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Abstract. The objective of this study is to understand the flow structures of weak and strong spherical
blast waves either propagating in a free field or interacting with a flat plate. A 5th-order weighted essen-
tially non-oscillatory scheme with a 4th-order Runge-Kutta method is employed to solve the compressible
Euler /Navier-Stokes equations in a finite volume approach. The real-gas effects are taken into account when
high temperature occurs. A shock-tube problem with the real-gas effect is first tested in order to verify
the solver accuracy. Moreover, unsteady shock waves moving over a stationary wedge with various wedge
angles, resulting in different types of shock wave reflections, are also tested. It is found that the computed
results agreed well with the existing data. Second, the propagation of a weak spherical blast wave, created
by rupture of a high-pressure isothermal sphere, in a free field is studied. It is found that there are three
minor shock waves moving behind the main shock. Third, the problem of a strong blast wave interacting
with a flat plate is investigated. The flow structures associated with single and double Mach reflections
are reported in detail. It is found that there are at least three local high-pressure regions near the flat plate.
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1 Introduction

One distinctive characteristic of a spherical blast wave is a
moving shock wave accompanied by expansion waves. Due
to its three-dimensional expansion the intensity of a blast
wave always decays with time and distance during prop-
agation. The flow field induced by the blast wave when
interacting with a flat plate becomes more complicated
because of shock wave reflection. The interaction gener-
ally includes two types of reflections: Regular Reflection
and Mach Reflection. Such an interaction often occurs on
our earth such as in a chemical high-explosion in factories
or a nuclear weapon explosion that can destroy buildings.
Many researchers are interested in the flow field induced
by a blast wave and the transient dynamic loading effects
when the blast wave interacts with a structure. Therefore
a basic study of blast-wave propagation and interaction
with a flat plate is helpful for engineering applications.
To the authors’ knowledge, the papers that reported
the detailed flow field induced by a strong blast wave,
in particular, when interacting with a flat plate are lim-
ited because of the nonlinear decay of blast waves in its
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intensity. Brode (1955) numerically studied the propaga-
tion of a blast wave. The peak overpressures as a func-
tion of the shock radius were asymptotically obtained for
two different initial conditions — a point source and an
isothermal sphere. Later, Brode (1959) studied the blast
wave propagation in a free field. The blast wave resulted
from the detonation of a spherical charge of TNT. An
ideal-gas assumption was made. He found that a series
of subsequent minor outward-moving shocks occur behind
the main shock. Dewey (1971) investigated the flow prop-
erties of a blast wave using an analysis of the particle tra-
jectories observed by high-speed photography. However,
this technique cannot be used for shocks stronger than
Mach 2.5. Vanderstraeten et al. (1996) studied the blast
waves generated by a bursting spherical vessel filled with a
pressurized gas, and derived a simple model that is compa-
rable to a TNT-equivalent model. They also showed that
a bursting sphere could lead to more than one shock wave.

Takayama and Sekiguchi (1981) investigated the inter-
action problem of a spherical blast wave with a flat plate.
The blast wave was generated by a planar shock wave in a
shock tube moving into a free space. Their results obtained
from the analysis and the experiments did not agree well.
Hu and Glass (1986) theoretically analyzed the types of
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blast wave reflection at different heights of burst (HOB).
They found that there are two types of transition pro-
cess, that is, RR = SMR and RR= DMR=TMR =
SMR, where SMR, TMR, DMR, denote single Mach
reflection, transitional Mach reflection, double Mach re-
flection, respectively. Dewey et al. (1981) experimentally
studied a blast wave interacting with a smooth surface
and with a rough surface, and found that a smooth sur-
face can induce a stronger Mach stem and a higher triple-
point trajectory. Colella et al. (1986) numerically studied
the flow field of a strong blast-wave interaction with a
flat plate. The strong wave was obtained from the detona-
tion of a high-explosion charge. The interaction produced
a RR = DMR transition. The numerical method they
used was a second-order Gudonov scheme with a mono-
tone property. Dixon-Hiester et al. (1989) found that there
is an abrupt pressure rise in the transition region in exper-
iments. Hisley (1990) numerically studied the reflection of
planar shocks from wedge surfaces by using three com-
puter codes — BLATST2D, SHARC and STEALTH. He
found that the BLAST2D code is better than the other
two codes, since the BLAST2D code produced less oscil-
lation near discontinuities and had a better ability of cap-
turing slip lines. The BLAST2D code is based on Roe’s
approximate Riemann solver with a total variation dimin-
ishing property and has second-order accuracy. Jiang et
al. (1998) numerically and experimentally investigated the
propagation and reflection of a micro-blast wave gener-
ated by pulsed-laser beam focusing. An initial condition
of a point-source explosion was specified with the Taylor
similarity law for their numerical simulation. Agreement
was obtained between the numerical solution and the ex-
perimental result.

