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Abstract. In numerical simulation of the Euler equations, the slipstream or shear layer that appears behind
a diffracted shock wave may develop small discrete vortices using fine computational meshes. Similar
phenomena were also observed in the simulation of a Mach reflection that is accompanied by a shear
layer. However, these small vortices have never been observed in any shock-tube experiment, although
the wave pattern and the shape of the main vortex agree very well with visualization results. Numerical
solutions obtained with coarse grids may agree better with experimental photos than those with very fine
grids because of the pollution of the small vortices. This note tries to investigate the effect of viscosity
on the small vortices by comparing the solutions of the laminar Navier-Stokes equations and the k − ε
turbulence model. It is found that the small vortices are still observed in the solution of the laminar
Navier-Stokes equations, although they can be suppressed by using the turbulence model. Numerical and
experimental factors that are responsible for the deviation of the laminar solutions from experimental
results are discussed. The secondary vortex in shock diffraction is successfully simulated by solving the
Navier-Stokes equations.

Key words: Secondary vortex, Shock diffraction, Slipstream, Vortex sheet, Shear layer, Numerical methods

1 Introduction

The development of numerical schemes to solve the con-
servation laws for compressible flows, mainly the Euler
equations, has reached a state of maturity. A variety of nu-
merical schemes with high-order accuracy were proposed
in the past few decades (Toro, 1999). Most of them pro-
vide reasonably good results on both structured and un-
structured meshes, and have been extended to other more
complicated physical systems. Flows in shock tubes are
characterized by their unsteadiness due to the limited test
time. It was found that numerical solutions of the un-
steady Euler equations reproduce precisely shock propa-
gation, reflections from walls and interaction with bodies.
For instance, in shock wave focusing in a large chamber,
the difference between experimental photos and numeri-
cal solutions of the Euler equations can be within the un-
certainty in conventional shock-tube measurements (Sun
and Takayama 1996). However, the difference may be-
come distinguishable in some vortical flows, such as shock
wave/boundary layer interaction and flows very near a
sharp corner. In these cases, viscosity is no longer negligi-
ble. An example, which shows the flow behind a diffracting
shock wave, is illustrated in Fig. 1.
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Shock diffraction, one of the most basic phenomena
in shock dynamics, has been often adopted as a numeri-
cal test for the simulation of unsteady compressible flows.
A benchmark test of shock diffraction over a 90◦ corner
was organized during the 18th International Symposium
on Shock Waves; many numerical results and several ex-
perimental results were summarized by Takayama and In-
oue (1991). By comparing with experimental photos, it
is understood that numerical solutions of the Euler equa-
tions using high-order Godunov-type schemes, piecewise
parabolic method (PPM), finite volume Galerkin scheme
(FVGS), FEM-FCT, TVD-type schemes or other schemes
can reproduce very well diffracting shock waves, expansion
waves and the shape of the main vortex. However, numer-
ical schemes (say, TVD-type and Godunov-type schemes)
solved on a reasonably fine grid are found to give thicker
contact surfaces, but thinner shear layers. From Fig. 1,
other two differences between experiment and numerical
solutions are observable. One is that a secondary vortex,
which lies below the slipstream and between the corner
and the main vortex in experiment, does not show up in
numerical solutions of the Euler equations on both coarse
and fine grids. Another is, the smooth slipstream shown
in the experimental photo develops many small vortices in
the numerical solution of the fine grid, as shown in Fig. 1c
indicated by arrows.
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The formation of the secondary vortex is due to the
separation of the boundary layer on the downstream wall;
its mechanism was interpreted by Rott (1956). It is ex-
pected that if viscosity and heat conductivity are consid-
ered numerical calculation should reproduce the secondary
vortex, although this has not been reported in open liter-
ature to our knowledge. On the other hand, the interpre-
tation for the appearance of small vortices in a numerical
simulation is more complicated. On an extremely fine grid,
which is usually realized by using the adaptive mesh tech-
nique, a thin shear layer can evolve to many small vortices.
Uchiyama and Inoue (1995) reported the formation and
evolution of these vortices by solving the Euler equations
using the flux-vector splitting scheme. Similar phenomena
were also observed in the simulation of the Mach reflection
over a wedge that contains a slipstream, e.g. Figs. 21, 22,
25, 26 in the benchmark test (Takayama and Jiang 1997),
and Fig. 7.1 shown by Berger and Colella (1989). The phe-
nomenon seems to be expected since it is argued that the
shear layer is unstable and the Kelvin-Helmholtz instabil-
ity develops and eventually grows up into small vortices.
However, the rolling-up of these small vortices had not
been observed in experiments of Skews (1967). Thereafter
numerous shock-tube experiments have been conducted in
order to observe the phenomenon in our Center using holo-
graphic interferometry (e.g. Sun and Takayama 2003); un-
fortunately, no interferogram convincingly shows the ex-
istence of the rolling-up of the small vortices. A typical
experimental photo is shown in Fig. 1a, where the slip-
stream appears to be clearly smooth and continuous.

