
Abstract. This paper explores the idea of using arti®cial adaptive agents in
economic theory. In particular, we use Genetic Algorithms (GAs) to model
the learning behavior of a population of adaptive and boundedly rational
agents interacting in an economic system. We analyze the behavior of a GA
in two versions of a model of the cobweb-type, one in which ®rms make
only quantity choices, and the other one in which ®rms ®rst decide to exit or
to stay in the market, and subsequently decide how much to produce. We
present simulations with di�erent coding schemes and interpret the rather
surprising di�erences between the results for di�erent setups by employing
the mathematical theory for GAs with state-dependent ®tness functions. In
particular, we explain the relationship between coding and convergence
properties of GAs.

Key words: Cobweb model ± Genetic algorithms ± Learning ± Arti®cial
economic agents

JEL-classi®cation: D83

1 Introduction

The question of learning by adaptive agents has only recently received wide
attention in the economics and game-theoretic literature (see Nyarko et al.,
1994; Kirman and Salmon, 1995). To introduce learning into the analysis of
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economic models raises a host of fundamental questions concerning the
role of rationality in economic behavior. What sort of learning mechanism
± Bayesian, adaptive, or some boundedly rational rule of thumb ± is
appropriate? How does the market interaction and the interaction between
individuals modify agents' beliefs and actions? How does the population
evolve by diminishing the relative number of agents whose beliefs or actions
turned out not to be pro®table in the past? Does the learning mechanism
converge, and if so, to what? Is the limit of the learning process an equi-
librium situation in the economic sense?

The plethora of questions should show ``the wilderness of possibilities''
(Sargent, 1993, p. 23) in which a relaxation of the assumption of rational
expectations leads us. Precisely how are we to go about building models
populated by agents who in some sense are behaving as we scientists do,
and how do we model adaptation and learning processes of these boundedly
rational agents? An increasing number of economists seek to answer (all or
some of) the questions above by adapting certain techniques from the ®eld
of ``computational intelligence'', where the most widely used techniques are
neural networks, genetic algorithms, classi®er systems based on genetic
algorithms, and cellular automata. Although the ®eld of arti®cial adaptive
agents has by no means reached the goal of building entire arti®cial beings
comparable to humans (see Holland and Miller, 1991), and the underlying
behavioristic routine described by these algorithms is still not clear, it seems
promising that the techniques developed are well suited to the imitation of
human learning in simple models (see Andreoni and Miller, 1995; Arifovic,
1994, 1995, 1996; Arthur, 1991, 1993). Although the applications of AI
methods in economics show their potential in principle, there have been
very few successful attempts to apply them to economic problems.1

In this paper we restrict our attention to genetic algorithms (GAs) de-
veloped by Holland (1975) (for an introduction into GAs, see Goldberg,
1989 or Mitchell, 1995). The most valuable features of GAs from the
viewpoint of economics are the explicit representation of every individual in
a population of heterogenous agents who (might) di�er in strategies, the
parallel processing of information, competition among alternative rules,
selection of those that perform better and the possibility of creating new
rules. Recently, GAs have been used to model economic agents in auctions
(Andreoni and Miller, 1995), to evolve strategies for the Classical Prisoner's
Dilemma (Axelrod, 1987; MuÈ hlenbein, 1991; Ho, 1996; Miller, 1996) and
for a Generalized Prisoner's Dilemma (Marks, 1992) and also to analyze the
learning behavior in 3� 3 Strategic-Form-Games (Dawid and Mehlmann,
1996) or signaling games (Arifovic and Eaton, 1995). Furthermore, GAs
have also been used to analyze the behavior of adaptive agents in standard
economic models like the cobweb model (Arifovic, 1994), overlapping
generations models (Arifovic, 1995, 1996; Dawid, 1996a; see also the ex-
periments of Marimon and Sunder, 1994), or in a simple Kyotaki±Wright

1 Benaroch (1995) notes that, ``[A] major reason for this is a failure to realize that most AI
methods can be useful only once they have been adapted or even tailored to economic
problems.''(p. 601).
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model of monies (Marimon et al., 1990). Using data of a regional U.S.
co�ee market, Midgley et al. (1997) tried to breed robust strategies, and
demonstrated that they outperform the historical actions of brand man-
agers in this regional market (for the limitations of their results and the
problems of implementation the authors faced, we refer the reader to the
original manuscript).

Here we use GAs to model the learning behavior of a population of
adaptive economic agents in a cobweb-type model. We present simulations
with di�erent coding schemes2 and interpret the rather surprising di�er-
ences between the results for di�erent setups by employing the mathemat-
ical theory for GAs with state-dependent ®tness function. Abstracting from
this example we argue further that theoretical considerations may be very
important in predicting the outcome of simulations and designing a GA (see
also Benaroch, 1996).

