
Abstract. This paper considers low dimensional (more precisely, one state
variable) dynamic optimisation problems of competitive agents. These in-
dividual decisions lead to a dynamic externality for the evolution of the
system. However, the impact of an individual and competitive agent is
negligible and thus each agent considers this evolution as exogenous data.
This leads, assuming rational expectations (perfect foresight due to the
deterministic set up), to motions in the three dimensional space of state,
costate and externality. Considering the fact that such externalities are
widespread, e.g., R&D in the literature on new growth theory, pollution in
environmental economics, etc., the incorporation of such externalities due
to competitive markets is important, yet this incorporation may alter the
stability of the system. Indeed, complex policies such as stable limit cycles
are sustainable in such a low-dimensional economy, even for a separable
and strictly concave model.
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1 Introduction

The purpose of this investigation is to obtain conditions for limit cycles in
the space with the lowest possible dimension and to characterise the sta-
bility properties of the associated system. From Hartl (1987) we know that
one-state variable, continuous-time dynamic optimisations allow only for a
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monotonic solution. On the other hand, it is well known that higher-order
dimensional optimisation problems allow for complex strategies. See for
example the conjecture in Ryder-Heal (1973) about limit cycles in con-
sumption, and Benhabib-Nishimura (1979) for limit cycles in a two sector
growth model. Wirl (1992) gives four necessary conditions for a Hopf bi-
furcation (and thus for limit cycles) in two dimensional optimal control
problems and establishes the existence of stable limit cycles for separable
and thus potentially very simple models. Recently, Greiner-Hanusch (1994)
and Greiner-Semmler (1996) presented one-dimensional optimisation pro-
blems with a market externality (learning by doing) and proved, using the
Hopf bifurcation theorem, that stable limit cycles describe an intertemporal
competitive, perfect foresight equilibrium.1 The underlying geometry of the
possibility of limit cycles is shown in Fig. 1. The optimal policy of each
competitive firm is characterised by a two-dimensional manifold in the three
dimensional Euclidean space of the state (XX), the costate (k) and the ex-
ternality (y). Given initial conditions of the state, x0, and the externality, y0,
one can determine an unique value of the costate, k0, that ensures con-
vergence to the steady state (x

1
; y

1

; k
1

); initial conditions outside this
plane cannot converge to the equilibrium, and this conditional stability
ensures the uniqueness of the optimal policy. Figure 1 constructs the op-

Fig. 1. Stable manifold for a one-dimensional control problem with a dynamic externality

1 For the sake of completeness, Rauscher (undated) showed in a paper on renewable
resource harvesting that limit cycles may be optimal if aggregate market conditions are
introduced. However, this example does not fit exactly the following framework; in par-
ticular, it is not amenable to the Hopf bifurcation theorem due to a singularity.
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timal starting value of the costate k0 and the entire paths for the given initial
conditions, and shows some examples of other flows.2

The task of this paper is to study one-dimensional dynamic optimisation
problems with an externality and to investigate the stability of the asso-
ciated competitive equilibrium, that is, to study the possible motions within
this manifold, to establish conditions that allow for complex behavior, and,
in particular, to derive conditions for limit cycles. This is the content of
Section 3. Section 2 introduces the optimisation problem and the inter-
temporal competitive equilibrium. Section 4 presents a simple example that
induces limit cycles as a competitive equilibrium. Concluding remarks
complete this investigation.

2 The agents’ intertemporal optimisation problem and the perfect
foresight, competitive equilibrium

We consider a competitive economy where the representative agent solves
the following dynamic optimisation problem:

max
fu�t�g

Z

1

0

exp�ÿrt�v�x�t�; u�t�; y�t��dt; �1�

_x�t� � f�x�t�; u�t�; y�t��; x�0� � x0: �2�

That is, each agent chooses a trajectory fu�t�; t 2 �0;1�g such that the
present value aggregate of the individual profits is maximised. The agents
consider the evolution of y(t) as exogenous data, because y is negligibly
affected by the representative agent’s actions due to the supposition of a
competitive market.

