F
(k) = F(U(k))

Fig. 2. Schematics of WAF numerical flux construction

of numerical fluxes at the cell interfaces. The Eq. (16) is
discretized as follows:

Un+1
i = Un

i +
∆t

∆x

[
F i− 1

2
− F i+ 1

2

]
, (21)

where the subscript i represents the node number; the
index i + 1/2 denotes the interface between the cells i + 1
and i; ∆x is the grid step.

The numerical flux F i+ 1
2

of WAF is evaluated by av-
eraging the flux based on the Riemann problem solution
at the respective interface at the time tn +∆t/2, resulting
in the second order of accuracy both in space and time:

F i+ 1
2

=
1

∆x

∫ 1
2 ∆x

− 1
2 ∆x

F

(
U i+ 1

2

(
x, tn +

∆t

2

))
dx , (22)

where U i+ 1
2
(x, t) is the Riemann problem solution with

the initial data Un
i and Un

i+1. The HLLC approximate
Riemann problem solution (Toro 1997) is used instead of
the exact solution for the sake of computational efficiency.

The HLLC Riemann problem solution consists of four
states U (1) = UL = Un

i , U (2) = (U∗)L, U (3) = (U∗)R

and U (4) = UR = Un
i+1 divided by the three waves S1 =

SL, S2 = S∗ and S3 = SR as shown in Figs. 1 and 2. As
illustrated with the wave diagram in Fig. 2, the numerical
flux of WAF (22) is integrated using the HLLC Riemann
solution to become

F i+ 1
2

=
1
2
(F i + F i+1) − 1

2

3∑
k=1

ck∆F
(k)
i+ 1

2
, (23)

∆F
(k)
i+ 1

2
= F

(k+1)
i+ 1

2
− F

(k)
i+ 1

2
, (24)

where ck is the Courant number of the k-th wave expressed
as

ck =
Sk∆t

∆x
(k = 1, 2, 3) , (25)

where Sk is the speed of k-th wave.
In order to suppress numerical oscillations, the TVD

condition is implemented in (23). The resulting numerical
flux can be written as

F i+ 1
2

=
1
2
(F i+F i+1)− 1

2

3∑
k=1

sign(ck)φ(k)
i+ 1

2
∆F

(k)
i+ 1

2
. (26)
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The function
φ

(k)
i+ 1

2
= φi+ 1

2

(
r(k)

)
(27)

is the limiting function, and the parameter

r(k) =




∆α
(k)
i− 1

2

∆α
(k)
i+ 1

2

, if ck > 0;

∆α
(k)
i+ 3

2

∆α
(k)
i+ 1

2

, if ck < 0,

(28)

is the jump ratio of a flow variable α, typically the density.
There are several limiting functions; some of them are

listed below:
SUPERBEE limiter:

φsa(r, |c|) =




1, if r ≤ 0;
1 − 2(1 − |c|)r, if 0 ≤ r ≤ 0.5;
|c|, if 0.5 ≤ r ≤ 1;
1 − (1 − |c|)r, if 1 ≤ r ≤ 2;
2|c| − 1, if r ≥ 2;

(29)

van Leer’s limiter:

φvl(r, |c|) =

{1, if r ≤ 0;

1 − (1 − |c|)2r

1 + r
, if r ≥ 0;

(30)

van Albada’s limiter:

φva(r, |c|) =

{1, if r ≤ 0;

1 − (1 − |c|)r(1 + r)
1 + r2 , if r ≥ 0;

(31)

MINBEE limiter:

φma(r, |c|) =




1, if r ≤ 0;
1 − (1 − |c|)r, if 0 ≤ r ≤ 1;
|c|, if r ≥ 1.

(32)

Each function has its own merits and demerits. The choice
is usually based on the stability and amount of numerical
viscosity of the resulting scheme. In particular, MINBEE
is used in this study. It introduces relatively large amount
of numerical viscosity, and, accordingly, the scheme ex-
hibits better stability, with less numerical oscillations.

The boundary conditions are set at the both ends of
the calculation area using imaginary cells. Depending on
the type of boundary conditions such as solid wall, inflow,
outflow etc., appropriate parameter values are assigned
with the standard method (Toro 1997).

2.2.2 Particle phase

The cell-centered finite-volume approach is used for calcu-
lations of the particle phase as well. Two different schemes
for evaluating numerical fluxes at the cell interfaces are

employed and compared in this paper. The Eq. (17) to-
gether with (4) can be rewritten in terms of the primitive
variables as

∂σ

∂t
+

∂(σud)
∂x

= 0 , (33)

∂ud

∂t
+ ud

∂ud

∂x
= 0 , (34)

∂Θ

∂t
+ ud

∂Θ

∂x
= 0 . (35)

Let us note that Eq. (34) is Burger’s equation; it has dis-
continuous solutions for discontinuous initial data while,
in principle, there are no discontinuities propagating in
the particle phase due to the assumption that the parti-
cles do not collide with each other. One way of handling
this situation is to interpolate the solution between neigh-
boring cells at the interface and avoid any solution jumps.
Miura et al. (1986) used this method for calculations of
the particle phase and the random choice method for the
gas phase. Another opportunity is to allow overlapping of
the characteristics in the Riemann problem solutions for
the particle phase as done by Saurel et al. (1994). These
two schemes are described and compared below.