In what follows we introduce the Simple Genetic Algorithm (SGA) and
brie¯y discuss the economic interpretation of the model used (Section 2).
We analyze the behavior of a GA in two versions of a model of the cobweb-
type, one in which ®rms make only quantity choices, and the other in which
®rms ®rst decide to exit or to stay in the market, and subsequently decide
how much to produce (Section 3). A discussion and some concluding re-
marks are given in Section 4.

2 GAs in economic modeling

Typically a genetic algorithm works on a population of binary strings,
which correspond to the chromosomes in natural systems. In the standard
setup the strings all have the same length, and this length is one of the
parameters that have to be set by the researcher. We will denote the length
of a string by l. The set of all binary strings with length l is denoted by X.
The cardinality of this set is given by Xj j � 2l � r. Another parameter to be
determined is the size of the population. We call this parameter n and
always assume that n is even. A state of the population is given by a
frequency distribution of these n strings over X. Thus, the set of all possible
population states is given by S � / 2 Dr j n/k 2 N 8k 2 Xf g, where Dr is
the r ÿ 1 dimensional simplex and /k is the frequency of string k in the
population state /. Of particular interest are the so-called uniform states of
the population where all strings are identical. The state where all strings
equal k is denoted by the unit vector ek.There has to be an externally given
®tness function, which assigns at every time t some positive ®tness value to
any string in the population. A key di�erence between applications of GAs
in optimization problems and in economic models is that in the former the
®tness of a string typically depends only on the value of the string, whereas
in the latter it depends on the entire state of the population. Thus, in
economic systems the ®tness function is formally given by f : S ! Rr

�,
where fk�/� is the ®tness of string k in a population in state /. In general,

2 By a coding scheme we denote the mechanism which translates a strategy in the eco-
nomic model to a binary string in the GA.
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the initial population P0 is generated randomly and the transition from Pt to
Pt�1 is executed by applying several genetic operators. In the simple Genetic
Algorithm analyzed in this paper only three standard operators are used:

(i) Proportional selection: The selection operator is intended to implement
the idea of the ``survival of the ®ttest''. Basically, the selection operator
determines which of the strings in the current population will be al-
lowed to pass their genetic material to the next generation: we say that
the selection operator builds up the mating pool by selecting n strings
from the current population. The standard selection operator (called
proportional selection) does this by carrying out n random draws with
replacement out of Pt. The probability that a given member of the
current population is chosen at one certain draw is proportional to the

®tness of this string. Accordingly, we expect to have n/kfk�/�P
j2X /jfj�/�

strings

k 2 X in the mating pool, where / is the state of Pt.

(ii) One-point Crossover: Inspired by the example of nature, crossover is
intended to join the genetic material of strings with a high ®tness in
order to produce better individuals. The mating pool is split into n=2
pairs of strings and the following operator is applied to each pair with
the crossover probability v. The value of v will in general be larger than
0:6, and often v � 1 is used. With probability 1ÿ v no changes are
made to both strings, but with probability v genetic material is ex-
changed between the two parents. In the simplest case of one-point
crossover, one crossover point is drawn randomly between 1 and lÿ 1.
Afterwards the values of the bits to the right of the crossover point are
swapped between the two parents.

(iii) Mutation: The mutation operator should allow the GA to ®nd solu-
tions, which contain bit values that are not existent in the current
population. The parameter governing this operator is called mutation
probability and will be denoted by l. After the application of crossover
each bit in any string is inverted (set to 1 if it was 0, and vice versa) with
probability l.

After the application of these operators the new population Pt�1 is
complete. This procedure is repeated until all strings in the population are
equal or a prescribed number of iterations has been performed.

We now turn to our interpretation of the procedure described above as
an adaptation process of a population of interacting economic individuals.
Beforehand we would like to point out that we regard one string as the
representation of one individual in the population. Thus each individual is
completely characterized by the strategy encoded by this binary string.

