
Abstract. This paper describes the use of a genetic algorithm (GA) to model
several standard industrial organisation games: Bertrand and Cournot
competition, a vertical chain of monopolies, and a simple model of an
electricity pool. The intention is to demonstrate that the GA performs well
as a modelling tool in these standard settings, and that evolutionary pro-
gramming therefore has a potential role in applied work requiring detailed
market simulation. The advantages of using a GA over scenario analysis for
applied market simulation are outlined. Also explored are the way in which
the equilibria discovered by the GA can be interpreted, and what the
market analogue for the GA process might be.
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1 Introduction

Evolutioary programming (EP)1 techniques have been recognised by a
number of economists2 as being of potential use to the discipline. These
researchers have tended to apply EP methods to relatively complex

*This work was in part supported by the ESRC and Scottish Nuclear Ltd. I wish to thank
David Harbord, Nigel Lucas and two anonymous referees for helpful comments.
1 EP comprises a number of techniques, the major ones being Genetic Algorithms (GAs)
(Holland, 1975, 1992) and Genetic Programming (Koza, 1992).
2 An overview is presented in Lane (1993).
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problems that require advanced tools even for analytical solution3. In this
paper, I describe the results of applying a simple genetic algorithm to
several more standard models: Bertrand and Cournot competition, a ver-
tical chain of monopolies, and a simple model of an electricity pool.

There are two reasons for applying EP to well known economic models.
Firstly, most modellers would want a technique that is to be useful in
complex settings to provide valid results in standard micro-economic
games. The work presented here shows that EP generates interesting results
in these simple settings, which is encouraging for further work on more
complex problems4.

The second reason for addressing well understood games is that EP has
a potential vocation for applied simulation work, in which the underlying
economic models are often quite simple, but the simulations complicated
and richly detailed in important ways5. This potential was recognised by the
precursors of EP in economics6, but more recently it has been overlooked in
favour of a more theoretical view of EP's role7. The advantage of EP in
applied simulation is that it can inject plausible behavioural elements into
models which either have no behavioural elements at all (equilibrium
judgements are made ``o�-model''), or implausible ones (where the com-
putational sophistication attributed to agents is incredible, or the data that
is assumed available to them happens to ®t just the right mathematically
tractable forms8).

3 A good example is Marrimon et al. (1990), who examine whether a simple classi®er
system can reproduce the results of a stochastic dynamic programming model. One suc-
cessful application of GA simulation is in the study of repeated prisoner's dilemmas. See
Marks (1992).
4 Fudenberg and Levine (1996) make this point regarding learning rules in games: ``...
sensible rules should do reasonably well in a broad set of circumstances. Rules that do
poorly even in simple environments are not likely to be used for important decisions.''
5 A good example of this sort of analysis is described in von der Fehr and Harbord (1996),
where the issue is to examine ``the potential for the emergence of effective competition in
the interconnected, inter-state [Australian electricity] market, under various alternative
scenarios for the horizontal market structure of generation''. A simpler piece of analysis
but in a similar vein is described in Lucas and Taylor (1993).
6 See Nelson and Winter (1982) and Anderson (1994).
7 Holland and Miller (1991), for example, write that ``The arti®cially adaptive agent
models [these are broadly speaking what I am calling EP models] complement current
theoretical directions; they are not intended as a substitute. Many of the most interesting
questions concern points of overlap between arti®cially adaptive agent models and clas-
sical theory.'' I entirely agree with this, but would only add that there are also many
interesting questions at the overlap of EP and applied work. Arifovic (1996), Chen et al.
(1996) and Noe and Pi (1995) also move in the direction of bringing EP closer to empirical
work. These papers examine the extent to which EP techniques ®t the game-playing
behaviour of experimental subjects, and the results are encouraging.
8 To keep applied game theory simulations tractable, modellers regularly have recourse to
assumptions of continuously differentiable functions. For example, Green and Newbery
(1992) use supply function equilibria to model the England and Wales electricity pool, and
their equilibria are shown by von der Fehr and Harbord (1993) to break down under the
discrete bid structures required by the market rules. It is very dif®cult to determine a priori
whether results are robust to the relaxation of the simpli®cation used.
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2 Description of the model

GAs are a special sort of search algorithm. All such algorithms can be
thought of as ways of exploring the space of possible solutions to a prob-
lem, and selecting one (or several) possible solutions as being optimal9 (or
just satisfactory). The GA uses a close analogy with Darwinian evolu-
tionary search to select possible solutions: a number of solutions are
evaluated for ``®tness'', and the ®tter solutions reproduce, recombine, and
possibly mutate. The average ®tness of solutions tends to increase, and the
algorithm stops searching either after a speci®ed number of generations, or
once some other externally de®ned criterion is satis®ed. Thus, GA's are a
search method which use an evolutionary process to generate increasingly
good solutions to the problem posed. The driving idea behind their use is
that natural evolution has solved some extraordinarily complex design
optimisation problems; simulating this process may allow us also to solve
complex optimisations.

2.1 A simple example: The price choice of a monopolist

To get an idea of how this method can be translated into an economic
context, here is a very simple application: using the GA to determine a
monopolist's optimal pricing strategy. Take the simple analytic model de-
®ned below:

The monopolist faces:
� a linear demand curve:

Q � k ÿ m P

where Q is quantity demanded, k and m constants, and P is price charged.
� constant average cost, C.

His pro®t function is therefore:

pM � Q�P ÿ C�
where P is his choice variable.
Pro®t is maximised at dpM=dP � 0.

For k � 32 and m � 0:5, this entails P � 36:5.

How does the GA represent and solve this model10? The 6 steps involved
are11:

9 A thorough description on GAs is given in Holland (1975, 1992). A good introduction is
Mitchell (1996). Kane (1996) has an interesting discussion of the ``®tness landscape''
metaphor in economics.
10 The description provided here is not intended to be entirely general: GA implementa-
tions can vary greatly in how the detail is worked out. A thorough discussion of various
types of implementation is provided in Goldberg (1988). Mitchell (1996) is a good in-
troduction.
11 Annexe A provides a standardised, tabular representation of the con®guration of the
GA in all the cases presented in this paper.
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1. Construct a market simulation. In this case, the market simulation takes
as input the choice variable (the monopolist's price) and yields as output
his pro®t.

2. Develop a representation of strategies that can code for all possible
strategies (in this case prices). A binary representation12 is used here. We
limit the monopolist's search domain to prices between 0 and 63, which
allows us to represent all possible strategies as a six digit binary number.
So, for example, a price of 31 is represented by 011111, and a price of 1
by 000001. A strategy thus coded can be compared to a gene, since it
provides the instructions that react with the environment (the market
simulation) to determine ®tness (pro®t)13. In more complicated situa-
tions, for example, where both a price and a quantity have to be selected,
the strategy is made up of a number of genes, and is analogous to a
chromosome.

3. Create a large number of possible strategies (the ``population''). In this
example, 100 genes were created randomly by setting each digit in the
gene to either 1 or zero using a random number generator.

4. Perform a large number of tournaments14 in which a strategy is picked
from the population at random and evaluated in the market simulation.
In this example, there were 100 tournaments.

5. Pick a number of the ``®ttest'' strategies15 (i.e. prices yielding most
pro®t) to breed and allow the least ®t to disappear from the population.
The breeding method used here resembles genetic recombination: two
parent strategies are chosen, a crossover position16 is chosen at random,
and two separate o�spring are created, one each for the two ways of
sharing the parents' genetic information. For example, if prices 1
(000001) and 31 (011111) were chosen as parents, with a crossover po-
sition of 4, the two o�spring prices would be 3 (000011) and 29 (011101).
It is also possible in this step to include a mutation operation which
randomly ``¯ips'' the value of a bit with some probability.