We assume that the associated Hamiltonian,3

H � v�x; u; y� � kf�x; u; y�; �3�

is strictly concave in the control, i.e., Huu < 0, and jointly concave in
control and state, i.e., Hxx � 0 and �HuuHxx ÿ Hux2

� � 0. Therefore, the
following conditions are sufficient for an optimal, interior (e.g., because
control is not constrained) decision, denoted u�:

Hu � 0 �> u�� U�x; k; y�; Ux � ÿHux=Huu;

Uk �ÿfu=Huu; Uy � ÿHxy=Huu; �4�

_k � rkÿ Hx; �5�

lim
t!1

exp�ÿrt�x�t�k�t� � 0: �6�

Although H is concave with respect to state and control in order to ensure
that the first order conditions are sufficient for optimality, it need not be
jointly concave with respect to all three variables, u, x and y. In particular,

2 It is well known that a plane allows for more complex flows than the stable node shown,
such as damped, undamped, and stable limit cycles.
3 From now on we drop the time subscript.
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the inclusion of the externality y may give rise to increasing returns, thus to
a nonconcavity in all three variables, which is a crucial characteristic of the
intertemporal competitive equilibria that are studied in the new theory of
economic growth (See e.g., Lucas (1988) and Romer (1990)).

The agents take y as exogenous data but neglect the impact of their
actions on y due to the supposition of competition. The following analysis
assumes rational expectations of agents, i.e., perfect foresight due to the
deterministic framework: Each agent accounts for the entire evolution of
this externality, fy�t�; t 2 �0;1�g, which is a solution of the following dif-
ferential equation:4

_y� g�x; u; y�; y�0� � y0: �7�

3 Stability analysis of the competitive equilibrium

The optimality conditions of the representative agent’s optimisation pro-
blem amended for the evolution of the externality result in three differential
equations:

_x� f�x;U�x; k; y�; y�; x�0� � x0;

_k� rkÿ Hx�x;U�x; k; y�; y�; lim
t!1

exp�ÿrt�x�t�k�t� � 0;

_y � g�x;U�x; k; y�; y�; y�0� � y0: �8�

Assuming the existence of a stationary solution of (8), the local stability of
this dynamic system depends on the eigenvalues of the Jacobian (evaluated
at the steady state)

J �
1

Huu

fxHuu ÿ fuHux ÿf2
u fyHuu ÿ fuHuy

H2
ax ÿ HxxHuu �r ÿ fx�Huu � fuHux HuxHuy ÿ Hxy

gxHuu ÿ guHux ÿfugu gyHuu ÿ guHuy

2

4

3

5: �9�

The eigenvalues, ei; i � 1; . . . ; 3, are the roots of the following characteristic
polynomial:

P�e� � e3
ÿ tr�J�e2

� we ÿ kJk; �10�

with the coefficients:

tr�J� � r � gy ÿ guHuy=Huu0 �11�

4 Examples fitting into this framework, (1)–(2) and (7), may be found in the literature on
the new economic growth theory that considers a full range of externalities and spillovers,
some of them dynamic such as learning by doing, see Greiner-Hanusch (1994) and
Greiner-Semmler (1996), and the environment, see e.g., Marrewijk-Ploeg-Verbeek (1993)
and Withagen (1995). Indeed, environmental economics and renewable resource extrac-
tion, where agents operating under laissez faire neglect externalities of their actions on the
environmental commons, are other potential and topical areas of applications.
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w �ÿ �f2
x Huu ÿ 2fufxHux � f2

uHxx�=Huu

� r�fx � gy�

ÿ fygx

� �Hux=Huu��fygu ÿ rfu� � �Huy=Huu��fugx ÿ rgu�

ÿ �Hxy=Huu�fugu; �12�

kJk � �r ÿ fx��fxgy ÿ fygx�

ÿ�Hux=Huu���r ÿ fx��fugy ÿ fygu� � fu�fygx ÿ fxgy��

ÿ�Huy=Huu��r ÿ fx��fxgu ÿ fugx�

ÿ�Hxx=Huu�fu�fugy ÿ fygu�

ÿ�Hxy=Huu�fu�fxgu ÿ fugx�: �13�

These coefficients of the characteristic polynomial, tr(J), w and kJk,
determine the signs and the properties (real, complex or purely imaginary)
of the eigenvalues fe1; e2; e3g. On the other hand, assuming the eigenvalues,
the coefficients of the characteristic polynomial can be expressed in terms of
these eigenvalues. In other words, solving the following linear equation
system (linear in terms of the coefficients of the polynomial p)

e3
1 ÿ tr�J�e2

1 � we1 ÿ kJk � 0; �14:1�

e3
2 ÿ tr�J�e2

2 � we2 ÿ kJk � 0; �14:2�

e3
3 ÿ tr�J�e2

3 � we3 ÿ kJk � 0; �14:3�

for the coefficients of (10), i.e., for tr(J), w and kJk, yields these coefficients
as functions of the eigenvalues. (See Table 1 for real roots, and Table 2, for
a pair of complex conjugate roots of (10).) This in turn establishes some
helpful relations between the coefficients and the eigenvalues.

