
Abstract. Previous research has shown that the distribution of pro®t out-
comes from technological innovations is highly skew. This paper builds
upon those detailed ®ndings to ask: what stochastic processes can plausibly
be inferred to have generated the observed distributions? After reviewing
the evidence, this paper reports on several stochastic model simulations,
including a pure Gibrat random walk with monthly changes approximating
those observed for high-technology startup company stocks and a more
richly speci®ed model blending internal and external market uncertainties.
The most highly speci®ed simulations suggest that the set of pro®t poten-
tials tapped by innovators is itself skew-distributed and that the number of
entrants into innovation races is more likely to be independent of market
size than stochastically dependent upon it.
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1 Introduction

For two years the authors have been compiling and analyzing several new
data sets on the pro®t returns to inventions and high-technology startup

Paper presented at the 1998 World Conference of the International Joseph A. Schumpeter
Society, Vienna, June 13±16, 1998.

*Financial support from the Sloan Foundation and the Center for European Economic
Research, Mannheim, at earlier stages of this project is gratefully acknowledged.

Correspondence to: F.M. Scherer

J Evol Econ (2000) 10: 175±200

Uncertainty and the size distribution
of rewards from innovation*

F. M. Scherer1, Dietmar Harho�2, JoÈ rg Kukies3

1 John F. Kennedy School of Government, Harvard University,
Cambridge, MA 02138, USA (e-mail: mike_scherer@harvard.edu)
2UniversitaÈ t MuÈ nchen, D-80539 MuÈ nchen, Germany
3Graduate School of Business, University of Chicago, Chicago, USA



enterprises. The data, combined with evidence available earlier, exhibit
striking regularities. The size distribution of rewards from technological
innovation is highly skew, with an extended tail on the high-value side. A
log normal distribution provides in most instances the best ®t. Having
pinned down with considerable con®dence the structure of rewards ensuing
from innovative activity, we advance now to the stage of formulating what
Ijiri and Simon (1977, p. 109) called ``extreme hypotheses,'' attempting to
determine what behavioral processes, undoubtedly stochastic, led to the
observed distributions. In this paper we summarize the empirical evidence
and then explore, mainly through simulation exercises, plausible alternative
stochastic processes to see which ones conform most closely to the size
distributions actually encountered in the world of innovation.

2 The empirical evidence

Our research has focused on eight sets of data, seven of which are new to
the economics literature (see Scherer, 1998; Harho� et al., 1999). The most
ambitious e�ort involved collecting useable survey and interview evidence
on 772 German and 222 U.S.-origin inventions, on all of which German
patent applications were ®led in 1977, leading to issued German patents
considered su�ciently valuable by their holders to warrant paying annual
renewal fees totalling DM 16,075 until their expiration at full term in 1995.
These will be called the German and U.S. patent data sets. Two other data
sets pertained also to invention patents, one tallying the royalties received
between 1977 and 1995 on the 118 invention patent ``bundles'' licensed by
the Harvard University O�ce of Technology Licensing, the other royalties
received in the years 1991 through 1994 by six research-oriented U.S. uni-
versities on 350 to 466 licensed patent bundles. These will be called the
``Harvard'' and ``Six University'' data sets respectively. Two other data sets
tallied the asset value appreciation (or loss) experienced on a total of 1,053
investments in startup companies by U.S. venture capital ®rms between
1969 and 1988. One sample, covering 383 investments, was compiled by
Venture Economics Inc.; the other, covering 670 investments, by Horsely
Keogh Associates. They will be referred to by the names of the compiling
®rms. Still another analysis of startup company experiences was carried out
by the authors. It followed the common stock values of 131 high-technology
companies previously nurtured by venture capital ®rms from the time they
made initial public stock o�erings (IPOs) between 1983 and 1986 through
(at least, for 52 surviving entities) 1995. This is called the IPO survey.
Finally, we used the data compiled and analyzed previously by Henry
Grabowski and John Vernon (1990, 1994) on the discounted present value
of pro®ts (or more exactly, quasi-rents) realized on two sets of new phar-
maceutical chemical entities marketed in the U.S. market ± 98 introduced in
the 1970s and 66 between 1980 and 1984. These will be called the
``Grabowski-Vernon drug'' data sets.

Table 1 characterizes in two main ways the reward outcome distribu-
tions observed for these eight samples. The second numerical column esti-
mates the fraction of total observed sample pro®ts, royalties, or market
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value captured by entities ranked among the top ten percent of reward
earners. For samples on which the distributional data were available only
by class intervals, the Top Ten Percent share was estimated by nonlinear
interpolation, assuming a log normal distribution of rewards.1

The third and fourth columns in Table 1 summarize the distribution
parameters using the Pareto-Levy distribution, which has the particularly
simple form:

N � kVÿa ; �1�
where V is the value of the pro®ts or other rewards from an innovation, N is
the number of cases with value V or greater, and k and a are parameters.
For data sets on which individual observations were available, the log-
linear ®t implied by the Pareto-Levy distribution did not emerge; the dis-
tribution was characteristically concave to the origin, as illustrated (despite
one extreme billion-Mark value) for the German patent data in Fig. 1.
However, in many instances, observations in the right-hand (most valuable)
tail exhibited a ®t close to log linear, and in any case, information on a slope
values for the entire set of observations and those in the right-hand tail
conveys a good sense of both the distribution's skewness and the degree of

Table 1. Paremeters of the observed innovation reward size distributions

Data set Number of
observations

Percent of value
in top 10 percent

Slope estimates a

All obs. Right taila

German patents 772 88% .42 .87(81)
U.S. patents 222 81±85% .32 .43(63)
Harvard patents 118 84 .41 .71(30)

Six university patents
1991 Royalties 350 93 .50 .64(153)
1992 Royalties 408 92 .51 .65(186)
1993 Royalties 466 91.5 .51 .61(214)
1994 Royalties 411 92 .52 .65(233)

Venture economics
startups 383 62 .60 .97(136)

Horsley-Keogh
startups 670 59 .77 .90(285)

IPOs ± 1995 value 110 62 .44 .82(13)

Grabowski-Vernon
1970s drugs 98 55 .43 1.22(23)
1980s drugs 66 48 .41 1.36(17)

a The number of right-hand tail observations covered is indicated in subscripted par-
entheses. For the IPOs, the sample includes only 53 ®rms surviving at the end of 1995.