Method 1

The vector of primitive variables q = (σ; ud; Θ) at a
fixed time level, t = 0 for example, is linearly interpolated
between two cell centers and expressed as

q(x, 0) =
∆q

∆x
x + q◦ , (36)

where q◦ is its value at the cell interface (x = 0). For
one-dimensional (1D) case and uniform grids, q◦ is the
arithmetic average of the cell center values. On general
non-uniform grids, it is expressed using the distances dl
and dr from the cell centers to the respective cell interface
as

q◦ =
dr · ql + dl · qr

∆x
, ∆x = dl + dr. (37)

Flow parameters at the interface x = 0 at an arbitrary
time moment t are obtained from Eqs. (17), (36) and (37)
as follows:

ud =
1

1 + ∆ud

∆x · t
u◦

d , (38)

Θ =
1

1 + ∆ud

∆x · t

[{
∆ud

∆x
· Θ◦ − ∆Θ

∆x
· u◦

d

}
t + Θ◦

]
, (39)

σ =
1(

1 + ∆ud

∆x · t
)2
[{

∆ud

∆x
· σ◦ − ∆σ

∆x
· u◦

d

}
t + σ◦

]
.

(40)
The numerical fluxes can be calculated with the primitive
variables obtained from Eqs. (38)–(40) with t = ∆t/2. The
time step ∆t is the same for the gas and particle phases.

In order to suppress numerical oscillations in the par-
ticle phase, the following minmod function is used to limit
the gradients of primitive variables:

∆q = ∆qi− 1
2

· max
{

0, min
(
1, ∆qi+ 1

2
/∆qi− 1

2

)}
, (41)
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where

∆qi+ 1
2

= qi+1 − qi , (42)

∆qi− 1
2

= qi − qi−1 . (43)

Below we refer to the method described above and the
respective numerical code as “Method 1”.

Method 2

The characteristic speed of the particle phase takes a
single value ud, and the solution of the Riemann prob-
lem corresponds to one of the six cases shown in Fig. 3.
Figures 3a–c show the rarefaction cases in which parti-
cles from the left and right states are separated, and the
solution can be written as

U(x, t) =




UL, if x/t < uL
d ;

U∗, if uL
d < x/t < uR

d ;
UR, if x/t > uR

d ,
(44)

where the star region is vacuum:

U∗ =


 0

0
0


 . (45)

Figures 3d–f correspond to the compression, or over-
lapping, cases. In these cases, particles of the left and right
states overlap, and the solution is expressed as follows:

U(x, t) =




UL, if x/t < uR
d ;

U∗, if uR
d < x/t < uL

d ;
UR, if x/t > uL

d ,
(46)

where the star region is obtained by superimposing the
left and right states:

U∗ =


 σL + σR

σLuL
d + σRuR

d

ΩL + ΩR


 . (47)

The Riemann problem solutions (44) and (46) are incorpo-
rated into the WAF scheme in the same way as for the gas
phase. We refer to the method described in this subsection
and the respective numerical code as “Method 2”.

The numerical scheme for the gas phase described in
Sect. 2.2.1 is the same for both Method 1 and Method 2.
The time increment ∆t is determined for each calculation
step based on the CFL stability condition of the gas phase

∆t = Ccfl
∆x

Sn
max

, (48)

where Ccfl ∈ (0, 1] is the CFL number, and Sn
max is the

largest local characteristic speed at the time level n:

Sn
max = max

i

{
|un

i | + an
i

}
, (49)

where an
i is the sound speed of the gas at the cell i.
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Fig. 3a–d. Six types of the Riemann problem solutions for
particle flows

Table 1. Initial conditions of dusty-gas shock tube problem

Driver gas Test section

Pressure (p/pref) 10.0 1.0
Gas density (ρ/ρref) 10.0 1.0
Particle density (σ/ρref) 1.0 · 10−6 1.0
Gas velocity (u/uref) 0.0 0.0
Particle velocity (ud/uref) 0.0 0.0

2.2.3 Comparison of the numerical schemes

Two different numerical schemes described in the previous
section, Method 1 and Method 2, are compared using a
dusty-gas shock tube problem. The initial conditions of
the problem are listed in Table 1.

The subscript ‘ref’ indicates the reference state. The
values pref and ρref are assigned to be equal to the initial
pressure (p1 = 101.3 kPa) and density (ρ1 = 1.293 kg/m3)
values of the test gas. The reference velocity uref is then
obtained as

uref =
af,ref√

γ
=
√

pref

ρref
=
√

p1

ρ1
, (50)

where af,ref is the frozen sound speed of the initial state
of the test gas. It is shown (Miura and Glass 1982) that
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Fig. 4a–d. Dusty-gas shock tube problem solutions with Method 1

the following characteristic quantity l has the dimension
of length:

l =
8m

πρrefd2 =
4
3

ρp

ρref
d =

4
3

ρp

ρ1
d, (51)

where ρp is the particle material density. Here we use l as
the reference length. The reference time, therefore, can be
obtained as follows:

τ = l/uref . (52)

The ratios of the mass concentrations (α) and the spe-
cific heats (β) of the solid particles and gas are both as-
sumed to be unity:

α =
σref

ρref
= 1 , (53)

β =
Cm

Cv
= 1 . (54)

The diameter of each dust particle is taken as 10 µm. The
specific heat of crown glass (ρp = 2500 kg/m3) is of the

same order as that of air; hence, the assumption of β=1
is reasonable. Under the conditions of atmospheric pres-
sure at room temperature, the number density of glass
particles with 10µm diameter for α=1 is 0.92×106 cm3.
Therefore, the assumption of treating the cloud of parti-
cles as a continuum is justified. The volume ratio of the
particles to the gas for α=1 is approximately 0.05%, and
the assumption of neglecting the particle volume is also
well justified.