The roots of (10), i.e., the eigenvalues of J, determine the stability of the
system. We exclude in the following global stability of (8) because of the
associated indeterminacy of the optimal policy5. Given this restriction to
unique optimal policies, the discussion can be limited to those cases where
at least one eigenvalue is positive. Now if the other two eigenvalues are both
negative and real, then this ensures not only saddlepoint stability but also
(local) monotonicity. A pair of complex conjugate eigenvalues with negative
real parts still ensures saddlepoint stability, but damped oscillations become
optimal. A pair of complex conjugate eigenvalues with positive real parts
destroys the asymptotic stability of the steady state and the motions become
locally exploding spirals. These spirals may either diverge (the first kind of
instability) or may converge to a limit cycle, which requires a nonlinear

5 However, the issue of indeterminate optimal policies in particular in the context of
(endogenous) growth models receives considerable attention in the recent literature. See
e.g., Boldrin-Rustichini (1994), Benhabib-Perli (1994) and Greiner-Semmler (1996).
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system (8). A second positive real eigenvalue reduces the stability domain
from the plane of initial conditions for x and y to a one-dimensional
manifold, and aside from this set with Lebesque measure zero no trajectory
can reach the steady state (the second kind of an instability for (8)).

From Tables 1 and 2 and a few additional considerations (see the Ap-
pendix) follow some characterisations of the stability of (8) in terms of the
coefficients of the characteristic polynomial (and thus implicitly in terms of
the model parameters):

Proposition 1. A positive determinant of the Jacobian J and a negative
coefficient w, are sufficient for saddlepoint stability, i.e., a unique two-di-
mensional manifold determines the set of stable flows that converge to the
steady state.

Proposition 2. A positive determinant and a negative trace of the Jacobian
are sufficient for saddlepoint stability.

Proposition 3. A negative determinant of the Jacobian implies instability, i.e.,
except for a one dimensional manifold of initial conditions �x0; y0�, it is im-
possible to reach the steady state.

Proposition 4. The existence of a pair of purely imaginary eigenvalues re-
quires that the following conditions are simultaneously satisfied:

�i� tr�J� > 0; �ii� kJk > 0; �iii�w > 0; �iv� kJk � tr�J�w:

Moreover, stable limit cycles as optimal long run strategies exist.

The proof of these propositions 1 to 4 is relegated to the Appendix.
Propositions 1 and 2 give sufficient conditions for saddlepoint stability, but
do not rule out the possibility of transient oscillations. Proposition 4 ad-
dresses the most crucial condition for a Hopf bifurcation (for details see
Guckenheimer-Holmes (1983)), the existence of a pair of purely imaginary

Table 1. Relation between the real eigenvalues ei and the coefficients of the characteristic
polynomial

e1>0 e1>0 e1>0 e1<0
e2>0 e2>0 e2<0 e2<0
e3>0 e3<0 e3<0 e3<0

tr(J) = e1+e2+e3 + ? ? –
w = e1(e2+e3)+e2e3 + ? ? +
kJk = e1e2e3 + – + –

Table 2. Implications of the existence of a pair of conjugate complex eigenvalues 2e3=q ±
ix on the coefficients of the characteristic polynomial

e1>0 e1<0 e1>0 e1<0
q>0 q>0 q<0 q<0

tr(J) = e1+2q + ? ? –
w = 2qe1+(q2+x2) + ? ? +
kJk = e1(q2+x2) + – + –
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eigenvalues. Conditions i-iv are shown in Fig. 2 in the space of the coeffi-
cients of �kJk; tr�J�;w�; the equality condition (iv), which represents a plane
in this space, must be constrained to the positive orthant since all three
terms must be simultaneously positive to facilitate purely imaginary ei-
genvalues.