In numerical simulation, the rolling-up of small vor-
tices is observed on fine grids. Two numerical results, ob-
tained on coarse and fine grid respectively, are given in
Fig. 1b and c. The rolling-up of small vortices is not ob-
servable in the numerical solution obtained on a coarse
grid (Fig. 1b). Comparing two numerical results with the
experimental one, one may see that the spiral vortex on
the coarse grid is surprisingly closer to experiment.

The motivation of this note is two-fold. One is to verify
whether the Navier-Stokes equations can reproduce the
secondary vortex observed in experiment, and whether
tiny vortices in the Eulerian solutions can be suppressed
by adding viscosity and heat conductivity. This note re-
ports the results of this study.

2 Numerical method

For weak shock waves at room temperature and pressure,
any test gas can be considered as perfect gas following the
equation of state

p = ρRT, (1)

where R is the universal gas constant divided by the
molecular weight of the gas. The perfect-gas law is ac-
curate to ±10% in the range 1.8 ≤ T/Tcrit ≤ 15 (White
1974), where Tcrit is the temperature at the critical point.
For air, such a temperature range corresponds to 240 K ∼
2000 K. As a direct consequence of the perfect-gas law the
internal energy becomes, for the constant ratio of specific
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Fig. 1a–c. Vortical structure in shock diffraction, Ms = 1.5, a
is an experimental photo and b,c are numerical solutions of the
Euler equations; the fringes are contours of the same density:
a t = 295 µs, image size = 104 mm × 73 mm; b coarse grid,
300 × 210; c fine grid, 900 × 630

heats γ,
ρe =

p

γ − 1
. (2)

For air, the value of γ is 1.4. All these assumptions are
valid for the gas in the present experiment.

The Euler and the laminar Navier-Stokes equations,
and the Reynolds average Navier-Stokes equations with
the standard k−ε model proposed by Launder and Spald-
ing (1972) coupled with the equation of state (1) and inter-
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nal energy (2) are numerically solved by the finite volume
method on an all-quadrilateral grid. The method solves
them by directly applying them to each quadrilateral cell.
The change of conservative quantities in the quadrilat-
eral cell is equal to the summation of fluxes through four
interfaces. The Euler solver contains two schemes, cen-
tered and upwind schemes, to calculate the fluxes. Both
schemes are second-order accurate in time and space. The
centered scheme is based on the predictor-corrector Lax-
Wendroff scheme, and a non-linear artificial viscosity is
added to suppress possible oscillations (Sun 1998, Sun
and Takayama 1999). The upwind scheme is the MUSCL-
Hancock scheme (see, Toro 1999). The minmod limiter is
used to flatten slopes of primitive variables, and the fluxes
through interfaces are determined by solving the HLLC
approximate Riemann problem.

The governing equations with viscous and heat-
transfer terms are solved following the operator-splitting
method, Un+1 = NCUn, where operator C represents the
convection step that solves exactly the equations with con-
vective terms, and operator N represents the viscous step
that integrates all other terms. If the convection step and
the viscous step are second-order accurate for their own
parts, the combination is also second-order accurate. The
reader should refer to papers (Strang 1968, Demkowicz
et al. 1990) for details. The convection step is solved us-
ing the method discussed in the preceding paragraph. The
viscous step integrates viscous and heat-transfer terms us-
ing the forward-time-central-space (FTCS) scheme. The
scheme is second order accurate in space and first order
accurate in time. For high Reynolds number flows, the
coefficients of the Navier-Stokes specific terms have the
order of ∆x2 if one chooses ∆x = O(1/

√
Re). That is to

say, in most regions, the viscous effects are trivial. For
the regions close to solid boundaries, the flow is almost
steady. Therefore, the real truncation errors created due
to the first-order accuracy in time should not be larger
than those introduced in the convection step by a second-
order scheme. This greatly simplifies the formulations for
solving the viscous terms. The wall surface is assumed to
be isothermal. The viscous solver has been validated by
testing the Couette flow and the boundary layer over a
flat wall.