12 Although binary coding is often used in GAs, there are no hard and fast rules for what
the best coding is. Interesting discussions of alternative coding are given in Davis (1991).
13 The gene has to be interpreted by the simulation to provide its interpretation. In the
example given (and all but one examples below), the interpretation is the simple one of
assuming that the binary digits represent integer numbers. But more indirect ``mappings''
from the genes to the choice variables are possible ± six bits could also be used, for
example, to represent numbers between zero and 1 in gradations of 1/64th.
14 The term ``tournament'' is more applicable to the competitive simulations described
below, but is kept for consistency. Moreover, in the simple case of the monopolist's price,
it would be possible to evaluate every possible strategy in the population, rather than
picking them at random. However, this quickly becomes infeasible in competitive games
where the number of permutations of strategies becomes large (with two players each with
a pool of 100 strategies, 1002 simulations would need to be carried out to test every
strategy against every other).
15 The algorithm is often sensitive to the number of strategies picked for breeding, and this
parameter can be interpreted as the ``single-mindedness'' of the search. This is discussed in
more detail below.
16 The crossover position is de®ned as being ``a number of positions (bits) from the left of
the start of the gene.
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6. With the new population created by step 5, check whether the termi-
nation criteria are met, and if not start the tournaments again (Step 4).
In the economic games described below, the termination criterion was
whether evolutionary stability seemed to have been reached17.

Each repetition of steps 4 to 6 are counted as one generation.

The search method described in these steps probably does not at ®rst sight
seem to have any obvious economic interpretation18 (what, for example, is
the analogue of strategy recombination within the ®rm's decision making
process?), and the reader could justify wonder at this stage why the GA
should be of any more interest than another optimisation algorithm. This is
an important question, discussed at greater length below. Su�ce it to say
here that a number of possible analogical interpretations can be o�ered,
from the naive (the strategies are actually tried in the market by ®rms) to
the more sophisticated (strategy testing in the GA is analogous to the
corporate world's beloved scenario analysis, in which case the GA replicates
the ®rms' acquisition of knowledge about its environment). Each interpr-
etation can yield interesting insights. But exploration of these questions
must come after the description of results.

Figure 119 is a representation of the state of the population of strategies
after 5, 10 and 15 generations20. The population is comprised of 100 pos-
sible prices each between 0 and 31, so the entire population at any point in
time can be described as a frequency distribution of prices, as shown in the
graph. The lozenges show the price frequency distribution of the population
after 5 generations, the squares after 10 generations and the triangles after
30 generations.

17 ``Evolutionary Stability'' is de®ned in Maynard Smith (1974). A strategy is evolution-
arily stable if, under the relevant dynamic, it is resistant to mutant invasions. The ana-
lytical treatment of dynamic equilibrium notions such as this one has recently received
considerable attention, although general results seem to be dif®cult to obtain. An excellent
overview is provided in Fudenberg and Levine (1997, especially chapters 3 and 4). In
section 4.9, Fudenberg and Levine consider the particular case of GA simulation, and
make several points that go very much in the direction of this paper.
18 Indeed, it is even obvious that the steps constitute a good optimisation procedure.
Holland (1975, 1992) shows that the GA is a good all-purpose search method, navigating
well the dif®cult route between exploration of new possibilities and exploitation of ``sure
bets''. The proof is quite dif®cult (the population dynamics of the system are clearly
complicated), but relies on the two facts that parent ®tness is a good predictor of offspring
®tness, and that the GA tends to increase the proportion of ®t ``sub-genes'' (schema). An
excellent overview of the proof is given in Mitchell (1996).
19 For visual clarity, the ``Price'' axis shows only values in the region of the solution ±
between 25 and 53. The entire price range was between 0 and 63.
20 Many engineering applications of Gas are essentially concerned only with the ®ttest
elements of the population. However, the equilibrium and behavioural interpretations
placed on the GA require an analysis of the population as a whole (this is the approach
taken throughout section 3, where the result of a GA simulation is taken to be an entire set
of population distributions). Schematically, we view the population as the reservoir of
ideas from which the ®rm (eventually) comes to randomly pick its actual market strategy.
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There are several things to note about the graph. Firstly, the GA this
was run on allowed only integer solutions, so that the 30th generation result
with 100% of prices at 37 is optimal. This leads to the second observation:
the monopoly problem with integer constraints is substantially more
complex than the analytic one described above, and yet the GA has found
on optimal solution very quickly. In fact, even by the 5th generation, we see
a remarkable amount of ``organisation'' in the population of strategies21.
The 10th generation distribution is entirely composed of prices between 35
and 38, and by the thirtieth generation, every non-optimal price has been
driven out of the ®rm's set of possible strategies.

A naõÈ ve interpretation of this result would be that even a monopolist
devoid of capacities for rational optimisation, but blindly following evo-
lutionary rules to select strategies, would very soon be behaviourally in-
distinguishable from the rationally calculating monopolist usually
encountered in economic theory. A slightly more sophisticated interpr-
etation (see Section 4) is that the ®rm uses its own internal model of its
market to explore strategy space and to hone its behaviour, which it puts
into practice once equilibrium is reached. On this interpretation, a mo-
nopolist using a method analogous to the GA internally is entirely indis-
tinguishable from the optimising monopolist of ordinary theory.

Fig. 1. Price frequency distribution for the simple monopolist

21 Remember that the starting population is randomly generated, and therefore approxi-
mately uniform.
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3 Description of the runs

The GA method described above was applied, with only small modi-
®cation, to the more interesting set of models in which agents interact
strategically. The models simulated were Bertrand competition (sti�
price competition with no capacity constraints), Cournot competition
(competition in quantities), a simple chain of monopolies model (a
monopolist manufacturer sells to a monopolist retailer who sells on to
consumers, in which the ®rst two simultaneously choose prices), and
two versions of an electricity pool model (represented by a sealed bid
auction)22.

The application to the monopoly described above involved only a single
agent, and no strategic interactions in the market. All the runs described
below involve market simulations in which the performance of one strategy
depends on the other strategies present. In terms of the six steps involved in
the simulation, not very much changes. A tournament is now set up by
selecting (at random) a single strategy from each player, which determines a
``possible market''.

However, there is a considerable increase in the complexity of the
mechanisms at work. Each player has a separate population of strategies. In
each population, the ``®ttest'' strategies (the ones that reproduce most) are
®ttest only relative to the other populations, so that the state of each pop-
ulation after a number of generations depends on the past and present state
of all others. Thus, the optimal state of each population depends on the
states of all other populations. An agent's strategies that tend to be good in
one generation will a�ect the mix of strategies in the other agents' popu-
lations (by a�ecting their ®tness, and therefore their chance of reproduc-
tion) in the next generations (which will a�ect the original agent's ®t
strategies in generations after that, et cetera ¼). Mitchell (1996) charac-
terises co-evolution as follows:

`` ¼ in nature [organisms] evolve defences to parasites that attack them only to have the
parasites evolve ways to circumvent the defences, which results in the hosts evolving new
defences, and so on in an ever rising spiral ± a ``biological race.'' '' 23

In the competitive game simulations described below, when one ®rm dis-
covers a good strategy, the other is spurred to discover a better one, which
encourages the ®rst to ®nd a riposte, et cetera. This is the essence of co-
evolution24.

22 The analytic treatment of the ®rst three is standard. A clear exposition is found in Tirole
(1989). The last is a simple version of the model developed by von der Fehr and Harbord
(1993).
23 Mitchell (1996), p. 26.
24 The process of co-evolution is thus already very close to many economists' views of
competition (notably in Schumpeter's ``gales of creative destruction'').
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3.1 Bertrand competition

The Bertrand model

The textbook case of Bertrand competition occurs when two producers of
identical goods face no capacity constraints, equal (constant) average costs,
downward sloping demand, and compete on price by simultaneously of-
fering the price at which they are prepared to supply. The market simula-
tion can be represented as follows:

� market price is the lower of the two producers' prices;
� the low-price producer's revenue is the market price times the quantity

demanded at the price;
� the high-price producer's revenues and costs are zero;
� in the case of a tie on price, each producer satis®es half the market.