1 For the most valuable U.S. patents, a range of estimates is presented, assuming alter-
natively that patents in that open-ended interval averaged $200 million and $250 million.
For values in closed distribution intervals, geometric means of the interval bounds were
used to estimate interval average values.
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concavity. Therefore, we report in Table 1 values of a estimated by ordinary
least squares regression for all available observations and for a subset
conforming as closely as possible to the most valuable 25 percent of those
observations. For data available only by class intervals, the right-hand tail a
values were estimated by reaching out to the include the class boundary
including (and over-reaching) the 25 percent point.2

Two generalizations stand out. First, in all cases, a relatively small
number of top entities accounted for the lion's share of total invention or
innovation value. The highest concentration of value is unambiguously for
the patents, which tend to cover the narrowest range of innovative subject
matter.3 (Many new products and processes are protected by multiple
patents.) The fraction of total portfolio value attributable to the top ten
percent of business entities is quite similar for the two sets of venture-fund-

Fig. 1. Plot of German renewed patent values on Pareto coordinates

2 For the German patents, we include only right-hand tail observations on which detailed
interview data were available.
3 A simulation analysis revealed that when there are complementarities or substitution
e�ects among patents, a distribution that was purely Paretian ignoring those e�ects be-
came concave when the e�ects were introduced. Three sets of 200 observations were
generated, assuming a Pareto distribution with a � 0:5. The observations were then
randomized, and observation values were assumed to be a�ected by the values of their
nearest neighbors, mediated by some random number. For example, the value of obser-
vation Vi became V�i � Vi � �NORMi Vi�1� � �NORMi Viÿ1�, where NORMi was a
normally distributed random variable with mean zero and standard deviations of 0.2 and
0.33. Distinct concavities appeared in the double-log distribution of observations so
transformed, e.g., as the largest original values appreciably augmented or reduced the
value of smaller neighbors but were little a�ected by those neighbors' values. A simulation
permitting only rectangularly distributed positive complementary e�ects induced only
slight concavity.
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backed startup companies and for the IPO companies (whose value gains
occur at a later life cycle stage, since venture funds typically liquidate their
positions shortly after the companies they have backed launch initial public
o�erings). The smallest share of total portfolio value, and hence the least
skewness, is found for the new drug samples, perhaps because many drugs
are protected by multiple patents but possibly also because of biases in the
way the estimates were made.4

Second, substantial skewness is shown both by large fractions of total
sample value attributable to the top 10 percent ``winners'' and by relatively
¯at Pareto function slope estimates (i.e., low absolute values of the slope
parameter a). The simple correlation between top 10 percent value shares
and right-hand tail a estimates for the twelve samples is )0.83. Only for the
two new pharmaceutical product samples, with the lowest top ten percent
value shares, are the right-hand tail a estimates greater than unity ± the
threshold above which Pareto distributions have asymptotically ®nite
means (see Mandelbrot, 1963; Scherer, 1998). For right-hand tail slope
values below unity, reducing risk by forming ever-larger portfolios is
problematic, since, in the pure Pareto case, means do not converge, fol-
lowing the weak law of large numbers, toward stable values with rising
sample size. The near ubiquity of slope values below unity in absolute value
reveals a high degree of skewness indeed.

3 Further insights from the IPO sample5

Because the stock market values of ®rms included in our IPO sample could
be tracked monthly over a period of from nine to 13 years following the
initial issuance of shares between January 1983 and December 1995, par-
ticularly rich insight into the evolution of high-technology enterprises' early
economic success could be achieved. The 131 IPOs were believed to be an
exhaustive sample of IPOs launched during 1983±86 that had been backed
previously by venture capital funds and that operated in pre-speci®ed high-
technology industries, excluding health care provision. Monthly stock
prices were obtained, initially from the Center for Research on Securities
Prices ®les and, to ®ll numerous gaps, by manual search. No record of
actual market transactions was found for 21 of the IPOs, and so the ®nal
sample included only 110 companies. Of those 110, 52 survived to the end
of 1995, 23 disappeared by merger (only ®ve of which outperformed the
NASDAQ index prior to their acquisition), and 35 were delisted, often
accompanied by bankruptcy. Our basic analytic approach was to set aside
$1000 for investment in each IPO, parking the funds in the NASDAQ index

4 The estimates were based upon sales data, to which a non-varying quasi-rent margin
fraction was applied before returns were discounted back to the date of product intro-
duction. If the best-selling drugs (the ``blockbusters'') carried higher pro®t margins, which
seems plausible, the degree of distribution skewness will be underestimated.
5 Joerg Kukies was primarily responsible for the data collection on this sub-project. He
was assisted by Jesus Viejo Gonzales, Christopher Choi, and Anne Sohns. Valuable leads
to data sources were provided by Josh Lerner.
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from January 1, 1983, until the time of IPO. Stock splits and dividends were
tallied, and cash dividends (a fairly rare event) were reinvested (with no
allowance for tax) at the time of payment. When companies exited by
merger or delisting, the cash proceeds were parked in the NASDAQ index
until December 1995.6 The total value of the 110 investments as of De-
cember 31, 1995, was as follows:

52 surviving companies $ 417; 002
23 acquired companies 96; 400
35 delisted companies 21; 178
Total terminal value $ 534; 580

Had the same initial $110,000 been invested in the NASDAQ index in
January 1983, investors would have had $501,908. Thus, our sample of
high-technology companies fared only slightly (and statistically insigni®-
cantly) better than the NASDAQ index generally (compare Brav and
Gompers, 1997).