To be able to efficiently distribute fine meshes around
the corner and the wall surface, a solution-adaptive un-
structured quadrilateral mesh (Sun and Takayama 1999) is
used. The solver uses an initial unstructured quadrilateral
mesh that covers a 720 mm long and 120 mm high com-
putational domain, the corner portion of which is shown
in Fig. 2a. For the present simple domain, the mesh con-
tains only rectangles. In order to resolve well the bound-
ary layer in viscous computations, the initial mesh cells
are clustered to the wall surface, and the cells along the
surface are forced to be refined during computation. In the
region where the vortical structure form, square cells are
used to avoid possible numerical errors due to grid irregu-
larity. An example of solution-adaptive mesh is shown in
Fig. 2b, in which important flow features are captured by
fine cells such as shock wave, vortex and slipstream, and
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Fig. 2a,b. Numerical mesh: a initial mesh, only 1/11 of total
length and 1/2 of total height of the whole computational do-
main is shown; b an adaptive mesh, only about 1/13 of mesh
a is shown, finest cell size = 0.03 mm

the fine cells are removed when these features have passed
away. A four-level refinement is used in the present com-
putations, and the finest cell size is 0.03 mm in length and
height. Although stretched cells are often used in the vis-
cous computation, it is not suitable for the present case
because the shear layer lies in the flow field and its ori-
entation is unknown beforehand; so square cells are used
to cover the region where vortex forms and the boundary
layer separates.

3 Results and discussion

Experiments were conducted using a 60 mm × 150 mm
diaphragmless shock tube (Yang 1995) in the Shock Wave
Research Center, Tohoku University. The flow was visu-
alized by double exposure holographic interferometry us-
ing a Q-switched ruby laser with 25 ns pulse duration.
The height of shock tube was 150 mm, and the light path
60 mm. Initial pressure in front of shock wave was 92 kPa
for shock Mach number Ms = 1.50. Test gas was air at
298±2 K during all experiments. The fringes correspond to
equal density contours, and the density difference between
two fringes is 4.8% of the density in front of the incident
shock wave. Numerical simulations were conducted under
the same initial conditions.

Figures 1b and c are the Eulerian solutions obtained
by the present computation. It is seen that the coarse grid
resolves the slipstream in a good agreement with the ex-
periment, while the fine grid produces a few small vor-
tices that are not observed in the experiment, Fig. 1a.
Since other researchers have also reported the formation
and evolution process of these small vortices in solving the
Euler equations, we shall not repeat commenting this as-
pect here. However, we stress that numerical solutions also
indicate that the time in the Eulerian solutions when the
small vortices start to appear, tv, is nearly proportional
to the grid size, ∆x,

tv = α∆x,

where α depends on the numerical scheme used. If the
velocity is normalized by (RT )1/2, coefficient α is about
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700 for the MUSCL-Hancock scheme, and 1000 for the
centered scheme in our computation. These values agree
fairly well with the value 950 for a TVD scheme, which is
estimated from the results of Uchiyama and Inoue (1995).
It should be noted that tv, which is a function of grid size,
has no physical meaning, mainly because shock diffrac-
tion has no length and time scales if viscosity and heat-
conductivity are neglected. The finer the grid is, the earlier
the small vortices start to appear. Artificial viscosity built
in the numerical schemes should play an important role in
determining the coefficient α.

The density distributions at different time instants
obtained by solving the laminar Navier-Stokes equations
are plotted in Figs. 3 and 4. The minimum mesh size is
30 µm, and it is equivalent to 4000 × 4000 cells for a
120 mm × 120 mm domain, which is the best resolution
we may achieve with a limited computer resource. Even
though the mesh Reynolds number is about 200 for a rep-
resentative velocity of 100 m/s, so the viscous terms are
actually under-resolved and physical dissipation on fine
vortices may be under-estimated. Note that although flow
features in all plots seem to have the same scale, they
are actually growing with time. Because the flow features
are almost self-similar, spatial coordinates at different in-
stants t are scaled to the same size by dividing the factor
t, and their physical scales are given in the captions.