For an economic interpretation of �i� consider a population where the
individuals are not able to gather enough information to build a reliable
estimate about the future development of the economic system, and to
determine their optimal reaction to such a development. In such a situation
imitation of previously successful strategies is a plausible behavioral as-
sumption (see e.g. Friedman, 1991; Vega-Redondo, 1995, Schlag, 1998).
Such an e�ect is modeled by proportional selection, where strategies which
have yielded an above average payo� will, on average, be used by more
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agents in the next period. The crossover operator described in �ii� intro-
duces an exchange of information, which is rarely incorporated in economic
learning models. The exchange of parts of the string may be interpreted as
the adoption of certain special details of a competitor's behavior or strat-
egy, which may be due to overt communication or industrial espionage.
Thus individuals may in¯uence each others' behavior even if they do not
imitate.3 Finally, the mutation operator introduced in �iii� incorporates
innovations made by the individuals either by purpose or by chance. Such
e�ects ± think for example of the trembling hand (Selten, 1975) ± are quite
common in economic modelling.4

We are aware of the fact that a GA is not a ``canonical'' representation
of the e�ects described above, but we believe that a sound interpretation of
the di�erent e�ects incorporated in a learning algorithm is necessary to
understand simulation as well as analytical results. The fact that GAs may
not only be used as an optimization tool but also as a model of an inter-
acting population (an economy) has, for example, been recently pointed out
by Goldberg (1995), who claims that ``. . . much of the mystery of such
systems emanates from their innovative nature, and GAs replace the mystery
shrouding innovation with a healthy dosage of mechanism.''

3 The cobweb model

The cobweb model describes temporary equilibrium market prices in a
single market with one lag in supply; since production takes time, quantities
produced must be decided before a market price is observed. The model was
introduced by Leontief (1934), who postulated a linear model of demand
and supply in which agents forget all except their most recent experiences
(see also Ezekiel, 1938). As is well-known, convergence to an equilibrium
price occurs in this model if supply is less elastic than demand. The ®rst
dynamic analysis of the classic linear cobweb model when agents have
memory was by Nerlove (1958), and was extended by Muth (1961) to an
analysis of rational learning with memory. Carlson (1968) concluded that
the linear cobweb model was stable when agents use the mean of past prices

3 It may well be that the substrategy adopted from some other ®rm's strategy has some
undesirable effects in the new ®rm's strategy. But this seems realistic, since if a ®rm
implements only one part of some other ®rm's plan of action, this particular part might
not work well in the new environment.

4 Some of the ideas presented above are, of course, not new in economics. As one of the
®rst, Alchian (1950) in his seminal paper explicitly recognized the use of imitation in
contrast to optimizing behavior in guiding much economic behavior. He states that
``uncertainty provides an excellent reason for imitation of observed success.'' He further
concludes that ``Imperfect imitators provide opportunity for innovation, and the survival
criterion of the economy determines the successful, possibly because imperfect, imitators.''
(p. 219). As the economic counterparts of genetic heredity, mutations, and natural se-
lection he relates imitation, innovation and positive pro®ts. These ideas are also incor-
porated in evolutionary theories in economics, where ``Evolutionary models in the social
domain involve some processes of imperfect (mistake-ridden) learning and discovery, on
the one hand, and some selection mechanism, on the other.'' (Dosi and Nelson, 1994,
pp. 154; emphasis in original).
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as their forecast price. The issue of the convergence of agent's learning
about a rational expectations equilibrium has also been addressed in a
cobweb model. Bray (1982) and Bray and Savin (1986) demonstrated that,
if agents use a least-squares learning procedure, prices in a cobweb model
almost surely converge to a rational expectations equilibrium. In contrast to
their ``ad hoc'' learning scheme, Bray and Kreps (1987) demonstrated that,
in the context of this model, there is a unique equilibrium with rational
learning.

In what follows we will analyze a model of the cobweb type where we
include a term for ®xed costs or overhead. Such a term may include de-
duction for depreciation, interest on long term debt, property taxes and
executive compensations.5 We will present simulations of the learning be-
havior of Genetic Algorithms in such a model and explore the relationship
between coding of strategies and convergence properties.

3.1 A model of the cobweb type with ®xed costs

There are n ®rms in a competitive market that are price takers and that
produce the same good. Denote the quantity produced by ®rm i in period t
with yi;t. Each ®rm has the same cost of production

c� yi;t� � a� by2i;t; a; b > 0 yi;t > 0
0 yi;t � 0

�
where a denotes the short term ®xed costs of the ®rm. The decision makers
in the ®rm do not know the price obtaining in the next period when they
have to decide how much to produce, but they do have an expected price,
pe

i;t. Based on this expectation, ®rm i chooses an output level that makes its
expected pro®t

P�pe
i;t; yi;t� � pe

i;tyi;t ÿ aÿ by2i;t yi;t > 0
0 yi;t � 0

�
as large as possible. The optimal quantity for ®rm i is given by

y��pe
i;t� �

pe
i;t

2b pe
i;t > 2

������
ab
p

f0;
��
a
b

q
g pe

i;t � 2
������
ab
p

0 pe
i;t < 2

������
ab
p

8>><>>: �1�

The price pt that clears the market in period t is then determined by the
inverse demand function

pt � aÿ b
Xn

i� 1
yi;t �2�

with a; b > 0. Note that in order to guarantee that the expected pro®t is
positive at least for some combinations of the expected price and the