Figure 2 illustrates how company investment values evolved between
June 1986 and December 1995. It is con®ned to ten companies, including
the ®ve most successful full-term survivors and ®ve others selected ran-
domly. The share values for the random choices cluster so closely in the $0±
2000 range that they are for the most part indistinguishable. Had one in-
vested $1000 in Adobe Systems, Concord Computing, or Amgen, on the
other hand, one would have had shares valued at $77,565, $74,130, and
$55,980 respectively by the end of 1995.

Figure 3 shows how cross-sectional value distributions on doubly log-
arithmic coordinates evolved between 1987 and 1995. To the 52 full-term
survivors from our main sample, one additional high-technology IPO
backed by a venture fund but missed by our initial search ± Microsoft ± has
been added for the analysis that follows.7 As time advances, the distribu-
tion becomes increasingly skew, as shown by slope (a) coe�cients for the
entire cross-sectional distribution falling in absolute value from 0.96 at the
end of 1987 to 0.47 by the end of 1995. For the top 13 companies (i.e., the
top 25 percent) at any given point, the slope values declined from 1.25 in
1987 to 0.95 in 1991 and 0.72 in 1995.

The value trajectories shown in Fig. 2 follow quite ``noisy'' paths be-
tween 1987 and 1995, among other things with frequent rank order changes.
That what occurred approximated a random walk is shown by estimating

6The value of delisted companies is almost surely over-estimated, since it was based upon
the last reported end-of-month value, and since later quotations probably fell, it is
doubtful that investors could have liquidated and reinvested their stakes at the reported
price.
The top ten percent company share tallied in Table 1 includes the reinvested proceeds

from one company that merged on particularly attractive terms along with 12 full-term
company values.
7Microsoft ``went public'' in March 1986. A parked 1983 investment of $1000 accumu-
lated to $129,958 by December 1995. Adding it was important to our test for path
dependence.

180 F.M. Scherer et al.



for each of the 53 full-term companies a simple monthly market model
regression of the form:

dPt � a� b�dNASDAQt� � et ; �2�
where dPt is the month-to-month percentage change in a company's stock
value, dNASDAQt is the corresponding change in the NASDAQ index, et is
a random error, and b measures the stock's market risk. The mean value of
b was 1.16, showing that the new high-technology stocks on average ex-
hibited more systematic risk than the overall NASDAQ market portfolio.
The Durbin-Watson coe�cients for the 53 price change regressions aver-
aged 2.13, with a standard deviation of 0.22. Only nine of the 53 regressions

Fig. 2. Evolution of the value of $1000 investments in ten IPOS

Fig. 3. Pareto plot of 53 IPO values, 1987±1995
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had Durbin-Watson coe�cients outside the 1.64 to 2.36 range, beyond
which one might infer at the 95 percent con®dence level negative autocor-
relation (eight cases) or positive autocorrelation (one case).8 Thus, the vi-
sual impression of value changes that exhibit much ``white noise'' is
con®rmed.

Since value evolutions governed by path dependence can also generate
highly skew distributions (see DeVany and Walls, 1996), further tests for
possible path dependence were conducted.

An intercept term a in equation (1) signi®cantly di�erent from zero in
equation (1) implies systematic upward or downward price drift. Only four
of the 53 market model regressions had t-ratios on a (all positive) of 2.00 or
more. Thus, there was little evidence of signi®cant upward drift, although
four of the most successful companies (in descending t-ratio order, Mi-
crosoft, Concord Computing, Adobe, and Compaq) were exceptions.

As an additional test for path dependence, price levels (not percentage
changes) during months 2 through 37 were regressed on an integer time
variable. Extrapolated predictions from that regression were then added to
regressions for the months remaining through December 1995 of price levels
on the value of the NASDAQ index. In 34 out of 53 cases, addition of the
extrapolated trend series variable led to R2 increments signi®cant in F-ratio
tests at the 5 percent level. Among 19 cases with positive ®rst-three-year
price trends, the trend variable had signi®cant positive explanatory e�ects
for two computer-oriented companies (Microsoft and Compaq) and four
biotech companies (Amgen, Chiron, Molecular Biosystems, and AL Phar-
maceuticals) and signi®cant negative e�ects (indicating a reversal of the early
trend) in 13 cases. Among nine cases with negative ®rst-three-year trends, a
signi®cant continuation of the downward trend was found in six cases and a
signi®cant reversal in three cases. Altogether, only six of the 53 regressions
exhibit signi®cant continuation of a positive initial trend consistent with the
type of path dependence that would increase skewness over time. Since
random walks produce what appear in hindsight to be cycles or trends, some
incidence of correlated growth between early and later periods is almost
inevitable. Thus, we are led to conclude that the incidence of path depen-
dence was at best modest. It almost surely existed in the case of Microsoft
because of the cumulative software lock-in e�ects resulting from the Mi-
crosoft operating system's early selection for IBM's personal computers.

4 Technical uncertainty vs. product market uncertainty

Initial public stock o�erings are seldom made until one or more products
have been shown by research and development to be technically feasible
(although for pharmaceutical products, clinical testing often continues with
funds raised through IPOs). The skew distributions that emerge following
an IPO suggest that there must be substantial risks associated with con-
sumers' (and regulators') response to new products.

8Negative autocorrelation implies non-random alternation between high and low changes;
positive autocorrelation non-random sequences of positive or negative price changes.
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Insight into this point can be sharpened by re-examining the ®ndings
from pioneering research by the late Edwin Mans®eld and his students
(1977, pp. 22±32). He and his colleagues secured information on the out-
comes of individual R&D projects in 16 chemical, pharmaceutical, elec-
tronics, and petroleum corporations. They quanti®ed three di�erent success
probabilities: (1) the probability that a project's technical goals will be met;
(2) the probability that, given technical success, the resulting product or
process will be commercialized; and (3) the probability that, given com-
mercialization, the project yields a return on investment at least as high as
the ``hurdle rate'' applied by the ®rm's decision-makers on investment
projects. For all 16 companies combined, the average conditional proba-
bilities were:

Probability of technical success 0:57
Commercialization, given technical success 0:65
Financial success, given commercialization 0:74

The ®rms' overall average success rate is found by multiplying the three
conditional probabilities, i.e., 0.57 ´ 0.65 ´ 0.74 = 0.27.