From Proposition 4, it follows that w>0 is a crucial necessary condition
for a Hopf bifurcation, similar to the coefficient ‘‘K’’ in two-dimensional
control problems (see e.g. Dockner-Feichtinger (1991)). In fact, the formal
definition of w and K is identical (both are the sums of the leading minors
of dimension two), and moreover, the presentation of w in (12) is similar to
this coefficient K in Wirl (1992).6 The first term between the brackets in the
first row of w calculated in (12) is a negative semi-definite quadratic form
such that the first row is always negative. The second row in (12) is only
positive when growth is present (at the steady state), either in x or y, and the
growing factor is dominating. The third row is only positive for predator-
prey type interactions, i.e., x is beneficial for the growth of y but y is
harmful for the growth of x (or vice versa). The fourth row may become
positive for interactions of the control with the state or the externality, and
the last row accounts for the interactions between state and externality.
From this characterisation follows immediately

Proposition 5. The existence of a pair of purely imaginary eigenvalues (which
is a necessary condition for a Hopf bifurcation) requires tr(J)>0, thus

r > guHuy=Huuÿgy ;

and w>0 such that at least one of the following four terms must be positive
and must outweigh other possibly negative elements (including the quadratic
form in (12)):

1. r�fx � gy� > 0, i.e., growth.
2. ÿfygx > 0, i.e., predator-prey interactions.

Fig. 2. Set of purely imaginary eigenvalues in the space (kJk; tr�J�;w)

6 Dockner (1985) gives the formula for the eigenvalues of a two dimensional optimal
control problem in terms of r, K and the determinant of the Jacobian, see Appendix.
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3. Hux�rfu ÿ fygu� � Huy�rgu ÿ fugx� > 0, i.e., nonlinear interactions between
the control and either the state or the externality (e.g., due to endogenous
preferences).

4. fuguHxy > 0, i.e., nonlinear interactions between the state and the ex-
ternality.

The crucial coefficient w is defined as the sum of the leading minors of
dimension two. These three determinants (according to the listing in (15))
measure the interactions between state and costate, costate and externality,
and finally between the state and the externality, and w aggregates all these
impacts. Now considering this definition and assuming a stable optimal
solution for the competitive agent given a constant value of y, the first
determinant in (12) must be negative:
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� fx�r ÿ fx� ÿ �rfuHux ÿ 2fufxHux � f2
uHxx�=Huu < 0: �15�

Note that the inequality (15), which is necessary for the stability of the
optimal policy for a constant y, needs not hold for a competitive equili-
brium with an externality. In short, market interactions may help to stabilise
otherwise unstable policies!

4 A simple, separable example for a Hopf bifurcation

An example fitting to the above general framework and allowing for limit
cycles is already given in Greiner and Hanusch (1994). It is not the purpose
here to repeat this example, nor to look for another equally complicated
example, which can be easily picked from the new growth theory. Instead, I
look for a very simple example that is capable of sustaining limit cycles. The
most obvious way simplifying the elements in the Jacobian (9) and thus the
necessary calculations is to consider a separable model such that all mixed
second order derivatives vanish. This example is in stark contrast to the
mechanism yielding limit cycles in Greiner and Hanusch (1994) that applies
a route along the mixed second order derivatives, ‘adjacent com-
plementarity’, dating back to Ryder-Heal (1973). In addition to separ-
ability, I introduce nonlinearity only at the required degree and at the
easiest point, i.e., at the level of the control, such that all second-order
derivatives other than Huu vanish. More precisely, I consider the following
formal model:

max
u

Z

1

0

exp�ÿrt��pu ÿ �k2
=3�u3

� x�dt; �16:1�

_x � a � mx � ny ÿ u; x�0� � x0; �16:2�

_y � qx ÿ dy; y�0� � y0: �16:3�
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Although the model (16) serves primarily a formal purpose, it is easy to give
economic interpretations.7 For example, the optimisation problem (16)
describes the decision of a firm harvesting a renewable resource stock x. The
harvest, which is sold at the market price p, incurs the costs
c�u� � �k2

=3�u3, and this cubic function is the only nonlinearity in (16).8

The resource x grows at a natural rate a � mx, m>0, but this growth is
affected by the externality, y. And vice versa, the private stocks x affect the
growth of the externality y. This interdependence between x and y may be
symbiotic – increasing the private stocks x increases the external stock y,
which in turn raises x (algebraically q >0, n>0) – or a predator-prey rela-
tion – qn<0, for example, n<0 means that the firms harvest the prey – and y
depreciates at the constant rate d � 0. The resource stock x provides di-
rectly private benefits, e.g., due to multiple use (forests are a familiar ex-
ample because they provide for logging and recreation).