The numerical results at τ = 20 obtained with Method
1 and Method 2 are shown in Figs. 4 and 5, respectively.
In both cases, the grid step is ∆x = 0.1, and the CFL
number is equal to 0.9.

It is seen in the figures that Method 1 gives, as a whole,
more smooth, or diffusive, results as compared to Method
2. It should be also noted that Method 2 results in oscil-
lations in the solid particle solution at the contact region.
They are most noticeable in the plot of particle temper-
ature distribution in Fig. 5. This instability could not be
removed by lowering the CFL number as shown in Fig. 6.
In fact, the results became worse as the CFL number was
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Fig. 5a–d. Dusty-gas shock tube problem solutions with Method 2
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Fig. 7a,b. The effect of grid spacing on the solution with Method 2

reduced. The oscillations disappeared only when the grid
step was reduced to ∆x = 0.02 as shown in Fig. 7.

These observations suggest that, generally, Method 1
is preferable for calculating the particle phase. However,
in order to simulate dusty gas flows with the boundary
conditions allowing particle reflections from the solid wall,
Method 2 is more convenient than Method 1 because it
permits the existence of multiple dust-particle velocities in
a numerical cell. Further investigation is required to clarify
the stability issue revealed here. However, it is beyond the
scope of the present study.

2.3 Shock tube problems

Two typical dusty-gas shock tube problems were calcu-
lated. The initial conditions are the same as those in Ta-
ble 1 except the values of the driver gas pressure and den-
sity. The normalized pressure (p4/p1) and density (ρ4/ρ1)
in the driver gas section are both either 11.5 (Case 1; par-
tially dispersed case as explained below) or 3.46 (Case 2;
fully dispersed case).

When the two phases of gas and particles are in equi-
librium, the mixture can be considered as a perfect gas
with the following equilibrium specific heat γe:

γe =
γ + αβ

1 + αβ
. (55)

The equilibrium sound speed is obtained as follows (Ru-
dinger 1964):

a1,e =

√
γ + αβ

(1 + α)(1 + αβ)
p1

ρ1
, (56)

where γ is the specific heat ratio of the gas (γ = 1.4 is
assumed throughout this study).

Figure 8 shows the solution of Case 1 at τ = 30. The
shock wave consists of a discontinuous front followed by

a smooth transition region in the gas phase. Once the
transition region is established behind the shock wave, the
shock wave propagates at a constant speed. The frozen
shock Mach number Ms,f , that is the ratio of the shock
wave velocity to the sound speed of the gas in front of the
shock wave, is calculated to be 1.2 in Case 1. Since the
shock wave propagates with a supersonic speed relative to
the gas ahead of it, it still has a sharp front, i.e. in this
case we deal with a partially dispersed wave.

On the other hand, since in Case 2 the shock wave
propagation mode is subsonic (Ms,f = 0.9), the shock
wave is completely dispersed as shown in Fig. 9. Since
the sound speed of equilibrium mixture is only 0.65 of the
frozen sound speed under the current conditions (γ = 1.4,
α = β = 1.0), the shock Mach numbers in the mixture are
more than unity in both cases.

It is worthwhile evaluating the extent of the shock
transition region. By defining the transition length as the
distance from the beginning of the shock transition zone
to the point where the ratio ud/u exceeds 0.99, it is found
that the transition length is 6.6 l in Case 1 and 35l for
Case 2. The characteristic length l for 10 µm in diameter
spheres of crown glass (density 2500 kg/m3) is 2.6 cm.
Therefore, the transition zone lengthes for Case 1 and
Case 2 are 18 cm and 91 cm, respectively.

2.4 Comparison with quasi-steady solutions

Once the transition post-shock region is established, the
shock wave propagates at a constant velocity and the flow
can be considered as steady in the coordinate system mov-
ing with the same speed. This quasi-steady flow can be
obtained numerically by integrating the following steady
equations and the equation of state (8):

d
dx

(ρu) = 0 , (57)
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Fig. 8a–c. Dusty-gas shock tube problem solution; p4/p1 = 11.5; τ = 30
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Fig. 9a–c. Dusty-gas shock tube problem solution; p4/p1 = 3.46; τ = 50

d
dx

(σud) = 0 , (58)

d
dx

(
ρu2 + σud

2 + p
)

= 0 , (59)

d
dx

{
ρu

(
CpT +

1
2
u2
)

+ σud

(
CmΘ +

1
2
ud

2
)}

= 0 ,

(60)
dud

dx
=

D

mud
, (61)

dΘ

dx
=

Q

mCmud
. (62)

The shock wave profiles obtained with the quasi-steady
analysis for the initial conditions used in the previous sec-
tions are compared with the previous non-steady solutions
in Figs. 10 and 11.

Here the fourth-order Runge-Kutta method is used to
integrate Eqs. (57) to (62). The curves obtained by the
quasi-steady analysis and by the unsteady numerical sim-
ulation are indicated, respectively, as “steady” and “un-
steady” in the figures.