The question arises, could a three-stage stochastic process with these
average success probabilities lead without more to the kind of skew reward
distributions revealed by our data? As one source of insight, a Monte Carlo
simulation model was tested. Each of 156 ``®rms'' was assumed to make
three successive stochastic draws from rectangular distributions, one with
mean probability 0.57 and range 0.14 to 1.00, one with mean probability
0.65 and range 0.30 to 1.00, and one with mean probability 0.74 and range
0.48 to 1.00. The product of the three probability draws was multiplied by a
uniform pro®t potential of 1000. The resulting distribution of pro®ts was
highly concave on doubly logarithmic coordinates, with a slope coe�cient
(corresponding to the Pareto a) of )1.21 over all observations and )4.33
over the most pro®table 39 observations. Top 10 percent outcomes ac-
counted for 23.8 percent of total pro®ts. Thus, the distribution was much
less skew than any we have observed for cross sections of ®rms or individual
inventions.9 This could be because the simulation here abstracts from
possible skewness in the size distribution of projects sampled by Mans®eld
et al. and perhaps also because the projects, mostly from large, well-es-
tablished corporations, were less risky on average than those covered by our
various surveys.

5 Gibrat processes

When the market value of a representative company grows or declines
randomly from month to month (or year to year) by a stochastic multiplier,
some version of a Gibrat process may be operating (see Gibrat, 1931; Ijiri

9 Even less skewness emerged when the sampling distributions around Mans®eld's three
means were symmetrically normal (and bounded above at unity) rather than rectangular,
e.g., with a Paretian slope of 6.65 for the most pro®table 25 percent of sample observa-
tions.
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and Simon, 1977). With the simplest Gibrat process, an initial value V0 is
altered sequentially over time by a string of random and independent
multipliers �i; i � 1;T, so that in the ®nal period the value VT is:

VT � V0 �1 . . . �i . . . �T : �3�
Taking logarithms, one obtains:

lnVT � ln V0 � ln �1 � � � � � ln �i � � � � � ln �T : �4�
Under the central limit theorem, the sum of a string of random variables is
asymptotically normally distributed. Thus, following what is called Gibrat's
Law, ln VT should be normally distributed, given su�ciently large T.

The weight of evidence from our innovation reward samples is that a log
normal distribution ®ts the data better than plausible alternatives. The time
series evidence from our IPO study suggests that a random walk of the
Gibrat type operates. The two pieces of evidence together point toward
some kind of Gibrat process as a source of di�ering innovation payo�s, and
in particular, as the source of the observed skew distribution of market
values resulting from equal-sized investments in individual high-technology
IPOs.

We must nevertheless inquire whether there are su�ciently many inde-
pendent random shocks �i to satisfy the ``large numbers'' requirement for
asymptotic log normality. From the estimation of equation (2) above for 53
companies, the mean standard deviation of month-to-month stock value
growth (in percentage terms) was found to be 18.61 percent, with a range of
from 10.1 to 30.8 percentage points. This reveals a value evolution process
that was on average quite noisy.

To see whether a strict Gibrat process with monthly random shocks of
that magnitude would yield the observed IPO value distributions, a Monte
Carlo experiment was conducted. An initial investment of $1000 was made
in 100 hypothetical IPOs. Each investment thereupon grew on average by
1.03 percent per month, plus or minus a normally distributed error term
with mean zero and standard deviation of 18.6 percent, for a total of 120
months.10 The shares of the ten value leaders were computed and Pareto a
slope values were estimated for all 100 companies and the 25 value leaders
for each two-year interval, with results as follows:

Plainly, considerable skewness emerges as the Gibrat process unfolds. At
the end of ten years, the ®rms comprising the top ten percent of the value

Top 10
Value Share

Pareto a
N = 100

Pareto a
Top 25

After 24 months 31.3% 0.93 2.29
After 48 months 48.7% 0.63 1.23
After 72 months 57.6% 0.51 1.07
After 96 months 62.0% 0.47 1.09
After 120 months 67.0% 0.41 1.00

10 I.e., the monthly multiplier was 1:0103� � , where � was normally distributed with mean
zero and standard deviation 0.186.
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distribution account for 67 percent of total sample value, compared to 62
percent for our IPO sample in 1995 when the universe is considered to be all
110 ®rms or 61 percent (for ®ve ®rms) when only the 52 full-term survivors
are included. The evolution of full-sample a estimates for the Monte Carlo
experiment tracks closely the experience of the actual IPO companies.
Slopes for the most successful 25 percent di�er somewhat more, e.g., 0.72
for the actually observed full-term IPOs in 1995, compared to 1.00 after the
experiment has run its course. Considerable similarity (but not identity,
especially in the high-value tail) of distribution evolution patterns is sug-
gested by comparing Fig. 3, which tracks 53 IPOs at ®ve time benchmarks,
and Fig. 4, which summarizes the Gibrat experiment's cross-sectional dis-
tribution.

If the distribution of company values resulting from the experiment were
in fact log normal, the skewness parameter

�����
b1

p
would be insigni®cantly

di�erent from zero and the kurtosis parameter b2 would be insigni®cantly
di�erent from 3.0 when logarithms are taken of the resulting value obser-
vations.11 For the Gibrat experiment and 53 actual IPOs (including Mi-
crosoft), the measured parameters at roughly comparable time points were
as follows:

Fig. 4. Plot of Gibrat experiment outcomes on Pareto coordinates

Gibrat experiment 53 actual IPOs

Skewness Kurtosis Skewness Kurtosis

6 years, 1991 )0.27 3.33 0.27 2.85
10 years, 1995 )0.22 2.91 )0.03 3.09

11Where lk is the kth distribution moment, the coe�cient of skewness is de®ned to be�����
b1

p � l3=l
3=2
2 . The coe�cient of kurtosis is de®ned as b2 � l4=l

2
2.
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For both the experiment and the actual IPO data, the measured skewness
and kurtosis coe�cients lie well within the 95 percent con®dence bounds
consistent with normality of the underlying distribution (see D'Agostino
and Stephens, 1986, pp. 376±385). Thus, we conclude that, given the ob-
served month-to-month changes in high-technology IPO market values, an
approximately log normal cross sectional distribution of company common
stock values could and plausibly did emerge after six to ten years of random
growth in the marketplace.