Proposition 6. Sufficiently strong predator-prey interactions such that
ÿqn > d2 ensure a Hopf bifurcation9 for positive growth of x, r > m > 0, at
the critical value mcrit

� d. Therefore, concave and separable models can
sustain limit cycles as optimal strategies. Positive growth m>0 and r>m
violates the inequality (15), so that the firms’ programs are unstable for any
given and constant y, yet stable competitive equilibria, accounting for the
evolution of y, exist.

Proof. The optimisation problem (16.1) and (16.2), given the externality
(16.3), leads to the following system of differential equations for a compe-
titive, rational expectation equilibrium:

_x � a � mx � ny ÿ �

�����������

p ÿ k
p

=k�; �17:1�

_k � �r ÿ m�kÿ 1; �17:2�

_y � qx ÿ dy: �17:3�

The term in (17.1) in parentheses represents the optimal control u�. It is
straightforward to calculate the steady states10

7 For example, adding a further impact of the harvest on the externality such that
_y � au � qx ÿ dy has no effect on the stability analysis and thus, for reasons of simplicity,
we restrict the analysis to a � 0.
8 Quadratic costs are insufficient because the associated optimality conditions lead to a
system of linear differential equations, which cannot give rise to limit cycles but only to
centers. However, any other power function for the costs will do the trick too.
9 That is, a pair of purely imaginary eigenvalues exists and the imaginary axis is
crossed at non-zero velocity. This guarantees the existence of a cycle, which may be
attracting or repelling. The verification of the stability of the limit cycle requires te-
dious calculations to determine the sign of the coefficients of the so-called normal
form; see Guckenheimer-Holmes (1983). Hence, the existence of a stable limit cycle will
be proved numerically.
10 The steady-state is well-defined whenever the root can be taken, i.e., for p>1/(r-m), and
nonnegative for careful chosen parameters; in particular, a must be positive for
�dm � qn� < 0.
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x
1
�

d�
�����������������������������

p � 1=�m ÿ r�
p

ÿ ak�
k�dm � qn�

;

y
1
�

q�
�����������������������������

p � 1=�m ÿ r�
p

ÿ ak�
k�dm � qn�

; k
1
� 1=�r ÿ m�; �18�

the Jacobian,

J �
m �2k

�����������������������������

p ÿ 1=�r ÿ m�
p

�

ÿ1 n
0 r ÿ m 0
q 0 ÿd

2

4

3

5

; �19�

and the coefficients of the characteristic polynomial:

tr�J� � r ÿ d; �20:1�

w � m�r ÿ m� ÿ qn ÿ rd; �20:2�

kJk � �m ÿ r��dm � qn�: �20:3�

The first and crucial condition for a Hopf bifurcation concerns the ex-
istence of a pair of purely imaginary eigenvalues. This in turn requires,
according to condition (iv) of Proposition 4, a solution of the following
equation:

kJk ÿ tr�J�w � �dÿ m��qn � dr � r�m ÿ r�� � 0: �21�

From this arrangement (21) of the bifurcation condition follows im-
mediately a solution for m � mcrit

� d. The second root of (21), m � �r ÿ d�
ÿqn=r, implies kJk � �dÿ r��qn � dr�2 and w � ÿ�qn � dr�2

=r2. This root
violates the simultaneous positivity of kJk, tr(J) and w, in particular, w<0.
As a consequence, this root cannot lead to purely imaginary eigenvalues.
However, the first root of (21), mcrit

� d, facilitates a pair of purely ima-
ginary eigenvalues. The trace is positive for r > d. A positive coefficient w
requires at m � mcrit that qn < ÿd2, thus qn < 0, signifying predator-prey
interactions of a sufficient degree. This last condition ensures a positive
determinant of the Jacobian for r > m due to (20.3). Hence, we have proven
that a pair of purely imaginary eigenvalues exists for m � d.