5 Cobweb models with ®xed costs were analyzed by Day (1994) and Kopel (1997).
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quantity produced, we have to assume that

a <
a2

4b
: �3�

Otherwise, there would be no incentive for the ®rms to enter the market. In
a (homogenous) rational expectations equilibrium, ®rms expectations about
the price are equal to the (afterwards) observed equilibrium price, i.e.
pt � pe

i;t for all i, and all ®rms take the same individual optimal action,
y��pe

i;t� � y� for all i for some y� 2 y��pt�. According to (1) we have to
distinguish two cases. Suppose, that the expected price is greater than 2

������
ab
p

.
Then with (1 ) and (2) we have

aÿ bny��pt� � 2by��pt�
which yields the equilibrium quantity

y� � y��pt� � a
2b� c

�4�

and the equilibrium price

p� � 2ab
2b� c

�5�

where c :� bn. The last expression is greater than 2
������
ab
p

i�

a <
a2b

�2b� c�2 : �6�

On the other hand, if we assume that the expected price is less than 2
������
ab
p

,
we get

p� � a

which is less than 2
������
ab
p

i�

a >
a2

4b

This, however, contradicts (3).
Hence, in our model two situations might occur, depending on the level

of ®xed costs: If (6) holds, there exists a unique rational expectations
equilibrium with an equilibrium price given by (5) and an equilibrium
quantity given by (4). Otherwise, no homogeneous rational expectations
equilibrium exists in the model.

3.2 Pure quantity decisions

We simulate the evolving behavior of the system described above, by rep-
resenting each ®rm by a binary string. Every binary string bi in the popu-
lation Pt encodes a real number in �0; a

c�, namely the quantity the ®rm
i decides to produce at time t. We encoded the quantity decisions of the
®rms as follows: let k 2 X be the binary string representing the quantity
decision of some ®rm in the market. The output quantity of this ®rm is
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given by y�k� � ax
c , where x �Pl

i� 1 2
ÿik�i� and k�i� 2 f0; 1g is the value of

the i-th bit in string k. The price at time t is calculated using (2). Note that
the pro®t of a ®rm may become negative for too low prices. The dynamics
of the price adaptation of the ®rms in this market is modeled by a simple
genetic algorithm as described in Section 2. To rule out negative ®tness
values for single strings we use the following scaled pro®t as the ®tness
function

fk�/� � P�p�/�; y�k�� � a� b
a
c

� �2

; �7�

where p�/� denotes the price which emerges from (2), if the whole popu-
lation is in state / 2 S.

In the ®rst simulation we use the following parameter values:

a � 5; a � 0:25; b � 1; c � 5 : �8�
It is easy to check that conditions (3) and (6) are satis®ed for these

parameter values, which implies that a unique homogeneous rational ex-
pectations equilibrium exists with an equilibrium output of

y� � y��p�� � a
2b� c

� 5

7
:

The length of the string in our ®rst simulation is l � 10. We have chosen
a rather large population size of n � 1000 and crossover and mutation
probabilities of v � 1 and l � 0:001 respectively.6 In Fig. 1 the evolution of

Fig. 1. The average production quantity in Pt for a � 5; a � 0:25 and b � 1; c � 1. The
dotted line describes the rational expectations equilibrium �n � 1000; v � 1; l � 0:001�

6 We also carried out simulations with different values of the parameters n; l;l. The
behavior of the GA proved to be quite insensitive with respect to these variations.
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the average production quantity in Pt is depicted for a simulation with a
SGA. We see a very rapid approach towards the equilibrium value. After
about 100 generations the population has found the rational expectations
equilibrium, and stays in this equilibrium for the rest of the run. The ®rms
are able to adapt their production decisions in such a way that their output
quantities are always optimal after a rather short learning period. The
convergence of the GA to the rational expectations equilibrium is not
surprising as it has been shown by several authors that equilibria may be
found by such type of learning algorithms in relatively simple economic
models (see e.g. Arifovic, 1994, 1995, 1996).

Let us now consider a slightly di�erent parameter constellation, where
the ®xed costs are higher than in our ®rst simulation:

a � 5; a � 1; b � 1; c � 5 : �9�
Condition (3) is still satis®ed, but (6) no longer holds. This implies that in
this model no homogeneous rational expectations equilibrium exists.
Looking at the simulation in this model (Fig. 2) we observe, however, that
the population of ®rms represented by the GA behaves exactly the same
way as in the previous case.