The analytic solution

The Nash equilibrium of this game is fairly intuitive25: each producer
wants to price below the other producer, as long as the price exceeds cost.
The two ®rms are choosing prices without knowing what the other has
o�ered (simultaneity), so each has to predict what the other will do. Each
®rm works out that the other will not price above cost, since that would
lead to the easy riposte of pricing a minute amount above cost, capturing
the whole market, and making a minute pro®t. Moreover, each ®rm
predicts that the other will not price below cost, since that would entail a
loss for one of the two ®rms (and would therefore be irrational). So the
only coherent prediction seems to be that each ®rm prices at cost, and
makes zero pro®ts.

The GA simulation

Bertrand competition was modelled with the GA in the following way:

1. The market simulation was based on a demand curve given by
Q � 32ÿ 0:5 P where Q is quantity demanded, and P is market price.
The market price was determined in a tournament as being the lower of
the two prices selected.

2. Strategies (prices) were coded as strings of six binary digits, and inter-
preted in the simulation as integers between 0 and 63.

3. Two populations of strategies were created, one for each ®rm, con-
taining 100 genes each, and initially set to random values.

4. Tournaments were created by randomly choosing one strategy from
each population, which were evaluated in the market simulation. Each
generation was comprised of 200 tournaments.

25 This is described more formally in Tirole (1989), pp. 210±211.
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5. Birth, death and mutation was carried out for each population sepa-
rately, as described above.

6. The simulation was stopped after an equilibrium has been reached26.

Figure 2 shows the evolution of market price over the 300 generations
the GA ran for. By the end of the run (in fact, by the 150th generation), the
market price in tournaments had fallen to 1. As usually presented, the Nash
equilibrium of the game has price falling to average cost, and pro®ts falling
to zero. The discrepancy between this and the GA result arises from the fact

Fig. 2. Evolution of price over run

26 In all but the second part of section 3.4, the approach taken to recognising states as
equilibria is pragmatic. Three questions can be asked of the system: ®rst, are the popu-
lation distributions stable? If yes, can we understand why these are equilibria? If yes, do
we return to recognisably similar points in all similar runs? When all three are true, we
judge that an equilibrium has been reached. As noted in footnote 17, some analytical work
on the dynamics of systems similar to GAs has been done. However, these results do not
have the generality to be able to make equilibrium predictions about the GA dynamic in
general, so some pragmatic procedure for judging equilibrium imposes itself.
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that the GA as set up only allows integer prices to be o�ered. Thus, each
population has a tendency to undercut the other population as long as price
exceeds 0, which is at a price of 127. The GA result is thus a Nash equi-
librium given the integer constraints.

Table 1 shows the frequency with which prices are encountered in each
population by the end of the run. Almost all surviving price are at p � 1,
and the one that is not, p � 0, we can safely assume has arisen out of
mutation and will not survive (since if both set price at 1, they share the
market and make a small pro®t (of 15.5) whereas at p � 0, no pro®t is made
at all).

Figure 3 shows the average ®tness (pro®tability) of each ®rm's popu-
lation of strategies. In the early part of the run, average ®tness is high.
However, co-evolutionary competition soon drives pro®ts down for both in
a seemingly hap-hazard way. This is followed by periods of relative sta-
bility, punctuated by rapid change (for example after generations 129 and
257).

3.2 Cournot competition

The Cournot model

Cournot competition arises in the following sort of setting28:

``Two producers work in isolation preparing the quantity they bring to market. These
quantities are decided upon with a foreknowledge of this market structure and with
knowledge of the characteristics of demand, but neither side gets to see how much the
other is producing. Each producer brings the quantity it produced to a central market
place, where it is handed over to a ``state sales commission'' that sets price so that the total
amount brought to market is just demanded at the set price.''

In other words producers compete over the quantity produced. When
this occurs in a market with ordinary cost and demand functions, it is
easy to show that when one agent increases quantity, the other should
reduce29.

Table 1

Price Frequency
Population 1 (%)

Frequency
Population 2 (%)

0 1 0
1 99 100

27 When both price at 1, they share the market.
28 This is taken from Kreps (1990), p. 443.
29 Quantity is said to be a strategic substitute. See Tirole (1989), pp. 218±220.
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The analytic solution

The market simulation used can be analytically described as follows:

� Demand is de®ned as:
P�q1; q2� � 62ÿ 2�q1 � q2�, where P is price, q1 is the ®rst producer's
output and q2 the second's.

� pro®ts are therefore
p1 � q1�P �q1; q2� ÿ 8�, where p1 is the ®rst producer's pro®t, and 8 is the
average cost of production. The second producer's pro®t function is
p2 � q2�P �q1; q2� ÿ 8�.

� Nash equilibrium requires that dp1=dq1 � 0, and dp2=dq2 � 0 which
occurs when q1 � q2 � 9.

The GA simulation

The GA was set up as in the Bertrand game, except that strategy genes are
now coded as ®ve binary digit strings and interpreted as being quantities

Fig. 3. Average population pro®t
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(interpreted as integers between 0 and 31). The payo�s in the market
simulation are as described above.

Figure 4 shows the most frequently occurring strategy in each popula-
tion, and Figure 5 shows the evolution of pro®ts for the two players over
the 110 generations for which the model was run. By the end of the run,
q1 � q2 � 9 (the most frequently occurring quantities, and the analytic
solution) represent over 90% of all strategies. The system is thus clearly
attracted to the Cournot Nash equilibrium.

Fig. 4. Mode of player's quantity bits

Fig. 5. Average pro®t in the cournot game
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3.3 The chain of monopolies

The chain of monopolies model

In the chain of monopolies model30, we assume a monopolist producer is
selling to a monopolist retailer, who sells on to a consumer represented by a
demand curve known to both players. Each chooses price simultaneously.
This model is mainly interesting in industrial organisation because it pro-
vides the simplest demonstration of the slightly paradoxical fact that a
chain of monopolists supply a smaller quantity at a higher price than an
integrated monopolist would. In terms of GA modelling, the example is
interesting in that it provides a setting for heterogeneous players in the
simulation: the producer's payo�s depend on, but are structurally di�erent
from, the retailer's payo�s.

The analytic solution

The market simulated can be described analytically as:

� Demand is given by
Q�p1; p2� :� 32ÿ 0:5�p1 � p2�, where Q is demand, p1 is the producer's
price and p2 the retailer's price.

� The manufacturer is assumed to have average costs of 1 and the retailer
of 8, so the pro®ts of each are given by:

p1 � Q�p1; p2��p1 ÿ 1�
p2 � Q�p1; p2��p2 ÿ 8�

� The solution requires that dp1=dp1 � 0 and dp2=dp2 � 0, which occurs at
p1 � 19 1=3 and p2 � 26 2=3.

The GA simulation

The GA simulation was set up as in the Bertrand competition case, with the
only di�erence being the payo�s in the market simulation are now deter-
mined by the pro®t functions given above.

Figure 631 shows the price frequency distribution of strategies after 292
generations. The GA solution is very close to the analytic solution: 97% of
prices at 19, and 91% at 27 (the GA was constrained to integer solutions). A
very similar picture is already apparent after 125 generations. Thus, the
system seems to behave similarly to the Cournot case in this game. The
exogenous market simulation parameters were identical in this run to the
simple monopolist described above. We can thus easily see the GA repro-
ducing the standard ``double wedge'' result.

30 The vertical chain of monopolists is described in Tirole (1989), p. 174.
31 For visual clarity, the ``Price'' axis has been truncated.
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3.4 A simple electricity pool

The model used here is a simple version of that developed by von der Fehr
and Harbord (1993) to represent the structure of the UK electricity market.
In the UK, power producers bid their generating plant into a pool, where a
market price is determined as the bid of the last producer required to satisfy
demand. All producers who have bid lower than this receive the market
price for their output32.