Now we prove the second condition of the Hopf bifurcation theorem,
namely that the imaginary axis is crossed at non-zero velocity with respect
to the bifurcation parameter m at m � mcrit

� d. The first real eigenvalue of
(19), e1 � �r ÿ m�, is positive for the economically sensible case r > m
(otherwise no finite steady state exists anyway due to (18) and thus no
indeterminacy can arise). The complex eigenvalues of the Jacobian (19) can
be explicitly calculated:

2e3 � 1=2��m ÿ d� �
��������������������������������

�m ÿ d�2
� 4qn

q

�: �22�

Differentiating the real part of (22) with respect to m yields

dRe�2e3�

dm
� 1=2 6� 0 for all m and in particular for m � mcrit

� d: �23�

This verifies the second condition of the Hopf bifurcation theorem and
ensures the existence of a cycle.
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The verification of the stability of limit cycles requires tedious calcula-
tions that are here suppressed, similar to the bulk of the economics litera-
ture on limit cycles; for exceptions see Feichtinger-Novak-Wirl (1994).
However, the existence of stable limit cycles is assured for the differential
equation system (8), which is proved numerically using the computer
package LOCBIF (see Khibnik-Kuznetsov-Levitin-Nikolaev (1992)). More
precisely, the parameters r � 0:5; p � 5; k � 1; a � 2; n �ÿ0.1, q = 1,
d � 0:05, lead to a Hopf bifurcation at mcrit

� d � :05, with steady states
x
1
� 0:17094; y

1
� 3:4188; k

1
� 2:2, and with a negative Lyapunov

number such that the arising limit cycles are stable (i.e., a supercritical Hopf
bifurcation). In passing, it is worth mentioning that the controlled system (the
system after a central planner internalises this externality y) yield a Hopf
bifurcation at the same critical value of the parameter, mcrit

� d, see Appendix
2. Hence, government intervention and a thus proper internalisation of the
externality will not eliminate the limit cycle. Persistent oscillations can result
for both the competitive equilibrium and the social optimum.

Finally, it remains to prove the claim that a stable competitive equili-
brium exists despite the fact that the solution of the optimisation problem
(1) subject to (2) and a constant y is unstable. Consider the above example
(16) with r > m > 0. The corresponding determinant (15) is positive, be-
cause all the mixed second order derivatives are zero so that (15) simplifies
to fx�r ÿ fx� � m�r ÿ m� > 0. The optimal policy is unstable for any given
constant value of y, yet the competitive equilibrium is stable for 0 < m < d
since, according to (22), two eigenvalues with negative real parts exist. j

This example (16) demonstrates that simple and separable economic
models permit complex strategies, in particular, limit cycles. In contrast to
Greiner-Hanusch (1994), this example exploits the conditions of positive
growth (presumably present in Greiner-Hanusch (1994) due to the spil-
lovers and aggregate increasing returns to scale) and predator-prey type
interactions. In fact, both conditions must hold simultaneously since
growth alone cannot support limit cycles. This is in contrast to the asso-
ciated social optimum where the evolution of y may be directly controlled
such that a two-dimensional optimisation problem results and where
growth itself can generate cycles (see Wirl (1992)). Another implication of
this study is that apparently different routes to limit cycles exist, even for
such low dimensional problems. Moreover, from the above proof follows
immediately the corollary that growth need not take place in the private
stocks x but may characterise the evolution of the externality y.

Corollary. Although the two conditions – growth and predator-prey interac-
tions–are crucial for a Hopf bifurcation, it is possible to obtain purely ima-
ginary eigenvalues for the competitive economy (16) for m<0 if the externality
y exhibits growth with respect to y (instead of depreciation), i.e., for d < 0.