The average produced quantity converges towards the value y� in (4)
and the price, therefore, towards p� in (5). Thus, the population evolves
towards a state where all ®rms are active and produce a quantity which is
optimal for a producing ®rm given the market price. However, the ®xed
costs of production are so high that they all make negative pro®ts (the pro®t
of the representative ®rm at t � 300 is ÿ0:4763). Obviously, the ®rms would
be better o� by exiting the market with a pro®t of zero. This situation can
be seen as some kind of local equilibrium, where no ®rm can gain by a small
unilateral deviation from its current strategy. Of course, this is not an
economic equilibrium7 since a ®rm can gain by unilaterally stopping its
production. Note, however, that the state in which all ®rms abstain from
producing is no economic equilibrium either, since (3) implies that in such a
situation the market price would be large enough to allow positive pro®ts
for ®rms which unilaterally start producing again. Given this situation the
question arises whether it is a pure coincidence that this local equilibrium
emerged as the long run state of our simulations or whether we can char-
acterize such states more systematically. In this context it also seems to be
crucial to specify what we mean exactly by a small deviation. In order to
answer the questions stated above we rely on the mathematical results de-
rived in Dawid (1994) and Dawid and Hornik (1996).8

A necessary condition for some state to be the long run outcome of the
learning process of the GA is that this state has to be locally asymptotically

7 By an economic equilibrium we refer to a state of the population where every string
encodes an optimal strategy given the behavior of the other members of the population.

8 The basic mathematical model of a GA in economic applications used in the derivation
of these results is given in the Appendix.
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stable with respect to the underlying dynamics9 of the process. For large
population sizes the set of locally asymptotically stable uniform states 10 is
characterized by the following proposition.11

Proposition 1 A uniform state ek is locally asymptotically stable for the dy-
namics of a GA with l � 0 and one-point crossover with probability v 2 �0; 1� if

d�j� k�
lÿ 1

>
1

v
1ÿ fk�ek�

fj�ek�
� �

�10�

for all j 2 X; j 6� k, where d�j� k� is the length between the two outer-most
bits where j and k di�er in value. If there is a string j 6� k where the inequality
holds the other way round, ek is unstable.

Proposition 1 claims that a state representing a population which con-
sists almost only of strings k converges to the uniform state ek if the strings
receiving a higher payo� in the current population di�er from k in bits
positioned far apart. The intuition behind this result is that strings j, though
receiving higher payo�s and thus generating more o�springs, are destroyed

Fig. 2. The average production quantity in Pt for a � 5; a � 1 and b � 1; c � 5. The
dotted line describes the rational expectations equilibrium for the cases where
a < a2b=�2b� c�2 holds �n � 1000; v � 1; l � 0:001�

9 See the Appendix.

10 We restrict our attention to uniform states since it is shown in Dawid and Hornik
(1996) that for small mutation probabilities the process stays ``most of the time'' near
uniform states.

11 A proof can be found in Dawid (1994).
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by crossover with a high probability (due to the fact that they di�er from k
in bits positioned far apart) when paired with a string k. 12

Let us analyze the simulation results stated above in the light of these
theoretical ®ndings. With the parameter values given by (9) the output
quantity y� is given by y� � 0:7143. Given our encoding scheme this value is
best approximated by the binary string k � 1011011011 corresponding to
y � 0:71387. In a state where all strings in the population equal k, the ®tness
of this string is given by fk�ek� � 1:51. On the other hand, the production
quantity y � 0 would yield a pro®t of zero and due to (7), the ®tness of the
string encoding this output decision (represented by j � 0 � 0000000000 ) is

f0�ek� � a� b a
c

� �2
� 2. Considering the value of d�0� k� we realize that

these two strings di�er as well in their ®rst as in their last bit position.
Accordingly, the length between the two outer-most bits where 0 and k di�er
in value is d�0� k� � 9 (see Fig. 3). Inserting all these values into the sta-
bility criterion of proposition 1 yields the result that ek is locally asymp-

totically stable since 9
9 > 1ÿ fk�ek�

f0�ek�
� �

� 0:245. This explains the outcome of

our simulations also from a theoretical point of view. Furthermore, these
arguments show that the expression d�j� k� is in this context a suitable
measure for the deviation of the output decision represented by string j from
the output decision encoded by k. Although the theoretical results guarantee
only local stability of ek, it turnes out that in simulations where the initial
population is initiated with y � 0 for all strings, the state trajectory rapidly
approaches ek, hence giving strong evidence for global stability.