Table 2 focuses on the 25 most valuable Gibrat experiment companies
after 48 months have transpired, ranked in descending market value order,
and shows how the market values of those companies evolved in the ex-
periment's remaining years. Three of the top four companies at the 120-
month mark had already emerged among the top 13 at the 48-month mark.
Path dependence is suggested, when in fact what happened is that some
companies experienced an early run of good fortune, after which there was
(by the assumption of independent random growth draws in any given
month) an equal probability that they would continue to grow as rapidly as
other ®rms. The Pearsonian correlations among full-sample company val-
ues at various experimental time points were as follows:

Table 2. Evolution of individual ®rm values in the Gibrat experiment

Firm rank at
month 48

Firm value at month Firm rank at
month 120

48 72 96 120

1 15,150 18,064 15,270 22,934 2
2 9,748 13,489 7,555 1,715 28
3 9,181 14,454 38,848 76,848 1
4 8,987 12,915 13,475 5,528 9
5 8,610 12,931 9,850 8,437 6
6 6,455 6,502 5,912 3,517 14
7 4,513 1,453 758 1,433 30
8 4,369 2,221 6,869 3,256 17
9 4,150 7,846 3,123 2,801 22
10 3,493 2,464 4,803 1,034 38
11 3,456 6,312 1,361 933 40
12 3,342 1,289 2,564 4,022 11
13 3,292 2,440 1,429 12,016 4
14 3,101 1,565 571 459 50
15 3,022 8,758 2,404 2,833 20
16 2,702 843 1,381 1,090 37
17 1,951 4,228 4,743 2,098 27
18 1,932 4,661 4,964 3,501 15
19 1,899 132 64 66 86
20 1,833 1,323 743 917 41
21 1,830 6,754 9,400 4,847 10
22 1,821 388 962 3,583 13
23 1,663 1,879 7,245 9,055 5
24 1,655 1,189 2,899 2,920 19
25 1,655 975 748 241 61
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All inter-correlations exceed 95 percent statistical signi®cance thresholds;
and the correlations between distributions separated by two years increase
systematically after the ®rst 24-month sorting-out has occurred. This facet
of the experiment reveals that one must be wary of inferring path depen-
dence causation after-the-fact when an early growth spurt is followed by
continued rank leadership (see Feller, 1957, pp. 77±85; Scherer and Ross,
1990, pp. 141±142).

6 A more structured model

It would be premature, however, to conclude that the skew distributions
observed in our various data sets arise solely from Gibrat processes of the
simple form modelled thus far. The closest consonance has been found to
the stock market performance of companies during the ten years after they
have ¯oated initial public o�erings. Because of disclosure lags, the con-
nection between the underlying events determining company pro®tability
and common stock prices may be erratic. Many of the IPOs included within
our sample sold numerous products, not always closely related, during the
later years covered by our analysis, but most of our data cover single well-
de®ned inventions or innovations. And at bottom, the Gibrat process is a
``black box'' under which random events of unspeci®ed origin a�ect com-
pany value. We ask therefore, is it possible to identify stochastic models
that yield invention and innovation reward size distributions like those we
have observed, but that have a richer underlying structure re¯ecting the
kinds of technical and market events known to occur when new products
and processes are developed and commercialized?

To address this question, a much richer stochastic model was developed
and tested in 20 initial variants covering some 2,400 innovation histories
involving approximately 10,000 simulated company participants.12 Exten-
sions were then tested in 20 further runs. The model is essentially Gibratian
in ¯avor, with a series of random draws a�ecting innovating and imitating
®rms' pro®t realizations multiplicatively. However, the stochastic events
have been structured to conform as closely as possible to what has actually
been recorded in numerous histories of patented inventions and innova-
tions. By way of introduction, a pro®t potential of varying size comes into
existence, ®rms compete through research and development to tap the pro®t
potential, some succeed more rapidly than others and enter the market in a
stochastic order that determines market shares, price competition may or

24 months 48 months 72 months 96 months

48 months .500 1.000 .908 .654
72 months .432 .908 1.000 .735
96 months .276 .654 .735 1.000
120 months .197 .537 .587 .852

12All simulations were performed using FORTRAN programs modi®ed for each set of
varying assumptions.
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may not appear to erode pro®t realizations, and new technologies emerge to
render the subject technology obsolete.

6.1 The model parameters

Pro®t potential. The logical starting point for any realistic model is an
annual pro®t potential that can be tapped by ®rms through innovation.
Two quite di�erent assumptions were modelled. In eight ®rst-stage cases,
the ith innovation's potential was determined by random draws from a
rectangular distribution over the range 0±1. Each sampled variate was
multiplied by $1000 to determine the annual pro®t (or more exactly,
quasi-rent) potential. However, draws of less than 0.1 were multiplied by
10 so that only about one case in 100 had a pro®t potential of less than
$100. Thus, most of the values were distributed rectangularly over the
range $100±1000. In 12 cases, random draws with replacement were made
from a skew distribution replicating the distribution of {value added less
payroll outlays} reported for four-digit manufacturing industries in the
1987 U.S. Census of Manufactures. Fifty ``NEC'' (not elsewhere classi®ed)
industries and 109 other industries below a speci®ed size threshold were
deleted, leaving 298. After rescaling, the range of annual skew quasi-rent
potentials was from $40 to $2590, with mean of 210. The distribution was
nearly log normal, with skewness coe�cient of 1.00 and kurtosis coe�-
cient of 3.56. However, it was less skew than any of the innovation
reward distributions from our empirical samples; the top 10 percent of
observations by number accounted for only 45 percent of total sample
potential pro®ts, and for the top 25 percent, the Pareto slope coe�cient
was 1.41.