It is seen in Fig. 10 that the discontinuous shock front
spreads over two to three numerical cells as expected for
the second-order shock-capturing scheme used here. The
remaining portions of the profiles obtained with the two
different methods agree quite well in both cases of partially
and fully dispersed shock waves. This is an indication of
the accuracy of the numerical code.

2.5 Drag coefficients

The drag coefficient CD is one of the important parame-
ters for studying dusty gas flows. The standard drag co-
efficient based on experimental data is known for a sin-
gle spherical particle in a steady incompressible flow at a
constant temperature (Soo 1967). It is represented by the
following set of piecewise functions (Clift et al. 1978; Igra
and Ben-Dor 1988) and shown in Fig. 12a:

CD =
3
16

+
24
Re

, for 0 < Re < 0.01; (63)

log
(

CD
Re
24

− 1
)

= −0.881 + 0.82w − 0.05w2,

for 0.01 < Re < 20; (64)

log
(

CD
Re
24

− 1
)

= −0.7133 + 0.6305w,

for 20 < Re < 260; (65)

log (CD) = 1.6435 − 1.1242w + 0.1558w2,

for 260 < Re < 1.50 · 103; (66)

log (CD) = −2.4571 + 2.5558w − 0.9295w2 + 0.1049w3,

for 1.50 · 103 < Re < 1.20 · 104; (67)
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a Mass concentration b Velocity c Pressure

Fig. 10a–c. Quasi-steady shock profiles; Ms,f = 1.2

a Mass concentration b Velocity c Pressure

Fig. 11a–c. Quasi-steady shock profiles; Ms,f = 0.9

log (CD) = −1.9181 + 0.6370w − 0.0636w2,

for 1.20 · 104 < Re < 4.40 · 104; (68)
log (CD) = −4.3390 + 1.5809w − 0.1546w2,

for 4.40 · 104 < Re < 3.38 · 105; (69)

CD = 29.78 − 5.3w,

for 3.38 · 105 < Re < 4.03 · 105; (70)
CD = −0.49 + 0.1w,

for 4.03 · 105 < Re < 106; (71)

CD = 0.19 − 8 · 104

Re
,

for 106 < Re < 108, (72)

where
w = log10(Re). (73)

Also shown in Fig. 12a are the early models by Newton,
Stokes and Oseen which are cited by Soo (1976) as

Newton CD = 0.44 ; (74)

Stokes CD =
24
Re

; (75)

Oseen CD =
24
Re

(
1 +

3
16

Re
)

. (76)

Figure 12a shows that the drag coefficients of Stokes and
Oseen agree with the standard drag coefficient for the

Reynolds number up to unity while Newton’s drag coeffi-
cient matches well with the standard one in the range from
Re ∼ 1000 up to the critical Reynolds number (2 ∼ 4·105).

Several approximations to the standard drag coeffi-
cient were proposed in the past. Klyachko suggested the
following drag coefficient (Fuchs 1964):

CD =
24
Re

(
1 +

(Re)2/3

6

)
, (77)

which well represents the standard coefficient in the range
Re < 1000. Gilbert et al. (1955) approximated the stan-
dard coefficient below the critical Reynolds number by the
following formula:

CD = 0.48 + 28(Re)−0.85 . (78)

Clift et al. (1978) introduced the approximation with the
following piecewise functions:

CD =




24
Re
(
1 + 0.15(Re)0.687) ,

for 0 < Re < 800;

24
Re
(
1 + 0.15(Re)0.687) +

0.42
1 + 42500(Re)−1.16 ,

for 800 < Re < 3 · 105

(79)
Figure 12b shows the above approximate formulas in

comparison with the standard coefficient. It is seen that
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a b

Fig. 12a,b. Drag coefficient of a sphere vs. the particle Reynolds number. a Curves for the standard drag coefficient and the
Newton, Stokes and Oseen drag coefficients; b approximations to the standard drag coefficient

a CD for different Mach numbers b CD for different temperatures

Fig. 13a,b. Henderson’s drag coefficient CD vs. the particle Reynolds number

the drag coefficient of Clift et al. (1978) agrees with the
standard drag coefficient very well. The formula proposed
by Gilbert et al. (1955) is an attractive alternative because
of its simplicity. This is considered to be an advantage for
numerical simulations.

While all previous models were obtained for incom-
pressible flows, Henderson (1976) proposed the following
drag coefficient taking into account compressibility and
the temperature difference between the solid particles and
gas. In the subsonic region (M ≤ 1.0), it is

CD =
24

Re + S
{

4.33 + 3.65−1.53Θ/T
1+0.353Θ/T exp

(−0.247Re
S

)}

+ exp
(
−0.5 M√

Re

){4.5 + 0.38
(
0.03Re + 0.48

√
Re
)

1 + 0.03Re + 0.48
√

Re

+0.1M2 + 0.2M8

}
+ 0.6S

{
1 − exp

(− M
Re

)}
, (80)

and for M ≥ 1.75

CD =

0.9 + 0.34
M2 + 1.86

√
M
Re

(
2 + 2

S2 + 1.058
S

√
Θ
T − 1

S4

)

1 + 1.86
√

M
Re

,

(81)
where

S = M

√
γ

2
. (82)
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a Gas velocity b Dust velocity

c Drag coefficient d Drag force

Fig. 14a–d. Quasi-steady solutions with different drag coefficients; Ms,f = 0.9

The drag coefficient in between (1.0 < M < 1.75) is given
by the following linear interpolation formula:

CD = CD|M=1.0 +
4
3
(M − 1.0) (CD|M=1.75 − CD|M=1.0) ,

(83)
where CD|M=1.0 is the value of CD obtained by substitut-
ing M = 1.0 in Eq. (80) while CD|M=1.75 is from Eq. (81)
with M = 1.75.