In this study, a 5th-order WENO (weighted essentially
non-oscillatory) scheme of Jiang and Shu (1996) is em-
ployed for space discretization of the convective terms
and central differences for the viscous terms. A 4th-order
Runge-Kutta method is used for time integration. The ad-
vantage of the WENO scheme is that it is able to resolve
high flow gradients and discontinuities with a tendency of
avoiding the use of an adaptive grid or a very fine grid.
To see the advantage and solution accuracy, our computer
code was compared with the BLAST2D code. On the other
hand, the present computer code is easy to use since the
explicit Runge-Kutta method is used. Real gas effects are
taken into account when the temperature is high by using
a fitting method of Srinivasan et al. (1987) for computing
the value of the specific heat ratio. To verify the accu-
racy of the solver developed, a shock-tube problem with
real-gas effects is tested. We also tested four types of reflec-
tions of an unsteady shock wave propagating over a wedge.
After the code validation, the propagation of a spherical
blast wave created by the rupture of an isothermal sphere
with a high pressure inside was studied. Finally a strong
blast wave interacting with a flat plate was calculated to
examine the transition phenomena of blast-wave reflection
from a flat plate and the associated flow structure.

2 Mathematical formulation
and numerical method

2.1 Governing equations

The problem of interest is the propagation and reflection
of the blast wave produced by a bursting sphere with an
initial pressure ratio, p1/po, as shown in Fig. 1. The work-
ing fluid is assumed to be air. Assume the sphere has a
radius of Ry and is located at an altitude of HOB, the
height of burst. In Cartesian coordinates, (z,y), the di-
mensionless governing equations are the continuity, mo-
mentum, and energy equations, which can be expressed in
conservative form as

1 1
F——F - —
o (roger) +(e-me),

«o 1

o (ntu) = .
where subscripts t, x, y denote partial derivatives and
the subscript v denotes the viscous terms. The variable @
is the conservative-variable vector, F', G the inviscid-flux
vectors, H the source term due to the axis symmetry, and
Re the Reynolds number in which the reference velocity is
chosen to be the speed of sound inside a bursting sphere
and the radius (Ryp) of the sphere. Moreover, F, and G,
are the dissipation terms in the x and y directions, re-
spectively. H, is the dissipation term due to the axis sym-
metry. The expressions for F,, G, and H, can be found
in the book of Hoffmann and Chiang (1993). Moreover,
a = 0 represents a two-dimensional flow, and a = 1 for
an axisymmetric flow. In order to take real-gas effects into
account, a curve fitting method of Srinivasan et al. (1987)
is used to determine the thermodynamic properties (such
as ) of air with the pressure and the density as two in-
dependent variables. The enthalpy, h, is computed by the
relation: h = p(y—1)/(yp). Namely, the equivalent + con-
cept for real gas is adopted. Moreover, the fluid viscosity
is computed by using a curve fitting method of Srinivasan
and Tannehill (1987). For turbulent flow, a two-layer al-
gebraic turbulent model of Baldwin and Lomax (1978) is
employed.
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Fig. 1. A computational domain and the initial and boundary
conditions



S.M. Liang et al.: Numerical study of spherical blast-wave propagation and reflection

61

6 ﬁk 100 F
o N realgas[15] [ 80 -
| l [~
- === perfect gas | : i
4 present result 60
« fT7 uof
= 3} \ B
Q B \ w 40
2t T —— - - == .
| 20 -
i i |
1 -
i ol
: l l l l l - L l L L l L L l L L l L L l
I I I I I I I I I I 0 0.2 0.4 0.6 0.8 1
%0 0.2 0.4 0.6 0.8 1 X
X
a c
5 —
100 -
i 4
80 -
i 3k
60 |- -
Lt S Lk
o B > i
40 = i
i 1
20 [
- 0
07‘ A A_liw I I I [ |
0 1 0 0.2 0.4 0.6 0.8 1
X X
b d