The pool model

At a ®rst level of simpli®cation, this market is modelled by assuming that
neither of two producers has su�cient capacity to satisfy market demand,
but that both together have more than enough33. Therefore, if the two bid
di�erent prices for their output, the higher priced producer manages to sell
less than his full capacity, whilst the lower priced producer sells his full
capacity at the high price. We assume that in the case of a tie, the market is
shared equally, and that there is a maximum price beyond which demand is
zero34.

In this market simulation, the pay-o�s can be characterised as follows:

� p1�p1; p2�, the pro®t of generator 1, is a conditional function of p1 and
p2, the bid prices of the two generators:

Fig. 6. Price frequency distribution for serial monopolists

32 This is a great simpli®cation on the operations of the England and Wales pool. Newbery
(1995) contains an introduction to the intricacies of the market rules.
33 This is only one of the several cases considered by von der Fehr and Harbord (1993).
34 von der Fehr and Harbord (1993) justify this ``ceiling price'' by arguing that there is an
electricity price above which the regulator would intervene to redress behaviour.
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10p2 if p2 > p1
8p1 if p1 > p2
9p1 if p1 � p2
10p1 if p2 > 45 > p1
0 if p1 > 45

� p2�p2; p1� � p1�p1; p2�
The ®rst two conditions in the pay-o� function simply say that if generator
1 is the low bidder, then he sells 10 units at the bid of the high bidder, but
that if he is the high bidder, he sells only 8 units at the price that he bids
(average cost is assumed to be zero). In other words, each producer knows
that he will be a monopolist over the residual quantity. The third condition
deals with the case of a tied bid, in which case the market is shared. The
fourth condition deals with the case in which one of the two bids is higher
than 45, in which case the lower bidder sells his entire capacity at his bid
price. The last condition states that a bid above 45 yields zero pro®ts for the
bidder in question.

The analytic solution

In the analytic solution to this game, there are two pure and one mixed
strategy Nash equilibria. The pure strategy equilibria are fairly intuitive:
there is a price so low that if player 1 knows player 2 will play it, then player
1 prefers to bid high; therefore, if player 2 bids this price, he knows that
player 1 will bid the maximum. With the payo�s given above, this occurs at
p2 < 36, since player 1 prefers to sell only 8 units for 45 (making a pro®t of
360) than 10 units at less than 36 (making a pro®t smaller than 360). Thus,
one player bidding the maximum while the other bids su�ciently low are
the two pure strategy Nash equilibria35.

In a mixed strategy equilibrium, each producer chooses to play a
number of strategies with some probability. The producer picks the prob-
ability for each strategy such that the expected pay-o� (i.e. before play) is
equalised across all possible strategies his opponent might adopt. If both
players are choosing randomising probabilities in this way, then the out-
come is by construction a Nash equilibrium (if she is playing such that I am
indi�erent, then I could play anything; but unless I play such that she is
indi�erent, her best response will not be to play such that I am)36.

The indi�erence property of the mixed strategy suggests a way of
computing the randomising probabilities. Only when the opponent is
playing an optimal mixed strategy is the player indi�erent between all
choices; hence setting the probabilities that the opponent uses such that the
player's expected payo�s are equalised will determine the opponents opti-
mal mix. Mixed strategy equilibria can thus be determined by solving a set
of simultaneous equations (of which there will be the number of strategies

35 Strictly speaking, there are many more pure strategy Nash equilibria, since the ``low''
bidder is indifferent to any price bids below the critical price, but these are all equivalent
and interchangeable.
36 A clear introduction is given in Binmore (1992), chapters 6 and 7.
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minus one independent equations, and a constraint that probabilities sum
to one).

The equilibrium mixing probabilities (allowing discrete integer price bids
between 0 and 45) for the von der Fehr and Harbord game were computed
as described above37, and are shown in Figure 7. If both players mix their
strategies according to this probability distribution, the expected pro®t is
approximately 364 for each player.

Figure 7 shows prices on the horizontal axis and the probability with
which they should be played on the vertical axis (so a price of 40 should be
played approximately 6% of the time). The randomising probabilities are
seen in Fig. 7 to be increasing in price. This is a re¯ection of the fact that for
the pay-o�s described, the penalty to being the high bidder is relatively
small (sales of 8 units rather than 10), so the penalty for both players
bidding low is relatively large38.

The GA simulation

The GA was set up as for the Bertrand simulation, with the replacement of
the payo� function for that described above.

Figure 8 shows the distribution of prices in the two populations after
320 generations. This corresponds exactly to one of the pure strategy Nash

Fig. 7. Mixed strategy equilibrium for simple pool game

37 The Mathematica model used to compute these can be examined at URL:http://is.eu-
net.ch:80/Customers/curzon/hmix22.ma
38 The mixing probabilities were re-computed for a payoff function in which the high
bidder sold only 2 units, against 10 for the low bidder. The mixing strategy is then falling
in prices.
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equilibria, with producer 1's strategy population consisting entirely of the
maximum price bid (45), and producer 2 bidding indi�erently anywhere
below 36.

Which producer ends up with the higher pro®ts (lower bids) is entirely a
matter of chance. To see in more detail how this occurs, Fig. 9 shows the
evolution of pro®t streams for the two producers over the length of the run.
The high/low pro®t outcome appears soon after the tenth generation, then
seems to stabilise for about 130 generations. However, between generations
150 and 180 (approximately), the identities of the high and low bidders
switches around, and produces a new period of apparent stability to the end
of the run.

To examine in more detail the dynamics of this switch, we need to look
at the evolution of the frequency distributions over the course of the run.
This is shown in Fig. 10, which maps, for each player, the frequency of price
occurrences in the populations every ®ve generations, from the start to
generation 320. The zero'th generation is an entirely homogenous shade,
showing the near uniform distribution of prices. We see that already by the
20th generation, producer 2's strategies are bunching around high values,
whilst producer 1's are still relatively undi�erentiated. From the evolution
of pro®t ®gure (Fig. 9), we see that neither producer is obviously more
pro®table than the other at this point. In fact, producer 2 sees the greatest
increase in pro®ts by tending towards the high pricing strategy. This is
because, with neither strategy populations very di�erentiated, there is a
good chance that market price will turn out low, so that in¯uencing the
probability of a high price is a good strategy for one player, even if some of
the bene®ts accrues to the other.

Producer 1 continues to have a very low frequency of strategies above a
price of 36 until about two ®fths of the way through the run, where a cluster
of prices between 36 and 45 can be seen appearing. With a su�ciently high

Fig. 8. Price frequency distribution after 320 generations
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probability of prices being bid over 36, producer 2 ®nds advantage in
undercutting producer 1, as starts to happen. The system eventually sta-
bilises again, with producer 2 bidding low and producer 1 bidding high. The
switch is thus the result of the appearance of a cluster of price bids above 36
by the previously ``low'' bidder. There is always the possibility that these
will arise: the ``high'' bidder never has 100% of strategies at the maximum
price (partly because mutation, partly because some strategies may, by
chance, just not yet have been selected for tournament); similarly, the ``low''
bidder is unlikely to have no strategies above 36. During a generation, the
vagaries of tournament selection may pit unusually ``low'' bids from the
high bidder, against unusually ``high'' bids from the ``low'' bidder. Such
``trembles''39 may become self-reinforcing, leading ultimately to a switch of
positions.