Figure 13 shows the dependence of Henderson’s drag
coefficient from the particle Reynolds number. For the
Reynolds number Re > 100, Henderson’s drag coefficient
increases for M < 1.75 and decreases for M > 1.75. For
Re < 100, it decreases with increasing the Mach number
M . As to the temperature dependence, the drag coeffi-
cient decreases with decreasing the solid-particles-to-gas
temperature ratio Θ/T , though the effect is small.

For a cloud of solid particles, it is expected that the
drag coefficient should be different from that of a single
particle due to interactions between the particles and the
disturbances or wakes generated by them. Ingebo (Rudin-
ger 1970) experimentally obtained the following drag co-

efficient for a cloud of particles:

CD =
27

(Re)0.84 , for 6 < Re < 400 . (84)

This shows that the drag coefficient decreases rapidly with
increasing the Reynolds number. Rudinger also obtained
the following formula for the drag coefficient from shock
tube experiments:

CD =
6000

(Re)1.7 , for 50 < Re < 300 . (85)

It also shows rapid decrease of the drag coefficient with
increasing the Reynolds number.

In addition to the effects of compressibility and tem-
perature differences, the flow unsteadiness is also consid-
ered to be important for transient flows. Quite a few pa-
pers on the unsteady drag coefficient have been published
so far (Igra and Takayama 1991; Falcovitz and Igra 2000;
Devals et al. 2003). Several correlations for the drag coef-
ficient of a sphere in unsteady flow have been proposed.
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Fig. 15a–d. Quasi-steady solutions with different drag coefficients; Ms,f = 1.2

Some of them seem to give better agreement with experi-
mental data than others. However, there are still some is-
sues to be clarified. The experimental and numerical stud-
ies of the unsteady drag coefficient are now being carried
out at our laboratory.

In the present paper, the shock wave profiles are calcu-
lated using the quasi-steady analysis with the following six
drag coefficients: Stokes (75), Oseen (76), Klyachko (77),
Gilbert (78), Clift (79), and Henderson (80)∼(83).

Figure 14 shows the results for the frozen shock Mach
number Ms,f = 0.9 which corresponds to the case of fully
dispersed shock front. In this case, the Reynolds number
ranges up to about 40. The drag coefficients of Stokes and
Oseen give quite different results from the approximate
formulas of the standard drag coefficient by Klyachko,
Gilbert, Clift, and Henderson. The models of Stokes and
Oseen show completely different transition lengths even
for this case of relatively low Reynolds number flow. The
other four models give almost the same drag coefficients
in this Reynolds number range. The shock wave profiles
accordingly are almost identical.

Figure 15 shows the results for the frozen shock Mach
number Ms,f = 1.2 which corresponds to the case of par-
tially dispersed shock front. In this case, the Reynolds
number goes up to around 200. The results of the models
of Stokes and Oseen are quite different from those pro-
duced by other models. The differences are much more
pronounced as compared to the previous case. The Stokes
model leads to several times larger transient distances,
while the model of Oseen gives almost one-half what is
expected from the standard drag coefficient. In this case,
again, the other four models do not show significant dif-
ferences among themselves.

Figure 16 shows the results for the frozen shock Mach
number Ms,f = 3.0 which also corresponds to the case of
partially dispersed shock front. In this case, the Reynolds
number ranges up to 1000 and, needless to say, the mod-
els of Stokes and Oseen give completely different (wrong)
results. As to other models, although there are notable dif-
ferences in their values of the drag coefficient, the shock
profiles calculated with them are still quite similar. The
model of Henderson gives a noticeable peak at the shock
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Fig. 16a–d. Quasi-steady solutions with different drag coefficients; Ms,f = 3.0

front. However, its influence appears to be localized and
the shock profiles, as a whole, are quite similar to those
obtained from other models.

Within the Reynolds number range considered in our
study, all models tested provide similar results, except for
the models of Stokes and Oseen. These two models are
valid only for very small Reynolds numbers (Re < 1)
which are completely out of the range of current inter-
est, and the large deviations from the other models were
expected. On the other hand, it is seen that the differences
in the numerical results among the Klyachko (77), Gilbert
(78), Clift (79) and Henderson (80)∼(83) approximations
are very small despite the fact that the model complexity
differs very much from one model to another. Considering
the fact that those models are not fully established, espe-
cially for the cloud of dust particles, the choice of a model
must be made wisely, considering computational efficiency
and the prospective applications. In the current study, the
drag coefficient model of Gilbert was used extensively due
to its simplicity and, hence, computational efficiency.

Fig. 17. Nusselt number Nu vs. the particle Reynolds number
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2.6 Nusselt number

The heat transfer rate for a solid particle immersed into
a steady flow depends on the local flow velocity and tem-
perature. Knudsen and Katz (1958) proposed the follow-
ing formula for the Nusselt number as a function of the
Reynolds and Prandtl numbers:

Nu = 2 + 0.6(Pr)1/3(Re)1/2 , (86)

where the definitions of the Nusselt and Prandtl numbers
are

Nu =
d · h

κ
, Pr =

µCp

κ
,

where h and κ are the heat-transfer rate and the heat
conduction coefficient of the fluid. The model (86) is used
extensively in this study. There have been many other
mathematical models proposed and the effect of adopting
different models is investigated in this section.