Figure 3 shows the early stage of vortex formation.
The slipstream is resolved smoothly. Boundary layers de-
velop on the upstream and the downstream walls, which
are not seen in the Eulerian solutions. Although the main
flow moves downward, the flow over the downstream wall
close to the corner moves upward. The boundary layer
there experiences an adverse pressure gradient and sepa-
rates from the wall, resulting in a secondary vortex, which
lies between the main vortex and the corner. The vortex
structure resolved in Fig. 3c agrees well with the inter-
ferogram in Fig. 1a. However, the numerical time scale is
about ten times shorter. The interferogram corresponds to
295 µs after the arrival of shock at the corner, while the
numerical result corresponds to 30 µs. Figure 4 shows the
numerical results at later time. The slipstream is no longer
smooth, and a few small vortices have already formed at
t = 60 µs as shown in Fig. 4a. These small vortices grow
and disturb the flow field significantly. Bifurcated shock
waves are visible due to the interaction with the vortices
in Fig. 4c. Comparing the small vortices in the laminar
solutions with those in the Euler equations, we found that
the evolution process is actually very similar, except that
the small vortices are slightly attenuated in the Navier-
Stokes solution. Figure 4 indicates that viscous dissipation
in the laminar Navier-Stokes equations is not sufficient to
damp the small vortices. It maybe suggested that the 2-
D laminar Navier-Stokes equations still underestimate the
physical dissipation of the experiment.

The rolling-up of the two-dimensional small vortices
is related to the Kelvin-Helmholtz instability that pro-
duces spanwise vortices. In experiment, the flow is three-
dimensional. The slipstream is also unstable in another
direction and can produce streamwise vorticity, which is

certainly not resolvable in 2-D computation. However, it is
not possible yet to directly simulate the 3-D Navier-Stokes
equations under the present computational resources. A
k − ε turbulence model is chosen to investigate whether
the small vortices can be suppressed by the turbulent dis-
sipation.

Figure 5 shows the comparison of results of the laminar
Navier-Stokes equations and the turbulent model with the
experiment at t = 195 µs after shock arrival at the cor-
ner. The convection terms in both governing equations are
solved by the same limiter, approximate Riemann solver,
and MUSCL-Hancock scheme, so that the difference be-
tween the two numerical results should result from the
additional turbulence dissipation in the turbulent model.
Numerical simulations with the turbulent model show that
small vortices are gradually damped by increasing initial
turbulence intensity. The result shown here was obtained
for an initial turbulence kinetic energy of 0.036a2

0, where
a0 is the sound speed in front of the incident shock wave.
Compared with the experiment photo Fig. 5a, the numer-
ical result with the turbulence model reproduces well not
only the vortex spiral, the secondary vortex but also the
secondary shock structure over the slipstream. By compar-
ing the vortex spiral in Fig. 5b and Fig. 1b obtained by two
different governing equations respectively, it can be con-
cluded that artificial viscosity that is built in the numer-
ical scheme solving the Euler equations on a coarse grid
may have a similar effect on the shear layer as the turbu-
lence dissipation. Certainly, numerical dissipation cannot
replace the physical dissipation in all aspects; for example,
it fails to resolve the secondary vortex.

Figure 6 records the trajectories of the vortex core us-
ing the three governing equations. Experiments indicated
that the trajectory is a straight line (Skews 1967, Yang
1995). The vortex core is numerically located at the cell
that has the minimum value of pressure. It is seen that
the trajectories given by the Euler equations and the lam-
inar Navier-Stokes equations periodically deviate from the
straight line with an increasing amplitude, while the tra-
jectory given by the turbulence model is nearly a straight
line. From the viewpoint of vortex dynamics, the small dis-
crete vortices in the solutions of the Euler and the Navier-
Stokes equations induce a different velocity at the vortex
core from that of a smooth shear layer although their to-
tal strength, in terms of circulation, are nearly the same.
This further suggests the small vortices in the numerical
solutions are not so pronouncing in reality.