The GA on mixed strategy equilibria

The GA was run with a number of di�erent crossover rates to examine
whether any would yield the mixed strategy equilibria. Although some
parameter settings destroyed the pure strategy equilibrium described above
(see section 4.1 for an interpretation of this result), none produced an

Fig. 9. Pro®ts in the simple pool game

39 See Selten (1983).
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outcome that was ``recognisably'' the mixed strategy equilibrium. This
suggests that the mixed strategy equilibrium is too ``knife-edged'' to be the
outcome of this heuristic process, or at least that the version of the GA used
is too ``blunt'' to stabilise on it40.

The second suggestion is much easier to test than the ®rst. All that is
needed is to ``®x'' the starting population at the mixed strategy outcome and
see whether it is preserved. The ®rst suggestion requires the testing of a large
number of combinations of parameters over a large number of long runs to see
whether the populations are ever ``pulled'' towards themixingdistributions41.

The suggestion that the GA is too ``blunt'' to stabilise on the MSE was
tested by ®xing the populations at the start of the run to re¯ect the mix of
strategies that would correspond to the mixed strategy equilibrium. So, for
example, a price of 40 was encoded by 6% of the strategies (see Fig. 7). The
GA was run to examine whether it diverged from the mixed strategy
equilibrium. If the GA is given the mixed strategy equilibrium and yet does
not stabilise on it, then a fortiori, the mixed equilibrium cannot be an
equilibrium position for the GA42.

The parameter values that yield the pure strategy equilibria very rapidly
``destroy'' the initial equilibrium. This can be seen in Fig. 11, which shows,
for a number of reproduction and crossover rates, the evolution of the
absolute deviation from the mixed strategy equilibrium. The ``R � 18,
Pop1'' and ``R � 18, Pop2'' summarise the evolution of the deviation for a
crossover rate of 18% . The rapid divergence of the two series corresponds
to the rapid appearance of the pure strategy equilibria, with one high and
one low bidder (the switch in the positions of the two series corresponds to a
switch of the identities of the ``high'' and ``low'' bidders). In general, di-
vergence of the absolute deviation paths was taken to be a su�cient con-
dition for the disappearance of the MSE43. The GA was run to discover the

40 The dif®culty of de®ning an (analytic) dynamic learning process that actually settles on
the right sequence of play to asymptotically yield the mixed strategy is noted by Fuden-
berg and Levine (1996) in the context of the ``®ctitious play'' dynamic. There is no obvious
reason to suppose that the GA dynamic should be particularly better suited to the task.
The example cited by Fudenberg and Levine [taken from Fudenberg and Kreps (1993)] to
illustrate the dif®culty is a dis-coordination game that is structurally rather similar to the
Pool game: in both cases, the pure strategy Nash equilibrium involves adopting a strategy
not adopted by the other player.
41 A very improbable succession of precisely the right tournaments, crossovers and mu-
tations could yield the mixing distributions in any one generation; if the GA parameters
were not such as to destroy the distribution (as in the second hypothesis), the GA would
then have produced the MSE. However, the question is not one of possibility (could an
improbable succession of outcomes ¼ et cetera?) but of tendency (are there settings for
which the GA usually produces the MSE?).
42 Arifovic (1996a) uses a very similar modelling technique to show that an equilibrium
predicted by an analytical model is not stable under GA dynamics.
43 The MSE of the initial population were symmetric. Divergence between populations in
the deviations from the MSE thus indicate a pull towards an asymmetric outcome.
However, divergence cannot be taken to be a necessary condition, because the GA might
evolve towards a symmetric stable state that is not in the neighbourhood of the initial
MSE.
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lowest crossover rate that avoided divergence of the two populations, which
was found to be 6% (``R � 6 ¼'' in Fig. 11). There is thus a wide range of
crossover rates for which the initial MSE is clearly unstable under the GA
dynamic.

Whilst is has not been shown that the GA cannot settle on the MSE,
these experiments suggest that, here at least, the GA is strongly predisposed
to the pure strategy equilibria of the game44. For crossover rates that yield
pure strategy equilibria, the GA tended to destroy the MSE, and the
populations eventually reverted to a pure strategy equilibrium. The signif-
icance of this parameter sensitivity is discussed in section 4.1.

3.5 The pool model with irreversible capacity costs

The original von der Fehr and Harbord model was used to show that as
long as the situation of residual monopoly pertained, the electricity pool
rules would not lead to competitive outcomes. This immediately poses the
question of what productive capacity levels producers in such a market
would choose: do they tend to invest only so much as to endow each with
residual monopoly, or is su�cient capacity built to ensure a competitive
market? The GA was run to answer this question.

Fig. 11. Evolution of deviation from MSE

44 von der Fehr and Harbord (1993) consider a version of the pool model in which there
are no pure strategy equilibria. Generators commit to price bids for 48 demand periods,
between which demand can ¯uctuate widely. Thus, there is never the certainty that they
will be residual monopolists. Work in progress with the GA suggests than in this setting
mixed strategies persist (although it has not yet been shown these are equilibria).
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The model

The simulation described above was modi®ed to state that if either producer
could satisfy the entire market, then the lowest bid would be chosen. Ca-
pacity choice was added as a strategic variable, with capacity commitments
incurring a constant average cost. Average variable cost was maintained at
zero. Thus, players o�ered both price and quantity bids, and the quantity
o�ered incurred a cost whether or not the capacity was actually used to
satisfy any demand.

The payo� function is de®ned as follows:

pi�ki; qi; pm� � qi�pm ÿ c� ÿ kiC

Where

ki is the capacity o�ered to market (or availability)
qi is the quantity actually called on to produce
pm is the market price
c is the average operating cost
C is the cost of making capacity available (the cost of the option to

participate in the market)

This payo� function can be read as saying that the producer earns
pro®ts equal to net average revenue, �pm ÿ c� times quantity called on,
minus the quantity o�ered, ki, times the cost of o�ering it, C. The deter-
mination of qi and pm are described below.

In the two player game, ki and kj are the capacity availability bids of the
two players, and pi and pj are the price bids. We distinguish three regimes of
availability bids, price bids and demand combinations for determining pm,
qi and qj. In all cases, Q is the market demand at market prices below P , and
market demand at prices above P is 0.

Regime 1:

ki � kj � Q and max f pi; pjg � P
pm � maxfpi; pjg
qi � ki

qj � kj

This regime describes a state of unsatis®ed demand45 ± both producers have
bid below P , and the availability o�ered by both together is insu�cient to
meet market demand. In this case, each is asked to produce the full capacity
bid, and market price is set at the higher of the two bids.

Regime 2:

ki � kj > Q and �k�Sfpi;pjg� < Q and maxfpi; pjg � P where �Sfpi; pjg� � i
if pi � minfpi; pjg, and j otherwise.

45 In the England and Wales pool, price paid to generators increases as the probability of
demand being partially unsatis®ed rises. Patrick and Wolak (1996) have hypothesised that
this may be an important channel of strategic bidding. The GA version of the pool
presented here does not consider this opportunity.
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pm � maxfpi; pjg
qi � ki if pi < pj

qi � Qÿ kj if pi > pj

qi � Q=2 if pi � pj

This regime is a generalised version of the game considered in section 3.4. It
describes the conditions necessary for the high bidder to be a residual
monopolist46.

Regime 3:

pi < minfpi; Pjg; and ��pj > P � or �pj < P and ki > Q��
pm � pi

qi � minfkj;Qg
qj � 0

This regime describes the case when bidder i is the low price bidder, and
either i can satisfy the whole market, or j has bid ``out of bounds'' (above
P ). Market price is then i's bid, and quantity called on to produce is the
lower of his quantity bid and market demand.

We consider the game where price and availability bids are restricted to
integers between 0 and 63, where Q � 18 and P � 45, C � 30, c � 0.

The GA simulation

The GA was used to ®nd which regime (if any) would be selected, and how
producers divided up the market within that regime. Table 3.5 of Annexe A
gives the parameter and representation details of the GA for this model.
The addition of a strategic variable adds no technical complications to the
GA itself ± the bit strings are operated on just as before47. However, they
are interpreted di�erently by the simulation model. In this case, the ®rst six
positions of each bit string was interpreted as an (integer) price between 0
and 63, whilst the next ®ve were interpreted as quantities between 0 and 20
(in step increments of 20/31st `s).