Drake (1961) suggested the following formula which is
similar to Knudsen and Katz’s model:

Nu = 2 + 0.459(Pr)0.33(Re)0.55,

for 1 < Re < 7000, 0.6 < Pr < 400 . (87)

Gottlieb and Coskunses (1985) proposed the following mo-
del for the Nusselt number in the air:

Nu =




1 + (1 + Re)1/3, for 0 ≤ Re < 3;
1 + (1 + 0.70Re)1/3(Re)0.077, for 3 < Re < 100;
1 + 0.6777(Re)0.47, for 100 < Re < 4000;
1 + 0.272(Re)0.58, for 4000 < Re < 106.

(88)
Sauer (1951) suggested to account for the effect of com-
pressibility in subsonic flows as follows:

Nu =
Nu0

1 + 3.42 M
RePrNu0 , for ≤ M ≤ 1, (89)

where Nu0 represents the Nusselt number obtained from
an incompressible model. Another compressible model has
been developed by Fox et al. (1978):

Nu =
2 exp(−M)
1 + 17 M

Re

+ 0.459(Pr)0.33(Re)0.55×

1 + 0.5 exp
(−17 M

Re

)
1.5

, for Re ≤ 104, M < 6 . (90)

In Fig. 17, the Nusselt number approximations are
plotted as functions of the Reynolds number at a fixed
value of the Prandtl number (Pr = 0.75). It is seen that
there are two groups of curves. One group corresponds
to the incompressible models (86)–(88) while another –
to the compressible models (89), (90). Almost all curves
give more or less the same Nusselt number of 20 at the
Reynolds number of 1000; see Fig. 20c. At low Reynolds
numbers, the compressible models result in smaller values
as compared to those from the incompressible ones, and
the difference is larger for smaller Reynolds numbers. On

the contrary, the values of the compressible models are
larger for the Reynolds numbers Re > 1000.

The effect of differences in the Nusselt number models
on the shock wave profiles is shown in Figs. 18–20. The
figures are obtained with the quasi-steady analysis using
the Nusselt number models (86)–(90).

Figure 18 shows the shock profiles for the frozen shock
Mach number Ms,f = 0.9 corresponding to the fully dis-
persed shock wave case. In this case, all the models give
similar shock profiles in spite of noticeable differences in
the Nusselt numbers themselves. Since the Reynolds num-
ber is less than 30, the Fox model leads to the lowest
Nusselt number and the temperature rise in the particle
phase behind the shock is most gradual. However, only
minor differences are observed in the transition length.

Figure 19 depicts the shock profiles for the frozen shock
Mach number Ms,f = 1.2 representing the partially dis-
persed shock wave case. All the models except for the Fox
model give similar profiles. Figure 20 illustrates the shock
profiles for the frozen shock Mach number Ms,f = 3.0.
It is seen that the Fox model differs even more from the
others. Let us notice that the gas temperature has a max-
imum in the transition region. The fact that the results
of the Fox model are noticeably different does not mean
that the model is inferior to the others. This simply means
that the evaluation of the models must be carried out by
comparing them with precise experimental data obtained
under unsteady conditions.

3 Two-dimensional dusty-gas flows

The numerical code developed and evaluated in the previ-
ous section was extended to two-dimensional (2D) prob-
lems. Oblique shock reflections in a dusty gas were sim-
ulated, and the results are shown below and discussed
mainly in the light of inherently non-selfsimilar nature of
the flows.

3.1 Basic equations and numerical method

The governing equations of the dusty gas flows in two
spatial dimensions can be written as:

∂Ug

∂t
+

∂F g

∂x
+

∂Gg

∂y
= −I , (91)

∂Ud

∂t
+

∂F d

∂x
+

∂Gd

∂y
= I , (92)

where the vectors of conserved quantities and fluxes for
the gas phase are

Ug =




ρ
ρu
ρv
E


 , F g =




ρ
ρu
ρv
E


 , Gg =




ρv
ρuv

ρv2 + p
(E + p)v


 , (93)
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a Gas temperature b Particle temperature

c Nusselt number d Heat flux

Fig. 18a–d. Effect of different Nusselt number models; Ms,f = 0.9

and for the solid particle phase are

Ud =




σ
σud

σvd

Ω


 , F d =




σud

σud
2

σudvd

Ωud


 , Gd =




σud

σudvd

σvd
2

Ωvd


 .