The stability of the uniform state ek may also be derived directly. As-
sume that in a population of individuals producing y � 0:71387 one ®rm
(e.g. by chance) decides to stop producing. As pointed out above this ®rm
would be more successful than the others. We could expect that the strategy

to stop producing would be imitated by about f0�ek�
fk�ek� � 1:33 individuals in the

population. By contrast, any communication of an inactive ®rm with some
other ®rm which uses y � 0:71387 leads the idle ®rm to start producing
again.13 Since the communication e�ect outweighs the imitation e�ect if the
probability of communication (given by v ) is large enough, the number of
individuals who use the optimal strategy decreases and the population again
converges towards the local equilibrium state ek.

Fig. 3. The length between the two outmost bits where k and 0 di�er in value is
d�0� k� � 9

12 Note that the left hand side of (10) gives the probability that none of the two offsprings
of the parents j and k equals string j if one-point crossover is used.
13 Formally this is represented by d�0� k�

lÿ1 � 1.
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3.3 Entry and exit decisions

As illustrated above, our simulation result (which shows that the learning
algorithm converges to a non-equilibrium state) can be explained from a
theoretical standpoint as well as intuitively. We will use these insights to
analyze the correspondence between the coding scheme and the learning
behavior of the GA.

If we want to avoid a ``lock-in'' of the GA in a long run state, we need to
ensure that this state is unstable with respect to the dynamics of the GA. In
order to do this we again invoke the results presented in Proposition 1.
Considering the stability criterion in the proposition, it is obvious that the
value of the distance d�0� k� is of crucial importance for the stability
properties of the state ek. If we change the encoding scheme such that the
distance between the string representing the production decision y � y� and
the string encoding y � 0 is less than lÿ1

v 1ÿ fk�ek�
f0�ek�

� �
, the uniform state where

all ®rms produce y � y� is unstable. A natural way to achieve this is to
enhance the strings by one additional bit. This has the following interpr-
etation. Whenever the value of this bit is 0 the ®rm exits the market, i.e. it
stops producing. On the other hand, if the value equals 1, the ®rm produces
the quantity encoded by the remaining l bits. We now have a large number
of strings encoding the decision y � 0, and changing from y � y� to y � 0
can be accomplished by changing only one single bit. As Fig. 4 shows, with
this change in the coding scheme there is a string b0 encoding y � 0; the
distance to the string bk representing y � y� is zero. Accordingly, we expect
that the uniform state where all ®rms produce y� will no longer be the long
run outcome. The change in the encoding of strategies also makes economic
sense. With the previous coding scheme the basic decision to produce
nothing at all and to avoid thereby the ®xed costs can only be made by
changing all bits in the string to 0. However, this basic decision changes the
whole structure of the incurred costs and it seems more plausible to separate
the decision of the ®rm into two parts. With the changed coding scheme the
®rm decides, ®rst, whether to produce or not and, second, selects the pro-
duction quantity only in the case the former decision was a�rmative. Thus,
we have implemented a separation of the production decision into an exit
and entry decision and a quantity determination.

As can be seen in Fig. 5, our theoretical considerations are con®rmed by
the simulations. Figure 5 shows the evolving behavior of the average pro-
duction quantity of a GA with the extended coding in the same model as
used in ®gure 2. This time, however, the trajectory does not approach the

Fig. 4. Change in the coding scheme by enhancing the string by an additional bit. The
distance between the resulting strings b0 and bk is d�b0� bk� � 0, and hence the uniform state
ek̂ is unstable
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value y � 5
7, but ends up oscillating around y � 0:6. The explanation for this

behavior is now straightforward. In the beginning of the run �y is about 0.5,
which implies that the price is about 5ÿ 2:5 � 2:5 > 2

������
ab
p � 2. The best

decision of the ®rms is therefore to produce about y � 1:25, and due to
selection pressure �y increases above 0:6. Correspondingly the price falls
below p � 2, which implies that it is now optimal to exit the market. As a
switch to this optimal action requires changing one single bit, several ®rms
do this rather quickly. Accordingly, the average output decreases again
until the ®rms producing an amount larger than 0:6 have the highest ®tness.
Afterwards, these ®rms are selected and the price falls again. The trajectory
then keeps oscillating around y � 0:6. Thus, we get a heterogeneous pop-
ulation with a rather high variance, where some of the ®rms produce
nothing at all, whereas others produce a quantity near y � ��������

a=b
p � 1.