Capacity availability bids were modelled as being made simultaneously
with price bids, and were made at every generation. This might be thought
to exclude from the commitment choice the essential element that irre-
versible capacity costs make post-commitment decisions a function of the
pre-commitment decision even when this was ex post sub-optimal. It is

46 The essential condition is the ®rst stated, that both capacity bids together are greater
than demand, whilst the low bidder alone has bid less than demand. The (clumsy-looking)
added condition �k�Sfpi ;pjg� < Q� just ensures that it is only the low price bidder not being
able to satisfy demand that is important.
47 Some changes could be envisaged within the GA. For example, during crossover, should
one pick a single point on the ``price-and-quantity'' string, or should one treat the price
and quantity strings as separate, and allow each offspring to be a recombination of her
parents' price and her parents' quantity strategies? Both methods were tried but did not
seem to affect outcomes in this game.
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certainly true that this feature of commitment is interesting, and a fertile
source of path dependent behaviour48. The model considered here is sim-
pler. Interest in it can nevertheless be justi®ed on two fronts. The ®rst ¯ows
from an interpretation of the GA as representing the ®rm's hypothetical
exercises before coming to a market decision49 (see section 4). The second
changes the interpretation of the simulation. The quantity bids could be
seen as o�ers to make existing capacity available for generation at a given
time50, which itself incurs irreversible costs51 ± it can be seen as the cost of
the option to participate in the market.

The GA results

Figure 12 shows the average pro®ts earned by the two producers over the
course of the run. We ®nd the high pro®t/low pro®t equilibrium emerging
rapidly, with producer 1 at ®rst maintaining the high pro®t position.
However, there is considerable instability within the pattern up to the six-
tieth generation. This is best seen in Fig. 13, which shows the modal (most
frequent) value of the strategic variables in each generation for each player.

Fig. 12. Average pro®t in the pool game with capacity choice

48 Indeed, path dependency and irreversible commitment might even be seen as the same
phenomenon viewed form different perspectives: the ®rst looks back, and the second
forward in time.
49 This is very similar to the justi®cation for the standard ``backward induction'' method
of solving multiple-stage games. See Kreps (1990), ch. 12.
50 In the English power pool, generators are required to declare availability in each of 48
half hourly price-setting periods one day ahead.
51 For example, a power station declared available needs to be fully manned whether or
not it generates any electricity.
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Up to the sixtieth generation, we see modal quantities (in the bottom half of
the ®gure) separating into a clear ``high'' and ``low'' quantity pattern.
However, the price strategies are less di�erentiated, with a high price often
being modal for both players. The reason for the lack of early separation in
price is that the frequency of the high price is low enough for both players
to try to in¯uence the probability of a high price outcome (actual fre-
quencies in each generation are not shown in Fig. 13 except for the last
generation).

After generation 60, a switch of positions is seen, and producer 2
emerges as the more pro®table participant. By generation 300, producer 1's
strategies are to price at 45 (92% frequency) and o�er a quantity of a single
20/31st (i.e. 0.6 units, 97% frequency), whilst producer 2's strategies are to
price below 31 (100% frequency) and o�er a quantity of 27 20/31st `s (i.e.
17.5 units, 90% frequency). Thus, by the end of the run, the strategies can
be characterised as one producer o�ering the lowest quantity possible and
bidding it at the maximum price, and the other producer o�ering the
highest residual quantity at a low price52. The equilibrium of the system

Fig. 13. Price and quantitity modes for each player

52 There is no guarantee, of course, that another switch will not occur, as was seen in the
simple pool game.
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thus seems to yield residual monopoly (just as in the case in which capacity
choice is exogenous). The ®rms evolve towards opting for capacity levels
that avoid Bertrand outcomes53.

Analytical results

von der Fehr and Harbord (1993a) do not address the commitment problem
in this way. They consider a much more realistic 2-stage capacity com-
mitment problem: players can invest in one of a number of types of capacity
(trading-o� capital and operating costs), and the question they ask is
whether di�erent post-commitment regulatory structures (i.e. pricing rules)
give rise to incentives that lead not only to the optimal quantity of in-
vestment, but also to the optimal mix of investment. The results of this
model are not directly comparable, because the simple case considered
above has no capacity-type decision (and no reason to prefer di�erent
capital and operating cost trade-o�s).

However, they identify three ways in which the commitment decision is
a�ected by the pool game.

1. A consumer price e�ect: restricting output increases price, and thus,
ceteris paribus, there is under-investment54;

2. A multiple-technology ®rm e�ect: this e�ect ¯ows from the multiple
technology types considered, and leads to over-investment.

3. A non-competitive spot price e�ect: if prices paid to capital commitment
exceed average costs, there is a super-optimal incentive to invest.

In the simple game considered here, only e�ects 1 and 3 are at work. The
GA converges to a state in which there is no over-commitment, suggesting
that e�ect 3 is counterbalanced (at the equilibrium) by e�ect 1. Is this what
an analytical treatment would suggest?

A simple thought experiment suggests that it is. Imagine that two pro-
ducers are in regime 2, with ki � kj � Q and pi � minfpi; pjg. An increase of
kj by a single unit leads to lower pro®ts for j, since, being the high bidder,
the amount he is asked to produce �Qÿ ki� does not change (in fact, it is
independent of his quantity bid), and yet he incurs the commitment cost C.
Now imagine that kj is increased by a single unit. This does lead to i's
pro®ts increasing, since each extra unit of commitment is actually called on
to produce, and it earns supernormal pro®ts ��pm ÿ c�, which is greater than
�C � c��. This, in fact, is e�ect 3. However, at this point, ki � kj � Q� 1
and qj � kj ÿ 1. In other words, there is excess capacity, and all of it is held
by j. j's best response to this is to reduce commitment until kj � qj, at which
point ki � kj � Q once again (for the reasons given above). The analysis

53 The same result is found analytically, in a slightly different game, in Kreps and
Scheinkman (1993).
54 This is the essence of the Kreps and Scheinkman (1963) result.
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thus shows that e�ect 1 dominates over e�ect 3, so that the outcome follows
the classic Kreps and Scheinkman (1983) result. Moreover this incentive
remains as long as j remains the marginal supplier, which implies
qi � Qÿ 155 ± the non-marginal supplier likes to increase quantity sold, as
long as this does not lead him to being the sole supplier.

Thus, the logic of the game is that the low bidder would want to increase
capacity commitments up to the point at which an increment of capacity
would make him the market supplier at the low price. This is precisely the
outcome we observe in the GA simulation, where the high price bidder ®nds
himself ``squeezed'' into supplying the minimum non-zero quantity of 20/31
units.

4 Discussion of the results

Are the results presented in section 3 interesting because they are created by
a particular algorithm, or (simply) because they o�er an advance on widely
used techniques of modelling markets? In this section, I tentatively propose
a reason why the ®rst might be the case, and argue that in some circum-
stances the second is the case. If the results of EP simulations are to be
interesting in themselves, an analogue for the processes embodied by the
algorithm must be found. If EP simulations are to be just useful tools, they
(only) need to better solve certain problems than widely used techniques.

4.1 What evolves?

The central question we need to answer if we are to treat EP simulations as
worthy of interest per se is whether ®rms (or people) can be thought of as
actually following a similar process in their decision-making. Axelrod
(1984), justifying his use of an evolutionary process in modelling human
decision-making, writes:

``The motivation [...] is to discover which kinds of strategies can be maintained by a group
in the face of any possible alternative strategy. If a successful alternative strategy exists, it
may be found by the ``mutant'' individual, through conscious deliberation, or through
trial and error, or through just plain luck. If everyone is using a given strategy and some
other strategy can do better in the environment of the current population, then someone is
sure to ®nd this better strategy sooner or later...'' (p. 57, emphasis added).