Fig. 2. The computed results of a the density ratio, b the pressure ratio, ¢ the energy ratio, d the dimensionless velocity for a

shock tube problem with the real-gas effect

2.2 Numerical method

A high-order numerical procedure of Jiang and Shu (1996)
in a finite volume approach is used for solving Eq. (1). This
procedure consists of a 4th-order Runge-Kutta method for
time integration and a 5th-order WENO scheme for spa-
tial discretization of the convective terms. The 2nd-order
central differences are used to approximate the viscous
terms. The Courant number is set to 0.6. All calculations
are performed on a Pentium III-600 MHz with a 256 MB
memory.

The initial state inside a bursting sphere is quiet air
with a high-pressure (p;) and high-density (p1). The sur-
rounding environment is also quiet air with py = 1atm,
po = 1.225 kg/m3, T, = 288.15 K. The value of the spe-
cific heat ratio in the high-pressure region is determined
from the chosen pressure and density ratios. The radius

(Rp) of the bursting sphere is a geometric parameter. The
boundary condition on the flat plate is the tangency con-
dition for the inviscid-flow model and the no-slip condition
for the viscous-flow model. A symmetry boundary condi-
tion is imposed at the vertical x-axis to save computation
time. (Ref. to Fig. 1.) At the top and right boundaries, the
nonreflecting boundary condition of Thompson (1987) is
specified.

3 Results and discussion
3.1 Code validation

Case I: A shock tube problem. A shock tube problem
with real-gas effects is considered. The initial states for
the high-pressure side are py = 100 atm, py = 2.641kg/m3,
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Fig. 3. The computed density distributions along the wedge surface compared with the existing data for four types of shock wave
reflection, (a—c), and numerical shadowgraph, (d). In figures a—c, solid line represents real-gas model, dash line for perfect-gas
model, solid symbols for the experimental data of Deschambault and Glass. In figure b, solid symbols represent Hisley’s results.
a Regular reflection, b single Mach reflection, c transitional Mach reflection, d inverse Mach reflection

ey = 5216 keal/kg, Ty = 9000 K, and p; = 1 atm, p; =
1.174 kg/m3, e; = 51.33 kecal/kg, Ty = 300 K for the
low-pressure side. A uniform grid with 181 x 6 cells on the
computed domain is {(z,4)|0 <z < 1,0 <y < 0.02}. The
diaphragm is located at x = 0.5. Figure 2 shows the com-
puted pressure, density and energy ratios and the velocity
distribution when the normal shock moves to the location
x = 0.75. It is found that the present results agree well
with the exact solution for real gas (Grossman and Wal-
ters, 1989). The perfect-gas result is very unsatisfactory.

Case II: Unsteady plane shock waves moving over a sta-
tionary wedge. Consider an unsteady plane shock wave
moving over a wedge with the half wedge angle, 6,,. The

configuration of shock wave reflection from a wedge de-
pends upon the incident shock Mach number, M. Five
types of reflections are tested. They are RR, SMR, TMR,
DMR, and IMR, where IMR. denote inverse Mach reflec-
tion. The initial conditions used are tabulated in Table 1.
The computed results are shown in Fig. 3. Note that the
result for the DMR case is not reported here, since the con-
figuration of DMR is very similar to that of TMR. Figures
3a and 3c show the comparison of the computed density
distributions along the wedge surface with the experimen-
tal data of Deschambault and Glass (1983). Note that the
abscissa (s) denotes the distance along the wedge, and is
normalized by the distance (L) from the reflection point
or the Mach stem to the wedge corner. Thus the wedge
corner is located at s/L = 1. One can see that good agree-
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Fig. 4. Pressure contours for a bursting sphere in a free field at different instants

ment is obtained for the RR and TMR types, as shown
in Figs. 3a and 3c. Figure 3b shows the comparison of
the computed density distribution with Hisley’s result for
single Mach reflection. Obviously, good agreement is ob-
tained too. Figure 3d shows the numerical shadowgraph
for an inverse Mach reflection, which agreed very well with
the experimental shadowgraph in Hisley’s report (1990).