5 Concluding remarks

This paper analysed the stability of general one-dimensional, concave dy-
namic optimisation problems of competitive agents where the agents’ ac-
tions create spillovers or an externality which in turn affects the agents’
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profits. This externality, albeit important for the evolution, is not inter-
nalised in the economy, neither through government interventions nor pri-
vate arrangements. In particular, it was shown that a competitive
equilibrium may stabilise otherwise unstable policies and that the evolution
may be complex - with damped, undamped and persistent oscillations, i.e.,
limit cycles - even for a one dimensional optimisation problem. The existence
of limit cycles was already proven in Greiner-Hanusch (1994). In contrast to
that example, this paper considered a general one-dimensional optimisation
problem, investigated the stability, derived a set of necessary conditions for a
Hopf bifurcation, and proved the existence for separable and thus poten-
tially very simple models. The assumption of separability implies that
growth and a predator-prey type interaction between the state and the ex-
ternality are necessary for limit cycles. The social optimum achieved through
government interventions (or a proper internalisation) need not eliminate
the complexities of the competitive equilibrium, but may in fact enlarge the
domain of complex strategies. Besides deriving and characterising the sta-
bility properties of such intertemporal competitive equilibria, these results
are a warning to the recent literature on ‘new growth theory’ that emphasises
balanced growth paths, although the actual evolution may be less smooth
than implicitly assumed. Indeed, the recent literature seems to account for
this. For example, Mulligan-Sala-i-Martin (1993) investigate the motions off
the balanced growth paths, but restricted to saddlepoint paths, and Boldrin-
Rustichini (1994), Benhabib-Perli (1994), and Greiner-Semmler (1996) focus
on indeterminate solutions, which may also be possible within the presented
framework; this question is left for future research. Other possible applica-
tions of the framework presented in this paper are to environmental eco-
nomics, characterised by externalities with increasing recognition of
dynamic externalities (such as global warming); see e.g., Wirl (1994) and
Withagen (1995). Another and theoretical extension of this paper is to in-
vestigate which of the four conditions supports on its own limit cycles,
similar to Wirl (1996) for two-dimensional optimal control problems.

Appendix
1. Calculation of the eigenvalues of (8)

Ruling out global stability, which is neither attainable nor desirable because
of the implied indeterminacy of the optimal policy, one eigenvalue must be
positive and real, and w.l.i.g. e1 > 0. Hence, the characteristic polynomial
P(e) can be written in the following way:

P�e� � �e ÿ e1��e2
� ae � b�; �A1�

where the other two eigenvalues e2 and e3 are the roots of the quadratic
polynomial in (A1) and these roots,

2e3 � 1=2�ÿa�
�����������������

a2
ÿ 4b�

q

; �A2�

determine the local stability of the system (8). Comparing the coefficients of
(A1) with (10) gives for the coefficients a and b in (A1):
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a � e1 ÿ tr�J�; �A3�

b � kJk=e1 or b � w � e1a � w � e2
1 ÿ e1tr�J�: �A4�

Now the following constellations are possible (for e1 > 0):

1. The two eigenvalues 2e3 are both real and negative <=> a > 0;
�a2

ÿ 4b� > 0; b � 0 (thus kJk � 0).
2. The two eigenvalues 2e3 are real, and one is positive and the other is

negative <�> a < 0; �a2
ÿ 4b� > 0; b < 0 (thus kJk < 0). This case

implies that the stability is restricted to a one dimensional manifold of
initial conditions, while it is impossible to reach the steady state for all
other initial conditions in the (x, y) plane. Hence, the generic property is
instability.

3. The two eigenvalues 2e3 are complex with negative real parts < = >
a > 0 and �a2

ÿ 4b� < 0; thus b > 0 and kJk > 0.
4. The two eigenvalues 2e3 are complex with positive real parts < = > a < 0

and (a2
ÿ 4b� < 0, which implies again b > 0 and kJk > 0.

5. The two eigenvalues 2e3 are purely imaginary <�> a � 0 and b > 0.

The following tables summarise the various criteria. Table A1 starts with
the above addressed stability properties, their characterisation in terms of
the coefficients a and b and their implications on the coefficients of the
characteristic polynomial. Table A2 in contrast starts with these coefficients
of the characteristic polynomial, derives the implications for a and b, and
determines, if possible, the associated stability properties. Therefore, Table
A2 provides a direct proof of the Propositions 1 and 2.

Table A1. Stability properties and implications for the coefficients

Assumptions (e1>0) Implications
roots a b (a2–4b) tr(J) w kJk

real, negative + + + ? ? +
complex, negative real parts + + – ? ? +
complex, negative real parts – + – + + +
real, one positive, one negative – – + + ? –

Table A2. The Coefficients of the characteristic polynomial and the implications on sta-
bility

Assumptions (e1>0) Implications
tr(J) w kJk a b (a2–4b) eigenvalues and stability properties

+ + + ? + ? saddlepoint or exploding spirals
– + + + + ? negative reals or real parts, saddlepoint
+ – + + + ? negative reals or real parts, saddlepoint
– – + + + ? negative reals or real parts, saddlepoint
+ + – – – + one positive, one negative, unstable
+ – – ? – + one positive, one negative, unstable
– + – impossible for e1>0
– – – + – + one positive, one negative, unstable
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The condition for purely imaginary eigenvalues implies immediately
the condition of Proposition 4, since a � 0 and (A3) imply e1 � tr�J� such
that, according to (A4), b � kJk=tr�J� � w. The geometry of the roots 2e3
and the associated stability properties in terms of a and b are shown in
Fig. A1.