However, in the games examined above, it is not really reasonable to
assume (as Axelrod seems to do) that the equilibrium outcomes have

55 David Harbord (pers. comm.) has pointed out that the result presented here would not
generally hold if bidders could offer different units of capacity at different prices. For
example, the low price, high quantity bidder, when faced with a price bid of pm and a
quantity bid of 1, will prefer to bid a last unit of capacity at pm as along as C < 1=2 pm.
Thus, the actual level of capacity or availability costs, of the ``price ceiling'', and of any
indivisibilities will be important in the more general setting.
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arisen from ®rms actually trying out, in the market, all the strategies that
precede equilibrium. This would require an extraordinary lack of rational
deliberation56. It is therefore important to consider the types of inter-
pretation that can be applied to the evolving strategies. What exactly is it
evolves57?

To answer this fully would require a detailed model of decision-making
within the ®rm58. But even without a fully spelt out model, one candidate
for the r _ole is that the GA represents the evolution of strategic scenarios
within the ®rm. Scenario analysis is pervasive in the corporate world. Some
scenarios are explicitly worked out on ®rms' own quantitative models of
their industry, whilst others are more qualitatively generated and analysed.
In either case, a ®rm's scenarios embody its deliberations about its envi-
ronments. Under this interpretation, the GA simulations can be considered
to model the decision process within one ®rm as a series of hypothetical
calculations. The chromosomes of the GA represent scenarios, and the
gradual spread of strategies within each ®rm's population is intended to
mimic the way ®rms weed out unviable scenarios and keep those that ``have
a chance''59. Convergence of a population to a single strategy (or to stable

56 Mirrored nicely by the often incredible rational sophistication required by analytic
treatments of Nash equilibrium.
57 ``What Evolves?'' is a question rightly highlighted by Anderson (1994) as central to the
development of a fully evolutionary theory of the ®rm.
58 Chattoe (1995) criticises some recent GA applications in economics on the grounds that
they often confuse an ``instrumentalist'' and a ``descriptive'' r _ole for the GA. In the ®rst,
the GA is used as it is in engineering applications, to ef®ciently search a solution space; in
the second, an analogy is implied between the operations of the GA and decision making
within the ®rm, so that GA results become interesting in themselves. Chattoe argues that
when the ®rst parades as the second, no progress in understanding is made, because no
explanation is given of why real ®rms embody precisely those searching strategies that are
implicit in the operations and parameters of the GA. It is true that there is often confusing
silence on the questions of ``What evolves? And why does it evolve like this?'', and true
also that progress can undoubtedly be made on making the GA more ``representational''.
These need not, however, be reasons to concentrate e�ort solely on these questions. Not
only can be GA have an ``instrumental'' r _ole in economics (see section 4.2), but there also
exists research suggesting that human agents in experimental settings are well mimicked by
EPs (e.g. Arifovic (1996), Chen et al. (1996)) ± experimental validation may allow us to
postpone Chattoe's challenge.
59 Penrose (1990) offers a strikingly similar model of how mathematicians arrive at
mathematical truth. He writes (p.546): ``There must be a powerful impressive selection
process that allows the conscious mind to be disturbed only be ideas that 'have a
chance' [...] It seems to me there are two factors involved, namely a 'putting-up' and a
'shooting-down' process [...] Without an effective putting up process, one would have no
new ideas at all [...] But one also needs an effective procedure for forming judgements,
so that only those ideas with a reasonable chance of success will survive.'' Similarily, the
®rm would only actually try out strategies in the market if they, too, ``have a chance,''
and internally, the ®rm needs a putting-up process which we model by mutation and re-
combination.
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distribution of strategies) can be thought of as the ®rm achieving some type
of ``re¯exive equilibrium''60.

As noted in the description of the Pool game, the appearance of Nash
equilibria is sensitive to the crossover rate. At a crossover rate below ap-
proximately 12% of the population, the strategy variable distributions seem
to cycle in suggestive, but out-of-equilibrium ways. Above about 20% of
the population, the GA often locks-in to non-Nash equilibria, and popu-
lation diversity falls very rapidly.

Such sub-optimal results of the GA simulation are both a challenge for
the approach and a potential strength. Arthur (1993) describes a learning
algorithm in which lock-in is the result of di�culty of discrimination
between good outcomes. He argues that ``What is crucial to the emergence
of optimal action is [...] that learning has time to explore and discover the
action with the largest expected value.'' Moreover, he ®nds that human
subjects in experimental settings typically do not allow exploration enough
time.

The ``time to explore'' explanation of lock-in can be combined with
the scenario interpretation of the GA to shed light on the interpretation
to give of the GA's sensitivity to reproduction and crossover rates. High
values for these (above about 20% reproduction rate) can be thought of
as corporate ``single-mindedness'', whilst low values (below about 12%)
would represent ``indecisiveness''. A high reproduction and crossover
rate, under this interpretation, sees the ®rm selecting initially promising
scenarios on very little evidence of their pro®tability: good performance
in just a few successive generations can lock a ®rm into these scenarios.
At low reproduction and crossover rates, the vagaries of tournament
selection may lead no scenario to ever dominate the population61. It is
somewhere between single-mindedness and indecisiveness that the ®rm
can hope to remain su�ciently open-minded to attain optimal out-
comes62.

4.2 Using the GA in applied simulation

Markets occasionally have to be modelled in greater detail than o�ered by
the stylised abstractions of typical industrial organisation models. This can

60 ``Re¯exive equilibrium'' need not be a Nash equilibrium. Moreover, this interpretation
leaves open the question of whether the ®rm need delay action in the market until re¯exive
equilibrium is reached. If the GA is modelling the way ®rms develop internal models of
their environments, then there will be cases in which a market trial yields suf®ciently
valuable information about the modelled market to be worth risking.
61 What determines a ``high'' and a ``low'' reproduction and crossover rate is almost
certainly game-speci®c. This seems to be a case where the suggestion in Chattoe (1995)
that these parameters should be endogenised in the EP simulation could yield interesting
insights.
62 This interpretation sits nicely with management theorists' current emphasis of the ®rm
as a ``learning machine.''
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happen in prescriptive applications, where a ®rm or regulator is being
counselled. For example, von der Fehr and Harbord (1996) consider
whether a number of market structures in the Australian electricity industry
are likely to lead to abusive dominant positions. The level of detail required
here goes beyond the stylised representation of their analytical model, be-
cause the regulator is concerned with the actual extent of any likely e�ect,
and not just its direction. Moreover, the choice variables include no longer
just price and quantity, but timing, discrete and multiple capacity tranches,
entry, transmission capacity et cetera63.

The method employed by von der Fehr and Harbord64 is to use a
simulation model to calculate pay-o�s under di�erent combinations of
choice variables, and examine results o�-model to ®nd the patterns pre-
dicted by the analytic model. The combinatorial explosion that soon occurs
when trying to richly simulate markets imposes this restricted scenario
analysis: only so many combinations of price, entry and investment options
can be run. The solution taken by London Economics and Harbord As-
sociates (1995) is to ®x exogenously entry decisions and transmission in-
vestments, and then search for Nash equilibria in prices under each
scenario. Price choices are themselves constrained to being 1, 2 or 3 times
marginal cost.

The approach can be quite successful. In this case, for example, it was
shown that one player maintained a dominant position across most sce-
narios. However, the approach also has its drawbacks. Decisions to enter a
market will depend on the type of competition expected in that market, so
®xing entry exogenously weakens conclusions. Markets with large sunk
costs will often exhibit signi®cant path dependency, but the scenario anal-
ysis cannot demonstrate the extent or importance of such e�ects. Finally,
constructing pay-o� matrices for all these scenarios is ine�cient: the
attempt is to ``cover'' solution space as widely as possible, where an
e�cient simulation will concentrate e�ort on promising areas of the
solution space.