3.2 Spherical blast wave propagation in a free field

In order to understand the basic flow structure, the vis-
cous effects of the flow are neglected. The Euler solver
is used for numerical simulation. Consider an isothermal
bursting sphere of pressurized air with p;/py = 70 and
Ry = 0.3. The bursting sphere is used to produce a blast
wave. Three values of initial density ratio, p1/po = 4, 5
and 6, are chosen. It was found that these three values
produce a blast wave with almost the same intensity for
r > 1.2, where r denotes the radius measured from the

Table 1. The conditions used for different types of shock wave
reflection over a wedge

Case Type of shock Incident shock Wedge  Number
reflection Mach number angle of grid

1 RR 2.05 63.4° 300 x 200

2 SMR 2.12 30° 189 x 172

3 TMR 7.19 20° 200 x 100

4 DMR 8.70 27° 200 x 100

5 IMR 1.295 25°/60° 200 x 200

spherical blast-wave center. Thus we choose p1/pg = 5 for
the subsequent study. The computed domain is {(z,y)|0 <
x<4,0<y<6}. A 150 x 225 grid is used.

To understand the blast-wave propagation and decay
at different instants, we plotted the velocity field and tem-
perature, density and pressure contours. Only the tem-
perature and pressure contours are presented here. Fig-
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Fig. 5. Temperature contours for a bursting sphere in a free field at different instants

ure 4 shows the pressure contours at different instants. At
t = 0.1, the primary shock wave (S;) of the blast wave
is moving outward and the expansion waves are moving
inward, causing some white rings as shown in Fig. 4a.
At t = 0.3, the effect of the expansion waves produce an
inward-moving shock denoted by S2, as shown in Fig. 4b.
At t = 0.5, the inward-moving shock has been reflected
and is moving outward, as shown in Fig. 4c. The outward-
moving shock wave is referred as the secondary shock. In
the time interval of ¢ = 0.9-1.1, a tertiary shock wave
(S3), as shown in Figs. 4d and 4e, has developed as the
secondary shock did. Figure 4f shows the three outward-
moving shocks (S1, Sz, S3) and their accompanying expan-
sion waves, resulting in the black and white ring-typed
regions.

Figure 5 shows the temperature contours at different
instants. Inside the burst sphere, the initial temperature is
2717K. At t = 0.1, the temperature near the burst center,
a core hot region, remains the initial temperature, since
the expansion waves have not reached there, as shown in
Fig. ba. At t = 0.3, the expansion waves have reached the
core hot region, resulting in a low temperature of 620 K in
a circular region with radius of 0.08. The inward-moving
shock causes a temperature rise in the vicinity of the low-
temperature region, as indicated by the dark-red ring in

Fig. 5b. At t = 0.5, the temperature at the burst center
reaches 2884 K, because of two passes of the inward- and
out-moving shocks, Sy, as shown in Fig. 5c. For larger
t, the temperature at the burst center is about 2537 K,
as shown in Figs. 5d—f. A contact surface is developed at
r = 0.99.

Figure 6 shows the pressure-time history at the se-
lected locations with x = HOB inside and outside the
bursting sphere. The coordinates of these two locations
are r = 0.147 and 0.281 for the case inside the burst-
ing sphere, and » = 0.9 and 1.51 for the case outside the
bursting sphere. Figure 6a depicts the pressure variations
at these two points inside the bursting sphere. The solid
line corresponds to the first case, and the dash line for
the latter case. At the location of r = 0.147, the pres-
sure remains constant for a short time until the expan-
sion wave arrives after the burst of the sphere, as indi-
cated by the solid line for ¢ = 0.1 in the figure. After
the passing of the expansion waves, the pressure rapidly
drops to less than the ambient pressure, as indicated on
the solid and dash lines for approximately ¢t = 0.2-0.25.
The under-pressure phase results in a secondary inward-
moving shock wave. The inward-moving secondary shock
wave causes a pressure rise for the solid line at t = 0.27.
The inward-moving shock wave will reflect and move out-
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Fig. 6. The pressures as function of time at selected locations;
a inside the bursting sphere, b outside the bursting sphere

ward. At ¢ = 0.31 the outward-moving secondary shock
wave causes one more pressure rise for the dash-line case.
In the same vein, at ¢ = 1.05, the tertiary weak shock
causes one more mild pressure rise. Finally, the pressures
at the specified locations resume the atmospheric pressure.
At the other positions outside the sphere, r = 0.9, 1.51,
one can clearly see the overpressure and under-pressure
phases on the pressure-time history, as shown in Fig. 6b.
The overpressure phase is due to the shock front, and the
under-pressure phase is due to the expansion waves fol-
lowing the shock front. Both phases result in two visible
sharp peaks on the pressure-time curves.