(94)
The vector of phase interaction terms is

I =
σ

m




0
Dx

Dy

Q + udDx + vdDy


 . (95)

The total energies of the gas and particles are

E = ρ

{
CvT +

1
2
(
u2 + v2)} , (96)

Ω = σ

{
CmΘ +

1
2
(
ud

2 + vd
2)} , (97)

where u and ud are the x-components of gas and dust
velocities and v and vd are the y-components. The x and
y-components of the Drag force are given as:

Dx =
1
8
πd2ρ (u − ud)

√
(u − ud)2 + (v − vd)2 CD , (98)

Dy =
1
8
πd2ρ (v − vd)

√
(u − ud)2 + (v − vd)2 CD . (99)

As in the 1D case, the following models of the drag coef-
ficient and the Nusselt number are assumed:

CD = 0.48 + 28(Re)−0.85 , (100)

Nu = 2.0 + 0.6(Pr)1/3(Re)1/2 . (101)

The particle Reynolds number is defined in 2D as follows:

Re =
ρd
√

(u − ud)2 + (v − vd)2

µ
. (102)

As to the solution strategy, the operator splitting is
used for handling the interaction terms. Equations (91)
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Fig. 19a–d. Effect of different Nusselt number models; Ms,f = 1.2

and (92) are numerically integrated in two steps as de-
scribed in Sect. 2.2 for 1D flows:

∂Ug

∂t
+

∂F g

∂x
+

∂Gg

∂y
= O , (103)

∂Ud

∂t
+

∂F d

∂x
+

∂Gd

∂y
= O , (104)

dUg

dt
= −I , (105)

dUd

dt
= I . (106)

The homogeneous part of the governing equations, i.e.
Eqs. (103) and (104), are solved first and then the so-
lution is further modified by solving (105) and (106), thus
taking into account the effect of the interaction between
the gas and solid particle phases. When solving (103) and
(104), we had an option to use the Strang (1968) operator
splitting in multi-dimensional space. In this study, how-
ever, the numerical fluxes in both spatial dimensions are
considered at once.

For the evaluation of numerical fluxes of the particle
phase, Method 1 described in Sect. 2.2.2 is used. The flow
parameters are interpolated between neighboring cells as
follows:

q(s, 0) =
∆q
∆s

s + q◦, (107)

where q◦ is the initial value at the cell interface:

q◦ =
dr · ql + dl · qr

∆s
, ∆s = dl + dr . (108)

The interpolated values of flow parameters at the cell
interfaces are obtained from the following equations:

ud =
1

1 + ∆ud

∆s · t
ud

◦, (109)

vd =
1

1 + ∆ud

∆s · t

[{
∆ud

∆s
· vd

◦ − ∆vd

∆s
· ud

◦
}

t + vd
◦
]

,

(110)
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Fig. 20a–d. Effect of different Nusselt number models; Ms,f = 3.0

Θ =
1

1 + ∆ud

∆s · t

[{
∆ud

∆s
· Θ◦ − ∆Θ

∆s
· ud

◦
}

t + Θ◦
]

,

(111)

σ =
1(

1 + ∆ud

∆s · t
)2
[{

∆ud

∆s
· σ◦ − ∆σ

∆s
· ud

◦
}

t + σ◦
]

.

(112)
The numerical fluxes at cell interfaces are calculated with
the above values at t = ∆t/2.

3.2 Results and discussions

3.2.1 Initial conditions

Figure 21 shows the schematic of the initial conditions
corresponding to the plane shock wave reflection from a
wedge in a dusty gas. The incident shock wave profile is
considered to be fully developed prior to its collision with
the wedge. The initial profile is calculated separately by
integrating the quasi-steady equations.

The initial and boundary conditions are set as follows:

Fig. 21. Schematic of initial conditions

• Ahead of the incident shock wave:
– Particles are uniformly distributed;
– Pressure 101.3 kPa;
– Temperature 300 K;

• Behind the incident shock wave:
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Fig. 22a,b. Oblique reflection in dusty gas; Ms,f = 1.5, θw = 60◦
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Fig. 23a,b. Oblique reflection in dusty gas; Ms,f = 1.5, θ = 30◦

– The conditions are calculated with the quasi-steady
analysis;

• Gas phase:
– Air (γ = 1.4);

• Solid particles:
– Mass ratio of the particles and gas α = σ/ρ = 1.0;
– Specific heat ratio of the particles and gas β =

Cm/Cv = 1.0;
– Diameter of solid particles d = 10 µm;

• Boundary conditions:
– Gas phase: Mirror reflection;
– Solid particle phase: Sticky wall.

3.2.2 Typical RR and SMR results

Figure 22 shows the gas density and particle concentra-
tion distributions for the incident frozen Mach number
Ms,f = 1.5 and the wedge angle θw = 60◦. The shock
wave reflection is of regular type under these conditions.
The gas density distribution is quite different from that
for a pure gas due to existence of the non-equilibrium area
behind the incident and reflected shock waves.

The particle concentration is high near the solid wedge.
The gas flow becomes parallel to the solid wall behind the
reflected shock wave. The solid particles have much larger
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Fig. 24a–c. Transient distributions of gas density; Ms,f =
1.5, θw = 55◦

inertia and cannot immediately turn and follow along the
wedge surface. They keep approaching the solid wall be-
hind the reflected shock wave. As a result, the mass con-
centration of solid particles becomes higher near the wall.

Figure 23 shows the gas density and particle concen-
tration distributions for the wedge angle θ = 30◦ and the
same incident shock Mach number. SMR now appears,
with a Mach stem and a slip line in addition to the re-
flected shock wave. A high-particle-concentration region
is seen on the wedge surface.

The directions of dust particle velocities on both sides
of the slip line are not parallel due to differences in the
way how the particles are accelerated: some are acceler-
ated through the Mach stem, while others – through the
incident and reflected shock waves. Therefore, the slip line

actually spreads with distance from the triple point. It is,
in fact, a slip region, in which the dust concentration is
very low.