The EP approach promises to resolve such di�culties. Firstly, the so-
lution method is not constrained by the complexity of the objective func-
tion. There is no technical di�culty for EP involved in endogenising

63 A number of other dif®culties might arise in trying to apply the von der Fehr and
Harbord model to real power pools, which could be explored in an EP framework. For
example, Patrick and Wolak (1996), while recognising the value of the von der Fehr
and Harbord framework, hypothesise that the two dominant players in the England
and Wales market use quantity commitments rather than prices as strategic variables in
part because the market rules stipulate that each price bid must cover 48 price-setting
periods, whilst quantity bids may be tailored to every price-setting period. Quantity
bids are thus attractive strategic variables because they can be more ¯exibly used. Work
in progress is using the GA to test this hypothesis and its likely magnitude (see also
note 44).
64 The details of the actual runs are available in London Economics and Harbord Asso-
ciates (1995).
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variables like investment timing or entry, whereas analytic models soon ®nd
the problems intractable, and traditional scenario analysis is ill-suited to
searches in highly dimensioned spaces. Secondly, an EP simulation will
explore path dependent outcomes and other such ``near equilibrium''
outcomes. It does this because the mutation and crossover operators can be
thought of as ``trembles'', and signi®cant path dependency occurs when the
impact of trembles is large. Finally, the EP approach is computationally
more e�cient than the ``pay-o� calculator'' approach of scenario analysis:
solution space exploration is concentrated on ``promising'' areas, and is not
pre-imposed by the modeller.

5 Conclusion

This paper has shown how EP can be used to search for equilibria in simple,
standard games from industrial organisation theory. The technique has
performed well in this setting. It has also been suggested that one promising
area for EP in economics is to supplant the usual scenario analysis used by
market analysts, and that EP would help to make applied conclusions seem
less arbitrary65.

However, as a move is made to representing more complex choice
problems, the simple GA structure described above will soon become in-
su�cient. For example, it is not capable of representing conditional choice
(which is why all the games explored were one shot, simultaneous move
games). Several techniques exist which can overcome this limitation. One is
Holland's Classi®er Systems, another Koza's genetic programming66. This
latter seems particularly promising. The genetic programming method ex-
plores the space of possible programs addressing a problem, and ®nds
analogues of the recombination and mutation operators of the GA. Firms
(and their regulators) already use computer programs as aids to decision, so
evolving computer programs to represent ®rm's, behaviour and decision
making processes has very clear analogue67.

65 Lane (1993) argues that ``The more richly detailed a model is, the intriguing it is to its
designers ± but the less likely it is to capture anyone else's imaginations or interest.'' This is
all the more the case when important variables are chosen by the modeller rather than the
model.
66 Holland and Miller (1991), Koza (1992). Lane (1993) argues that the type of GA used
here can actually be thought of as the simplest possible Classi®er System.
67 Genetic Programming can be thought of as a way of endogenising Nelson and Winters'
(1982) ``routines''. See Anderson (1994).
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Annexe A

This appendix provides the details of model parameter settings used in the runs. The table
numbers refer to the section in the text where the models are described. The ®rst table
provides a brief description of the meaning of the entries. The last Table (A.4) gives, for
each simulation, the number of ``similar''1 runs repeated. The values shown in the tables
are for the runs described in the text.

Table A.1

Description Identi®es the simulation being described.
Section in paper Where the run is described in the text.
Number of populations The number of co-evolving populations of

strategies.
Strategies in population The number of strategies in each population
Tournaments per generation The number of ``market trials'' that make up

each generation.
Chromosome coding The ``alphabet'' used to de®ne strategies
Chromosome mapping The interpretation placed on the ``alphabet''.
Selection method for tournament The method used for selecting strategies for

tournaments. ``Uniform Random'' was used
throughout, by which every strategy has an equal
chance of being picked in every tournament.

Selection method for breeding The way strategies re-combine to create new stra-
tegies. The ``crossover rate'' in the text refers to the
proportion of strings in each generation involved in
producing new strings for the next generation.

Crossover operator The way re-combination occurs.
Mutation operator The way random changes can in¯uence the stra-

tegies in the next generation.

Table A.2.1

Description Simple monopolist
Section in paper 2.1
Number of populations 1
Strategies in population 100
Tournaments per generation 100
Chromosome coding 6 binary digit
Chromosome mapping Integers from 0 to 63 represent prices
Selection method for tournament Uniform Random
Selection method for breeding 16% crossover rate (i.e. ®ttest 16 strategies sur-

vive, breaed, have one o�spring, who replacing
the bottom 16%).

Crossover operator 2 Randomly matched parents, with random
position on gene

Mutation operator 5% probability that any o�spring bit will be
``¯ipped''

1 Very few runs were repeated identically ± parameters like breeding rate, mutation or
tournament per generation were often modi®ed to test sensitivity. Details of the simula-
tion were also occasionally modi®ed (what to do, for example, in the case of a price tie in
the Bertrand of Pool games). When sensitivity was large enough to affect the structure of
outcomes, runs have not been counted as ``similar''.
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Table A.3.1

Description Bertrand duopoly
Case 3.1
Number of populations 2
Strategies in population 100
Tournaments per generation 100
Chromosome coding 6 binary digit
Chromosome mapping Integers from 0 to 63 represent prices
Selection method for tournament Uniform Random
Selection method for breeding 16% crossover rate
Crossover operator 2 Randomly matched parents, with random

position on gene
Mutation operator 5% probability that any o�spring bit will be

``¯ipped''

Table A.3.2

Description Cournot duopoly
Case 3.2
Number of populations 2
Strategies in population 100
Tournaments per generation 100
Chromosome coding 5 binary digit
Chromosome mapping Integers from 0 to 31 represent quantities
Selection method for tournament Uniform random
Selection method for breeding 16% crossover rate
Crossover operator 2 randomly matched parents, with random

position on gene
Mutation operator 5% probability that any o�spring bit will be

``¯ipped''

Table A.3.3

Description Serial monopolists
Case 3.3
Number of populations 2
Strategies in population 100
Tournaments per generation 100
Chromosome coding 6 binary digit
Chromosome mapping Integers from 0 to 63 represent prices
Selection method for tournament Uniform random
Selection method for breeding 16% crossover rate
Crossover operator 2 Randomly matched parents, with random

position on gene
Mutation operator 5% probability that any o�spring bit will be

``¯ipped''
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Table A.3.5

Description Electricity pool with endogenised capacity
Case 3.5
Number of populations 2
Strategies in population 100
Tournaments per generation 50
Chromosome coding 6 binary digit + 5 bindary digits
Chromosome mapping First 6 bits represent integers from 0 to 63

(prices), next 5 bits linearly mapped from 0 to
20 (quantities) ± i.e. step increments of 20/31.

Selection method for tournament Uniform Random
Selection method for breeding 16% crossover rate
Crossover operator 2 randomly matched parents, with random

position on gene (i.e. from 11 positions)
Mutation operator 10% probability that any o�spring bit will be

``¯ipped''

Table A.3.4

Description Electricity pool
Case 3.4
Number of populations 2
Strategies in population 100
Tournaments per generation 100
Chromosome coding 6 binary digit
Chromosome mapping Integers from 0 to 63 represent prices
Selection method for tournament Uniform random
Selection method for breeding 18% crossover rate
Crossover operator 2 randomly matched parents, with random

position on gene
Mutation operator 5% probability that any o�spring bit will be

``¯ipped''

Table A.4

Model Number of ``similar runs''

Simple monopolist 3
Bertrand duopoly 3
Cournot duopoly 3
Serial monopolists 3
Electricity pool 10
Electricity pool with endogenised capacity 14
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