3.3 Weak spherical blast-wave interaction
with a flat plate

To investigate the blast-wave interaction with the flat plate,
the viscous effects are taken into account and the com-
pressible Navier-Stokes solver is used. The flat plate is
assumed to be adiabatic. The values of flow parameters
are chosen to be the same as in Sect. 3.2. The flow is
assumed to be turbulent, and the two-layer algebraic tur-
bulence model of Baldwin and Lomax (1978) is employed.
The Reynolds number is chosen to be 5 x 107. The flow
condition chosen is the same as in Sect. 3.2.

To study the effect of grid number, the Euler solver is
first used for numerical simulation. Five grids — 100 x 150
(grid 1), 125 x 188 (grid 2), 137 x 206 (grid 3), 150 x 225
(grid 4) and 175 x 263 (grid 5), are chosen. It was found
that the improvement on the maximum pressure on the
flat plate is 10.4% for changing grid 1 to grid 2, 8% for
changing grid 2 to grid 3, 3.3% for changing grid 3 to
grid 4, and 0.6% for changing grid 4 to grid 5. Since
the improvement of grid refinement from grid 4 and grid
5 is less than 1%, grid 4 is used for subsequent study.
Next, we add more grid points in the x-direction (the
vertical direction in Fig. 1) in order to take the bound-
ary layer into account for a viscous flow. Therefore, a
180 x 225 grid is chosen for the laminar-flow calculation,
and a 190 x 225 grid for the turbulent-flow calculation.
The smallest z-direction spacing is 0.001 and 0.00015, re-
spectively. It was found that there is a numerical, artifi-
cial wave reflection from the top boundary for ¢ > 3. At
this instant, the main shock front is inclined with the top
boundary at a small angle and causes a problem of diffi-
cult treatment on the non-reflecting boundary condition.
To avoid the numerical flaw, the computational domain
is further enlarged in the x-direction to a larger domain,
{(z,9)|0 < x < 6,0 <y < 6}, and a 255 x 225 grid is
used for the laminar-flow calculation and 265 x 225 for
the turbulent-flow calculation.

Figure 7 shows the comparison of the pressure con-
tours at t = 1.8 and 3 for different flows. One can see that
the reflected shocks of the secondary and tertiary shocks,
So, S3, in the viscous flow either laminar or turbulent be-
come very weak compared with those for the inviscid flow.
The weakening of the reflected shocks is due to the effect of
the boundary layer as the flow energy is dissipated. There
is a flaw in the numerical simulation, which is the artificial
wave reflection from the upper boundary. To avoid the ar-
tificial reflected wave, one can enlarge the computational
domain by moving up the upper boundary or improve the
non-reflecting boundary condition imposed there.

The transition in the type of shock wave reflection is
also interesting. In order to observe the transition, a rule
is made to determine a Mach reflection. We plotted the
density distributions at the altitude of x = 0.104 above
the flat plate for viscous flow and at = = 0.105 for invis-
cid flow at various instants. We found that the formation
of a Mach reflection corresponds to the occurrence of a
wiggle in the density distribution. It was found that the
interaction of the blast wave with the flat plate produces
only a RR = M R transition. The transition occurred ap-
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Fig. 7. A comparison of the pressure contours for the interaction of a blast wave with the flat plate at ¢ = 1.8 and 3.0,
P, /Py =70, HOB = 2.0, a inviscid flow, b laminar flow, ¢ turbulent flow
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proximately at y = 1.55-1.67 for the inviscid- and viscous-
flow calculations, and y = 1.66—1.76 for the turbulent-flow
calculation. That means that a delayed transition phe-
nomenon occurs in a turbulent flow.