4 Remarks on the appearance
of small vortices

Slipstreams or vortex sheets are produced from a sharp
corner behind a diffracting shock wave or a triple point in
Mach reflection. For a shock wave of Ms = 1.5 diffracting
over a 90◦ corner, the slipstream, the convective Mach
number of which is about 0.7 estimated from an analyti-
cal model (Sun and Takayama 2003), is unstable according
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Fig. 3a–f. Numerical solutions of the laminar Navier-Stokes equations (Part 1, smooth shear layer): a t = 10 µs, 2.16 mm ×
2.16 mm; b t = 20 µs, 4.32 mm × 4.32 mm ; c t = 40 µs, 8.64 mm × 8.64 mm; d,e and f correspond to adaptive meshes for a,b
and c, respectively

to the linear stability analysis of Miles (1958) for invis-
cid flows. Any derivation from the perfect slipstream due
to numerical random errors, such as truncation and grid-
dependent errors, may trigger the instability. However, if
the appearance of small vortices is a consequence of the in-
stable slipstream, it is hard to interpret the fact that the
vortices cannot be seen in experiment. Present numeri-

cal tests further show that simply considering the effect
of viscosity and heat conductivity by using the laminar
Navier-Stokes equations cannot suppress these vortices.
Two factors, on both experimental and numerical side,
are considered responsible for the discrepancy.

In experiment, the optical methods used up to now
recorded only the integrated density information across
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Fig. 4a–f. Numerical solutions of the laminar Navier-Stokes equations (Part 2, small vortices): a t = 60 µs, 12.96 mm×12.96 mm;
b t = 100 µs, 21.6 mm × 21.6 mm; c t = 140 µs, 30.24 mm × 30.24 mm; d,e and f correspond to adaptive meshes for a,b and
c, respectively

the test section. There is a possibility that small vortices
may contain three-dimensional perturbations, and so not
show up on integrated images. Note that for a viscous
flow over a backward-facing step, the flow is often tur-
bulent (e.g. Le et al. 1997). The smooth slipstream ob-
tained by solving the turbulence model somehow supports
this interpretation, since the turbulent flows may result
from the instable three-dimensional perturbations. Nev-

ertheless, the small vortices in the numerical simulations
grow so large as shown in Fig. 5c that it should have been
detected by optical methods. The two-dimensional Euler
and Navier-Stokes equations exaggerate their evolution,
or three-dimensional effects are not the only factor that
contributes to the discrepancy.

In the numerical simulation of the Navier-Stokes equa-
tion, the flow is under-resolved since the cell Reynolds
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Fig. 5a–c. Comparison of laminar and turbulent solutions
with experiment, Ms = 1.5, t = 195 µs, image size =
70 mm × 49 mm; the fringes are equal density contours:
a experimental photo; b solution of the k−ε turbulence model,
mesh size 2300 × 1600; c solution of the 2-D laminar Navier-
Stokes equations, mesh size 2300 × 1600

number is rather high. It has been reported that under-
resolved solutions contain spurious nonphysical vortices
(Brown and Minion 1995) in incompressible flow simula-
tions of a vortex sheet. Although the numerical mecha-
nisms responsible for the artifacts have not been clearly
understood, the spurious vortices share a few similari-
ties as the small vortices observed in simulation of shock
diffraction, such as both central and upwind schemes can

Fig. 6. Trajectories of the main vortex core

produce such artifacts. Those spurious vortices may result
in the small vortices in compressible simulation of a shear
layer, or at least disturb the evolution of the shear layer.
Note that the under-resolved problem cannot be avoided
by using a fine grid. The grid size is limited by avail-
able computer resources; more importantly for the Euler
equations, numerical solutions are always under-resolved
whatever the grid size is if the Euler equations are consid-
ered as the Navier-Stokes equations with an infinitely large
Reynolds number. Another interesting numerical experi-
ment done by Samtaney & Pullin (1996) suggests a grid-
converged smooth numerical solution of the vortex sheet
exists, by solving the self-similar solution of the compress-
ible equations, or a boundary value problem. Then the
problem left is how to construct a numerical method that
does not or weakly disturb the smooth solution. Existing
numerical methodology seems not up to this problem.

5 Concluding remarks

Numerical solutions of the Navier-Stokes equations con-
firm that the secondary vortex in shock diffraction is due
to the viscous effect. We successfully reproduce by numer-
ical simulation both the complete vortex system and the
fine wave structure near the corner in shock diffraction.
This, to our knowledge, is reported for the first time in
the literature.

The rolling-up of small vortices along a vortex sheet,
which was reported in solving the Euler equations but
never been observed in shock tube experiment, appears
also in the solution of the 2-D Navier-Stokes equations,
but may be suppressed by using a turbulence model. The
numerical mechanism of the rolling-up in numerical sim-
ulation is still a controversial issue. Existing numerical
methods behave badly in solving such a problem. Some
novel numerical methods are required to suppress or at-
tenuate the small vortices without degrading the accuracy
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in other regions. This would pose a considerable challenge
for computational fluid mechanics.
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