In fact, the GA has found a heterogeneous rational expectations equi-
librium,14 which describes an industry comprised of active and idle ®rms.
All ®rms expect the same price p � 2

������
ab
p

, but for this expected price the

optimal production quantity is not unique. Both y � 0 and y � ��������
a=b

p
yield

the optimal pro®t of 0. If the fraction of ®rms producing y � ��������
a=b

p
equals

exactly x � a
c

��������
b=a

p ÿ 2 b
c (it is easy to show that x 2 �0; 1� if (3) holds and (6)

does not hold), the average production quantity is �y � x
��������
a=b

p
, and we get

from (2)

Fig. 5. The average production quantity in Pt for a � 5; a � 1 and b � 1; c � 5 when the
production decision is split into an exit and entry and a quantity decision
�n � 1000; v � 1; l � 0:001�

14 Hallagan and Joerding (1983) detected a similar situation in an advertising model and
called it ± motivated by biological models ± a polymorphic equilibrium.
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p � aÿ c
a
c

���
b
a

r
ÿ 2

b
c

 ! ���
a
b

r
� aÿ a� 2

������
ab

p
� 2

������
ab

p
:

Thus all ®rms did expect a price, which subsequently turns out to be
the actual market price. We have a heterogeneous rational expectations
equilibrium, where all ®rms hold the same expectations about the price and
where the two optimal actions (idle or producing) are chosen in a pro-
portion such that these price expectations are con®rmed by the market. This
heterogeneous rational expectations equilibrium emerges from the homo-

geneous equilibrium as the ®xed costs pass the value of a � a2b
�2b�c�2. Beyond

this value, a rational expectations equilibrium can only be adopted if some
®rms retire from the market and no longer produce. The number of ®rms
producing in the equilibrium decreases for increasing ®xed costs until for
a � a2

4b no ®rm will remain in the market, which would mean the demise of
the industry.

For our parameter values we get x � 0:6, i.e. 400 out of 1000 ®rms
should decide not to produce. In our simulation with n � 1000, we observe
after 300 generations that there are 378 ®rms which do not produce. The
average pro®t in the population should be 0. However, due to sampling
errors the actual average pro®t in the simulation shown in Fig. 5 is 0:0262.
The oscillations around and the deviations from the theoretical values are
higher than in the case of a convergence against a uniform equilibrium15

since selection may change the ratio between producers and non-producers
in addition to the disruptions caused by mutations. Taking this into ac-
count, we believe that the approximation of the heterogeneous equilibrium
state is quite satisfactory.

We have also carried out further simulation with more than one addi-
tional bit. It turnes out that it is not the number of bits which distinguishes
the strings in a uniform population from the best reply to it which is crucial
for the stability properties. Again ± as implied by Proposition 1 ± it is the
distance between the additional bits which determines the simulation out-
come. Due to space constraints we can not go into details here but would
like to mention it as another empirical con®rmation of the signi®cance of
the theoretical ®ndings for the predictability of GA simulation results.

4 Discussion and conclusions

The simulations of the Cobweb model presented in this paper show that the
outcomes depend crucially on the particular coding scheme. However, we
also showed that the model builder is not restricted to observing these
di�erent outcomes but, by using the mathematical analysis of genetic
learning in economic systems, may predict the implications of the actual
simulation setup he is using. We illustrated how the long run behavior of

15 Note that the population state corresponding to the heterogeneous equilibrium is
``almost'' uniform since the strings in the population vary only in one of the 11 bits. Thus,
the population stays near a uniform state, as predicted in Dawid and Hornik (1996).
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the simulation can be changed systematically by a variation of the coding
scheme used. Interpreting the splitting of the output decision in purely
mathematical terms we may say that we have su�ciently decreased the left
hand side of the inequality (10) for j � 0 such that this inequality is no
longer satis®ed. Doing this we have made a former stable state unstable
with respect to the dynamics of the GA. The question arises as to whether
the stability properties of any stable state can be reversed by a similar
procedure; this is answered in Dawid (1996b) where it is shown that the
strict economic equilibria are the only stable uniform states the stability
properties of which do not depend on the coding scheme used. Further we
would like to point out that proposition 1 implies that the stability prop-
erties of non-equilibrium states may also be systematically changed by re-
scaling the ®tness values16 or choosing di�erent crossover operators.

In our model we basically have a one-to-one correspondence between
phenotype and genotype, i.e. di�ering strings induce di�ering actions (the
only exception occurs in the model with exit and entry decisions, where two
strings with entry 0 in the ®rst bit encode the same action, even if their other
bits di�er in value). This does not necessarily hold in other models. Recently
GAs with 'genetic waste', (i.e. some bits in the string have no in¯uence on
the phenotype) were introduced (Novkovic and Sverko, 1997). Here
proposition 1 implies that we cannot expect convergence on a genotype
level. However, considering the induced dynamics where the state space
includes only the payo� relevant bits, we can reestablish the result of
proposition 1 on a phenotype level. Di�erences occur in the stability cri-
terion (10), where the left hand side has to be adapted because the proba-
bility that the crossover point lies between two relevant bit positions
depends on the number of 'waste bits' in-between and is no longer uniform.
In particular this implies that a strict economic equilibrium is locally
asymptotically stable on a phenotype level, even if the genotype represen-
tation is not unique and, accordingly, there exists no asymptotically stable
uniform population state in a genotypic sense.