3.4 Strong blast-wave interaction with a flat plate

From Sect. 3.3 one can see that, by using an inviscid-flow
model, the basic flow structure is not significantly differ-
ent from that obtained by the viscous (laminar or turbu-
lent) model. So, in this case of strong blast wave, we only

consider the inviscid-flow model for saving computation
time. We chose the initial pressure ratio of p;/py = 400,
Ry =1, and HOB =1, for producing a strong blast wave.
Obviously, real gas effects take place in this case. The com-
putational domain is chosen to be {(z,y)|0 <z < 1,0 <
y < 2}. The effect of grid number was also studied. Three
different uniform grids with grid points of 400 x 800 (grid
1), 600 x 1200 (grid 2), 800 x 1600 (grid 3) were chosen.
We have checked the effect of grid number on the (dimen-
sionless) wall pressures at different instants, ¢t = 0.066, 0.9
and 0.13. It is clearly shown that the wall pressure and
the locations of shocks developed on the flat plate are al-
most independent of grid number. The comparison of the
predicted wall pressures on different grids at ¢ = 0.13 is
shown in Fig. 8. Other two cases are omitted due to space
limitation. From Fig. 8, one can see that grid 1 is fine
enough to predict reasonably accurate result.

Figure 9 shows the flow structures of isopycnics and
pressures at different instants for grid 2. At ¢ = 0.066,
the incident shock (1) is reflected from the flat plate with
the type of regular reflection, and is near the transition
instant of RR = DMR. Near the reflection point, the
incident shock (blast) and the reflected shock (R) have
an inclination angle of 49 deg and 37 deg respectively. By
comparing the pressure and density contours, we found
that there is a contact surface (CS) accompanying the
blast wave. The reflected shock is curved upward to in-
tercept and penetrate the contact surface (C'S), resulting
in a triple point where a Mach stem emitted toward the
contact surface. There is a very high-pressure region that
occurs below the reflected wave. In this region, the pres-
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sure is the highest in the whole flow field. At ¢t = 0.09, the
type of wave reflection has evolved into a double Mach re-
flection with a curved Mach stem (M) associated with the
incident shock wave. There is a high pressure developed
in the region, {(z,y)[1.33 < x < 1.37,0 < y < 0.046}. As
mentioned before, the highest-pressure region did not oc-
cur behind the curved Mach stem. At ¢ = 0.13, the curved
Mach stem (M) has developed into two parts. One is a
straight part (M;); the other is a curved part (Ms). There
are also four nearly normal shocks developed on the flat
plate, causing three local high-pressure regions (orange
color or yellow color region) behind each normal shock.
There are other high-pressure regions near the reflected
shock waves, denoted by the orange color. We believed
that these high dynamic pressure regions constitute an
over-turning effect for tactical equipments experiencing a

,ft=0.13

very high explosion in addition to the crushing effect of
the incident blast wave. Moreover, we plotted the velocity
field behind the curved Mach stem, and did not find any
rotational flow. Our result is quite different from that of
Colella et al. (1986). They found a rotational flow behind
the curved Mach stem, which was attributed to improper
grid zoning and numerical viscosity.

4 Conclusions

A high-resolution Euler/Navier-Stokes solver with a real-
gas model has been developed and used to investigate the
propagation of a spherical blast wave in the free field and
the reflection phenomenon of the blast wave when inter-
acting with the flat plate. The solver has been validated to
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be reasonably accurate on several test problems. For the
problem of blast-wave propagation in the free field, it is
found that three outward-moving weaker shock waves are
developed behind the primary shock wave and a contact
surface is formed at r = 0.99.

For the problem of the weak blast-wave interaction
with the flat plate, a complicated flow structure of the
shock-shock interactions in addition to the basic flow struc-
ture for the blast-wave propagation in a free field is pre-
sented. Moreover, it is found that there is a delayed tran-
sition phenomenon of RR = M R in a turbulent flow com-
pared with that for an inviscid flow or a laminar flow. For
the problem of the strong blast-wave interaction with the
flat plate, a complicated flow structure associated with
the transition from regular reflection to double Mach re-
flection is investigated. It is found that near the flat plate
there are at least three local high-pressure regions behind
the curved Mach stem, resulting in an over-turning effect
in addition to the crushing effect in very high explosions.
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