Number of competing ®rms. Two approaches, exogenous and endogenous,
were used to determine the number of ®rms seeking to exploit the pro®t
potential. With exogenous entry, the number of ®rms was independent of
quasi-rent potential, being set as 5.0 plus a normally distributed random
variable with mean zero and standard deviation of 2.0. Values below 1.0
were truncated at 1.0 and values above 12.0 were truncated at 12.0. With
endogenous entry, the number of ®rms N varied stochastically with the size
of the innovation's quasi-rent potential. In rectangular potential cases,
N � �1:33� :00667 POTENTIAL�U, where U � �1� r=4�, r being a nor-
mally distributed variate with mean 0 and standard deviation 1. Figure 5
illustrates the distribution of ®rm numbers as a function of the potential
from simulation run 13. The number of ®rms per thousand dollars of quasi-
rent potential increases less than proportionately with the potential, i.e.,
with an elasticity of roughly 0.75, re¯ecting the tendency (not modelled
explicitly) for R&D costs per ®rm to rise when more ®rms are contending
for a prize (see e.g. Reinganum, 1989). In the skew potential case,
N � �1:75� :00625 POTENTIAL�U, where U � �1� r=4�.

Date and order of entry. The dates T at which ®rms begin to tap the pro®t
potential, and hence the order of entry, were determined, consistent with
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many models of research and development rivalry (see e.g. Reinganum,
1989, pp. 855±856), as the expected value of a hazard function T � 1=h,
where h is 0.667 times a rectangularly distributed random variate over the
interval 0±1. Before addition of one-half year for production startup,
rounding, and truncation, T lay in a 90 percent con®dence interval from
1.58 years to 30 years. Fractional values were rounded downward to the
nearest integer.

First mover advantages and market shares. Firms were ranked according to
their time of innovation (before rounding), and the earliest entrants enjoyed
®rst mover advantages whose strength depended upon a random draw from
a rectangular distribution. For the ®rst 20 runs, strong ®rst mover advan-
tages applied with probability 0.1; middling advantages with probability
0.5; and weak advantages with probability 0.4. In the strongest ®rst mover
case, the market (and hence pro®t potential) share of a ®rm ranked j� 1
was 36.8 percent of ®rm j's share; with intermediate ®rst mover advantages,
60.6 percent; and with the weakest advantages, 77.9 percent. Market shares
were normalized to sum to unity in each time period. No changes in entry
ranks were e�ected during any given 20-year run for the ®rst 20 runs,
although all ®rms' shares fell as additional ®rms entered.

Pro®t potential penetration rate. Most models of R&D rivalry have as-
sumed that the full pro®t potential is appropriated as soon as at least one
®rm completes its R & D (for an exception, see Scherer, 1967). This is
highly unrealistic; it takes time to penetrate a new product's potential
market. Thus, in all runs, the rate of quasi-rent potential penetration for
market participants following innovation by the ®rst ®rm was determined
by the function �1ÿ eÿpt�, where p is a random variable drawn from a
rectangular distribution bounded between 0.3 and 0.75 and t is a running

Fig. 5. Illustration of endogenously determined ®rm numbers
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time variable initialized at the ®rst entrant's R&D completion date. Thus,
if p = 0.5, the fraction of quasi-rents appropriated is 39.3 percent in the
®rst year of sales, 63.2 percent in the second year, 91.8 percent in the ®fth
year, etc.

Market structure and price competition. Price competition among market
participants can deplete the market's pro®t potential. For each year in
which ®rms participated in an innovation market, a Her®ndahl-Hirschman
index was calculated. For HHI values greater than 0.333, joint pro®t
maximization was assumed, with no depletion of the quasi-rent potential.
For lower HHI values, ®rms were assumed to engage in Cournot rivalry,
with the quasi-rent potential being dissipated more, the lower the HHI
index. Thus, with a numbers-equivalent structural index (1/HHI = 0.250)
implying four equal-size ®rms, 43.8 percent of the maximum pro®t potential
is appropriated; with a numbers-equivalent of 12, 15.6 percent of the po-
tential is appropriated.

Obsolescence. Paralleling the ®rm entry approach, the impact of competi-
tion from superior outside goods (Schumpeter's ``creative destruction'')
was modelled in two ways. In the ®rst ten runs, obsolescence was sto-
chastically exogenous. From year six on, random draws were made from a
0±1 rectangular distribution, and in the ®rst year with a value less than or
equal to 0.1, obsolescence commenced. From that time on, the quasi-rent
pool was eroded by eÿ0:15s, where s is the number of years elapsing from
the onset of outside goods competition. On average, erosion started in year
11, but with considerable dispersion.13 In the next ten runs and later var-
iants, obsolescence was endogenous. Both the date at which outside
competition commenced (but not earlier than year 3) and the rate at which
it eroded the subject innovation's pro®tability were assumed to rise sto-
chastically with the size of the potential (undissipated) pro®t pool. Fig-
ure 6a,b illustrates for Monte Carlo run 13 the dependence of starting
years and erosion rates (vertical axis) upon the size of the quasi-rent po-
tential (horizontal axis).

Discount rate. In all runs, individual ®rm quasi-rents were discounted to
present value as of year zero at a 10 percent real interest rate.

6.2 Results

Table 3 summarizes the results of the ®rst 20 Monte Carlo experiments
embodying various combinations of the assumptions described above. In
each run, 120 innovation histories were simulated. Some innovations,
especially those with only one or two participating ®rms, dropped out
because no ®rm completed its R&D project in time to have a discounted

13No explicit assumption is made concerning the source of outside innovations. They
could come from outside ®rms or from one or more of the modelled ®rms.
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quasi-rent present value of 5 or more. (The maximum DPV for a ®rst mover
was 11,144; the mean 783.)