2 Analysis of the controlled system (16)

The socially optimal control of the external evolution of y leads to the
optimisation of (16.1) subject to (16.2) and (16.3) with the associated Ha-
miltonian H0,

H0

� pu ÿ �k2
=3�u3

� x � k0�a � mx � ny ÿ u� � l�qx ÿ dy�: �A5�

(Primes are used to differentiate between the controlled and uncontrolled
system.) The costates evolutions are independent of the control:

_k0 � �r ÿ m�k0 ÿ 1 ÿ lq; �A6:1�

_l � �r � d�lÿ kn: �A6:2�

The Hamiltonian maximising condition remains unchanged. Hence, (17.1),
(17.3) and (A6) describe the four-dimensional system that characterises the
optimal evolution. The steady state can be again explicitly computed and
has a formal structure similar to (18)

x0
1

�

d�
�����������������

p � 1=A
p

ÿ ak�
k�dm � qn�

; y
1

0

�

q�
�����������������

p � 1=A
p

ÿ ak�
k�dm � qn�

;

k0
1

� ÿ�r � d�=A; l
1

� ÿn=A; �A8�

with the exception of the denominator A under the square root:

A:� �d� r��m ÿ r� � qn; �A9�

instead of (m–r) in (18).
The eigenvalues �i; i=1 to 4, of the associated Jacobian

Fig. A1. Stability properties in terms of a :� e1 ÿ tr�J� and b :� kJk=e1 for e1 > 0
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J0 �

m n �2k
�����������

p ÿ 1
p

�

ÿ1 0
q ÿd 0 0
0 0 r ÿ m q
0 0 ÿn d� r

2

6

6

4

3

7

7

5

; �A10�

can be calculated with the following formula

3
1�

4
2 � �r=2� �

��������������������������������������������������������������������

�r=2�2
ÿ �K=2� � 1=2

���������������������

K2
ÿ 4kJk

q

r

; �A11�

given in Dockner (1985); K is defined similarly to w as the sum of the
leading minors of dimension 2 of the Jacobian J0.

A Hopf bifurcation results according to Dockner-Feichtinger (1991), if

kJ0k ÿ �K2
=4 � r2K=2� � 0 and simultaneously K > 0: �A12�

It is straightforward to compute the crucial coefficients in the formula
(A11):

K � m�r ÿ m� ÿ d�r � d� ÿ 2qn; �A13�

kJ0k � �dm � qn���d� r��m ÿ r� � qn�: �A14�

Fig. A2. Stability analysis for variations in m for the reference example, r � 0:5; d � 0:05;
p � 5; k � 1; a � 2;n � ÿ0:1; q � 1
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The bifurcation condition (A12) can be arranged in manner amenable to
explicit solutions:

kJ0kÿ�K2
=4 � r2K=2� � �m ÿ d�

�d� 2r ÿ m���d� m�2
� 4qn ÿ r2

�: �A15�

Hence, according to (A15), (A12) has four roots, but only one root, m � d,
allows as in Section 4 for a Hopf bifurcation (since the determinant and the
coefficient K must be simultaneously positive). As a consequence, both the
controlled and the uncontrolled system lead to a Hopf bifurcation at the same
critical parameter value m � mcrit

� d:
Figure A2 compares the stability of the uncontrolled system (differential

equations (8)) with the system, where the externality is optimally inter-
nalised (the subject of this appendix) for variations in the parameter m and
the reference example in the paper. More precisely, Fig. A2 determines
(qualitatively) the eigenvalues of the stable manifold according to Fig. A1
and the criteria outlined in Dockner (1985). Observe that the eigenvalue
e1 � r ÿ m changes the sign above m � r and becomes negative. This does
not lead to indeterminacy because the other two eigenvalues are positive,
but to a domain of instability (except for a one dimensional manifold as-
sociated with the negative eigenvalue e1). This instability is not surprising if
the resource grows faster than the agents discount. In fact, the system is
already unstable for m > r � 0:5 due to (18).
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