3.2.3 Non-selfsimilarity

In many cases, oblique shock wave reflections in a pure
gas may be considered as self-similar. It is shown both
experimentally and numerically (Henderson et al. 2001)
that the reflections, even for pure gas cases, are not exactly
self-similar due to viscosity and heat transfer on the wedge
surface. In a dusty gas, the oblique shock reflection is not
self-similar due to the non-equilibrium region behind the
shock wave front, even if the effects of viscosity and heat
transfer on the reflecting surface are not considered.
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Fig. 25a–c. Transient distributions of gas density; Ms,f =
1.5, θw = 30◦

Figures 24 and 25 show RR and SMR at three different
time moments. It is clear that the patterns are not self-
similar. In 1D case, when a shock wave propagates for a
long distance in a dusty gas and once the non-equilibrium
post-shock region is established, the shock wave velocity
and the extent of the non-equilibrium zone become con-
stant. Therefore, on a large scale, when the width of the
non-equilibrium region becomes negligible as compared to
the distance travelled by the incident shock, the reflec-
tion pattern may be considered as self-similar. However,
as seen in the figures, it takes a long time for this situa-
tion to be established. For example, assuming the particle
material to be crown glass (density 2500 kg/m3), the non-
dimensional time value τ = 25.6 (Fig. 24c) corresponds
to 2.5 ms, and the shock propagates 1.4 m during this
time interval. Therefore, in most laboratory experiments
with dust-gas mixtures the non-equilibrium effects would
be significant.

3.2.4 RR-SMR transition

One more consequence of the finite width of the post-shock
non-equilibrium region is that the reflection type changes
in the course of shock wave propagation. Figure 26 shows
the transition from RR to SMR. It takes some time for
the Mach stem to be clearly seen. No Mach stem is visi-
ble in Fig. 26a, while in Fig. 26d a Mach stem is definitely
formed. In pure gas cases, the type of oblique shock reflec-
tion is determined by two parameters: the incident shock
Mach number Ms,f and the wedge angle θw. In dust-gas
mixtures, the reflection type depends, in addition to Ms,f

and θw, on the distance Lis travelled by the incident shock
wave along the wedge or its corresponding time tis.

The transition curves in the parametric space of the
wedge angle θw and the travelled distance Lis, for a fixed
value of Ms,f = 1.05, are mapped in Fig. 27. In the fig-
ure, the propagation distance is normalized by the char-
acteristic length l defined by Eq. (51) in Sect. 2.2.3, i.e.
lis = Lis/l. The conditions above the curve correspond to
RR while SMR is achieved in the area below the curve.
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Fig. 26a–d. Transition from regular to Mach reflection; Ms,f = 1.05, θw = 38◦

The transition point moves away from the leading edge as
the wedge angle increases.

The transition curves in the parametric space of the
wedge angle θw and the frozen shock Mach number Ms,f ,
for a fixed value of lis = 4.0, are mapped in Fig. 28. In the
figure, the transition curves obtained with the present nu-
merical code for the gas without dust and calculated from
the sonic criterion are also shown. The numerical curve
of pure gas agrees well with the theoretical curve. The
dusty-gas transition curve gives larger wedge angles and
the tendency is more pronounced for low Mach numbers.

The sound speed of a dusty gas is slower compared
with the same gas without solid particles (see Eq. (56) in
Sect. 2.3). Therefore, the signal from the leading edge is

delayed and even if SMR occurs in the pure gas, in the
presence of dust the pattern may remain to be RR. For
higher Mach numbers, however, the temperature behind
the shock wave is higher as compared with the pure gas
case. Higher temperature increases the sound speed, com-
pensating its decrease due to the presence of dust. There-
fore, the deviation of the dusty gas curve from that for
the pure gas becomes smaller for higher Mach numbers.

4 Summary

One-dimensional numerical codes for simulating shock wa-
ve propagations in dust-gas mixtures were developed. Two
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Fig. 27. RR-SMR transition map for Ms,f = 1.05

Fig. 28. RR-SMR transition map for lis = 4

schemes for evaluating numerical fluxes of the particle
phase were compared. It is found that the scheme with
the linear interpolation of parameters between adjacent
numerical cells is more stable than the other one based
on the Riemann problem solution for the particle phase.
The scheme with the Riemann problem, however, is useful
for studying different boundary conditions of the particle
phase at a solid surface since it allows multiple values in
numerical cells.

Several models for the drag coefficient between the par-
ticle and gas phases were investigated. Within the consid-
ered Reynolds number range, all models tested provide
similar results, except the models of Stokes and Oseen.
These two models were completely out of the range of
applicability, and the results were expected.

The effect of different models for the Nusselt number
on the shock wave profiles was investigated. It is found
that differences in the numerical results were not so sig-
nificant despite the fact that the complexity of the mod-
els differs widely. Taking into account the fact that those

models are not fully established, especially for a cloud of
dust particles, a reasonable choice should be made, con-
sidering computational efficiency and the purpose of the
simulations in mind.

The numerical code was extended to two-dimensional
problems and applied to oblique shock wave reflections
from a solid wedge. The inherent non-selfsimilarity of the
phenomena was clearly shown. The transitions from reg-
ular to Mach reflection in the course of the incident shock
wave propagation along the wedge were also demonstra-
ted, and the respective transition curves were obtained for
some values of parameters.
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