In Table 4, the discounted present value of quasi-rents for the ®rst ®rm
into the market is taken as dependent variable in an ordinary least squares
regression with key experimental parameters as explanatory variables. The
sample comprises 940 observations from eight runs, each representing the
®rst run embodying a particular constellation of assumptions. The most
powerful explanatory variable by a substantial margin, with a partial r2 of
0.500, is the size of the quasi-rent potential ®rms competed to tap. The
second-highest t-ratio (and partial r2) is for the Her®ndahl-Hirschman
index (measured at midpoint year 10), in part because higher HHI values
imply higher market shares for leading ®rms and also because values below

Fig. 6. a Endogenous determination of obsolescence starting year. b Endogenous deter-
mination of obsolescence decay rate
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0.333 precipitated pro®t-eroding price competition.14 HHI values at year 10
fell below the 0.333 threshold in 42 percent of the cases. Thirteen percent of
the ®rst movers remained pure monopolists at that milestone. The third-
highest t-ratio emerges for the year at which obsolescence began to set in. A
variable measuring the erosion rate due to obsolescence is also signi®cant.
Together, the two variables imply an important role for Schumpeterian
creative destruction. Because in most cases some ®rm's hazard function
outcome let the ®rm complete its innovation and enter the market at year
two or three, variations in initial starting dates had only a modest impact on
quasi-rent values.15 A year's delay implies a sacri®ce amounting to 12.5

Table 3. Summary of the ®rst 20 Monte Carlo experiments

Run Potential Entry Obsol. Parameters for ®rst ®rm to innovate

No. Top 10% aALL a25% Skew Kurtosis

1 Rect. Exog. Exog. 120 27.3% 1.02 3.08 )0.15 2.44
2 Rect. Exog. Exog. 118 27.1% 0.90 3.19 )0.40 2.50
3 Rect. Endog. Exog. 119 24.9% 1.56 2.77 0.29 2.50
4 Rect. Endog. Exog. 118 23.5% 1.39 3.41 )0.35 4.02
5 Skew Exog. Exog. 118 54.5% 0.80 1.10 0.61 3.38
6 Skew Exog. Exog. 120 44.9% 0.87 1.31 0.29 3.57
7 Skew Exog. Exog. 118 50.5% 0.85 1.12 0.41 3.69
8 Skew Endog. Exog. 114 36.0% 1.11 1.53 0.38 4.24
9 Skew Endog. Exog. 115 40.2% 1.11 1.49 0.66 3.94
10 Skew Endog. Exog. 111 28.8% 1.27 2.67 0.04 3.61
11 Rect. Exog. Endog. 118 27.0% 0.88 2.82 )0.95 4.91
12 Rect. Exog. Endog. 118 24.2% 0.90 4.23 )0.48 2.32
13 Rect. Endog. Endog. 117 23.8% 1.61 2.87 )0.06 3.56
14 Rect. Endog. Endog. 118 22.8% 1.63 3.12 0.01 2.95
15 Skew Exog. Endog. 118 42.1% 0.85 1.61 0.35 2.44
16 Skew Exog. Endog. 118 31.8% 0.97 2.18 )0.14 2.62
17 Skew Exog. Endog. 118 44.8% 0.88 1.37 0.38 2.84
18 Skew Endog. Endog. 116 28.9% 1.45 2.19 0.49 3.21
19 Skew Endog. Endog. 115 25.7% 1.47 2.50 0.06 3.20
20 Skew Endog. Endog. 115 30.0% 1.24 2.26 0.10 3.14

Codes: Rect. = rectangular pro®t potential distribution, Endog. = endogenous,
Exog. = exogenous.

14 The strength of ®rst mover advantages was highly correlated with HHI indices and had
little incremental explanatory power once HHI indices were included in the regression. A
regression relating the HHI values to the number of ®rms and the strength of ®rst mover
advantages was as follows:
HHI � 0:979

(81.42)
ÿ 0:067
(33.59)

NFIRMS ÿ 0:120
(24.99)

FIRSTMOVE; R2 � 0:716;

where NFIRMS is the number of ®rms participating in an innovation rivalry and the
FIRSTMOVE index is scaled at 1 for the largest market share di�erential between ®rst-
moving and lower-ranked ®rms and 3 for the smallest. For pure monopoly cases
(NFIRMS = 1), FIRSTMOVE was scaled at zero.
15 The mean ®rst-completion date, excluding values above 20, was at year 2.67; the me-
dian at year 2.30; the mode at year 2.01.
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percent of average ®rst mover discounted quasi-rents for the full sample.
With endogenous entry, quasi-rents are reduced on average by 21 percent
relative to the full-sample mean value, all else equal. Skew pro®t potentials
reduce ®rst-mover discounted present values by about one quarter relative
to full-sample means, but with considerable variance.

We return to Table 3 to inquire which experimental conditions led to
quasi-rent size distributions most closely consonant with those we have
observed empirically. For each run, innovations were ranked in descending
order of the quasi-rents realized by the ®rst mover. Examining ®rst the
shares of total discounted quasi-rents in any given run appropriated by the
most pro®table ten percent of the ®rst movers, we ®nd results approaching
those observed empirically only in runs 5±7, 15, and 17 ± all with skew
pro®t potentials and exogenous entry. In only two cases (runs 5 and 7) did
the leading ®rms secure 50 percent or more of total sample quasi-rents, i.e.,
roughly the same share as the drug innovators, and ®ve to eleven percentage
points less than the high-technology venture investments and IPOs (com-
pare Table 1). Those ®ve cases, and especially the skew potential, exoge-
nous entry cases, are the only ones with Pareto slope coe�cients for ®rms in
the right-hand quarter of the size distribution anywhere near those observed
empirically ± i.e, in the range of 1.10 to 1.37. None of the simulations
yielded right-hand tail slope coe�cients as low as those observed for the
venture startups and IPOs. Both endogenous entry and endogenous obso-
lescence (Schumpeterian creative destruction) reduce leading ®rm quasi-rent
shares and steepen distribution function tail slopes.

When logarithms are taken of discounted ®rst-mover quasi-rents, the
skewness coe�cients for their size distributions scatter fairly tightly about
the zero value consistent with a log normal distribution.16 The average
skewness coe�cient over 20 runs is +0.08. The distributions exhibit a slight
tendency toward higher kurtosis coe�cients than the 3.0 value that would
prevail if the size distributions were strictly log normal (last column of
Table 3).