Taking this into account, we have to be aware of the fact that simulation
results may crucially depend on implementation details which have hardly
any economic meaning. Using our stability criterion, it is at least possible to
specify exactly which kind of change in the simulation setup will change the
basic results of a simulation and which will not. In our opinion these in-
sights are of great help in designing appropriate GA setups and, perhaps
even more important, in the assessment of the economic implications of the
simulation results.

In the GA's-as-optimization literature the relationship between coding
of strategies and convergence properties seems to be well understood.
However, to our knowledge this is the ®rst paper where this point is sys-
tematically analyzed with special emphasis on economic systems. Benaroch
(1996) states that, ``[S]o far, almost without exception, the very few cases

16 This comes as no surprise since it is well known that rescaling of the ®tness may
in¯uence the stability properties with respect to the discrete time replicator dynamics (see
e.g. Weissing, 1991).
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where AI methods were used quite successfully in economics are the ones
where economists took the lead and learned how to apply these methods and
adapt them to speci®c economic problems.'' (p. 602). We believe that the
insights presented in this paper may help to tailor a Genetic Algorithm to a
speci®c economic problem.

Appendix

The mathematical model of the GA

In this section we give an exact mathematical description of the behavior of
GAs in systems with a state dependent ®tness function. An exhaustive
derivation and analysis of this mathematical theory is provided in Dawid
(1994) and Dawid and Hornik (1996).

Let again Pt denote the population at time t consisting of n binary strings
of length l and the X the set of all binary strings of length l. We identify
each element k of X with the integer

Pl
i� 1 k�i�2iÿ1, where k�i� is the value of

the i-th bit of k. We write S for the set of all possible population states, and
Ut for the state of the population at time t (which a priori of course is a
random vector).

For mathematical reasons we now assume that the ®tness function is
de®ned on the whole simplex Dr and is positive, continuous and continu-
ously di�erentiable.

Considering the e�ect of the three operators described in Section 2 it is
quite obvious that the distribution of Ut�1 given fU0; . . . ;Utg depends only
on Ut. Therefore, we conclude that the stochastic process fUtg1t� 0 is a
Markov process. We denote the transition matrix of this process by
Q � �q//0 �/;/02S . Due to the fact that we assume that both o�spring from
crossover are inserted into the next population, the calculation of q//0 is
quite cumbersome and will be omitted here. Nevertheless, it is possible to
derive results concerning the long run behavior of the process. In Dawid
and Hornik (1996) it is shown that there exists a unique stationary distri-
bution of the process and that this stationary distribution is concentrated
around the uniform states for small mutation probabilities. However, the
analysis of the Markov chain provides no information as to which uniform
states are reached with high probability and which ones only with small
probability.

To answer this question we study a deterministic dynamical system
which provides a good approximation of the actual behavior of the sto-
chastic process for large populations. Using a kind of ``mean ®eld theory''
approach we use a system of the form

/t�1 � G�/t� ; �11�
where G is de®ned by

G�/� � E�Ut�1jUt � /� :
The state space of the dynamical system is the limit of S for n!1, namely
the whole r-dimensional simplex Dr.
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Studying this system we decompose G��� in two operators, the selection
operatorS��� and the mixing operatorM���. It can be easily seen that if the
state of the population at time t is / 2 Dr the expected state of the mating
pool is given by

S�/� � diag�f �/��/
f �/�0/ ; �12�

where 0 denotes transpose. The selection operator describing the e�ect of
proportional selection has the same form as the well known replicator
dynamics in discrete time (see Weissing, 1991). This is of course no surprise
as the replicator dynamics describes the evolution of a large population
with the underlying assumption that the number of o�springs is propor-
tional to the ®tness of an individual.

The e�ect of crossover and mutation is represented by the mixing op-
eratorM : Dr 7!Dr. The exact term for this non-linear operator is not given
here but may be obtained from Dawid (1994) or Dawid and Hornik (1996).

Using this notation, we ®nally have

G�/� �M�S�/�� : �13�
Of course, the operator G depends on the parameters v and l of the GA. It
is also shown in Dawid and Hornik (1996) that for n!1 and l! 0 the
trajectory of the corresponding Markov process converges in probability to
the trajectory of this dynamical system with l � 0 on every ®nite time
interval. In other words, if the population is large and the mutation
probability is small this dynamical system is with high probability within
some small distance of the actual state of the population. Putting together
these results with the considerations in Section 2 we may say that (13)
describes the learning behavior of a population of boundedly rational
economic agents.
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