Table 4. Regression of ®rm 1's discounted present value on model parameters

Variable Coe�cient t-ratio Mean

Intercept )465.48 3.72 ±
Pro®t potential 1.79 30.51 391
Starting date )98.07 5.44 2.67
Penetration rate 431.33 3.29 0.53
Obsolescence date 32.48 7.17 11.12
Obsolescence rate )1591.94 4.20 0.17
HHI index, year 10 1514.21 17.72 0.45
Endogenous entry )166.62 4.83 0.50
Skew distribution )4.98 0.14 0.50

N = 940; mean dependent variable value = 783; standard deviation = 808; R2 = 0.607

16A 90 percent con®dence interval around the zero expectation extends to plus or minus
0.36 with 118 observations.
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None of the 20 simulations generated a concentration of quasi-rents
as high as was observed empirically for individual patents or related
patent bundles. To explore whether some important stochastic element
was overlooked, 20 additional runs embodying three changes were
computed.

One possible limitation may have been the assumption that ®rst movers'
relative market positions persisted throughout the experiment, with no
displacement from later movers o�ering marginally superior products or
sustaining more e�ective marketing campaigns. To pursue this lead, runs 21
through 28 accepted the basic parameter assumptions of runs 13±14 and
18±20, but added a variant of Gibrat-like random growth. For each year
after at least one ®rm completed its R&D project, the individual ®rm
market shares determined on the basis of ®rst-mover principles were sub-
jected to a random annual multiplier (1� l), where l was normally dis-
tributed with mean zero and standard deviation 0.1. The altered market
shares were then normalized to sum to unity. Random growth increments
or shortfalls experienced in any given year were carried forward into later
years, so the Gibrat e�ects were cumulative. The results are presented in the
®rst panel of Table 5. If anything, less skewness emerges than in otherwise
similar runs 13±14 and 18±20. The top ten percent shares are lower on
average, especially for the runs tapping a skew quasi-rent potential, and the
right-hand tail distribution slopes are steeper on average. The highest ®rst
mover share and the least steep slope are found in each category among the
simulation runs without random market share changes. Evidently, Gibrat
processes do not necessarily increase skewness when high concentration
materializes at the outset as a result of ®rst mover advantages and/or
random sampling of quasi-rent potentials. For the most dominant ®rms in
such cases, the probability of further market share gains through particu-
larly lucky random draws is small.

In some of the Gibrat runs, the market shares of ®rst movers were
eventually exceeded by those of the second or third movers. Despite dis-
counting, later movers' total discounted quasi-rents exceeded those of ®rst
movers in from one to eight cases per run. Because of such rank changes
and also because ®rms that are not the ®rst to complete their R&D projects
can make signi®cant innovative contributions, quasi-rents were merged and
arrayed in seven cases for both the ®rst and second movers, and in two
illustrative cases, for the ®rst three entrants. The results are summarized in
the second and third panels of Table 5. The total quasi-rent share of ®rst-
and second-moving ®rms ranked among the combined top ten percent in-
creased in every case relative to the top ten percent shares for ®rst movers
only. For upper quartile slopes, on the other hand, the di�erences between
®rst-mover-only and combined ®rst and second mover distributions were
erratic.

In runs 1±20, the probability that ®rst movers would achieve the
largest proportional disparity between their market shares and those of
later movers was 0.1. Six additional runs, numbers 29±34, increased the
probability of the most extreme disparity to 0.3, with assignment to the
intermediate and weakest ®rst mover cases each accorded probabilities of
0.35. These stronger ®rst mover assumptions were simulated for analogues
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of runs 11±12, 15±17, and 25±28. The results are presented in the fourth
panel of Table 5. Surprisingly, there was very little di�erence in top ten
percent quasi-rent shares or upper quartile slopes between the averages for
runs 29±34, with stronger ®rst mover advantages, and their earlier
counterparts.

Finally, a referee suggested that an implausibly high number of inno-
vation participants resulted from the endogenous innovation race partici-
pation equation and that the distribution of market shares might be more

Table 5. Summary of further simulation run results

Run Potential Entry Obsol. Parameters for ®rst ®rm to innovate

No. Top
10%

aALL a25% Skew Kurtosis

With Gibrat growth process added
21G Rect. Endog. Endog. 119 22.2% 1.37 3.28 )13.51 152
22G Rect. Endog. Endog. 119 21.5% 1.07 4.04 )2.58 18.9
23G Rect. Endog. Endog. 120 25.1% 1.08 3.35 )0.71 4.35
24G Rect. Endog. Endog. 120 22.4% 1.28 3.85 )0.40 3.22
25G Skew Exog. Endog. 120 35.5% 0.95 2.00 0.16 2.64
26G Skew Exog. Endog. 120 40.1% 0.89 1.60 0.21 2.83
27G Skew Exog. Endog. 120 38.9% 0.95 1.54 0.14 2.92
28G Skew Exog. Endog. 119 32.4% 0.95 2.11 )0.08 2.56

First and second entrants
5±2 Skew Exog. Exog. 229 56.1% 0.78 1.15 0.49 3.64

13±2 Rect. Endog. Endog. 226 25.4% 1.22 2.83 )1.16 9.61
14±2 Rect. Endog. Endog. 230 25.5% 1.10 2.71 )1.68 11.92
17±2 Skew Exog. Endog. 228 45.6% 0.90 1.41 0.46 2.89
25±2 Skew Exog. Endog. 233 39.1% 0.97 1.96 0.37 2.79
26±2 Skew Exog. Endog. 231 42.1% 0.88 1.61 0.16 3.22
27±2 Skew Exog. Endog. 230 40.0% 0.91 1.62 0.13 3.02

First three entrants
14±3 Rect. Endog. Endog. 317 30.0% 1.00 2.65 )1.02 6.62
17±3 Skew Exog. Endog. 320 48.6% 0.81 1.38 0.28 3.20

Stronger ®rst mover advantages
29 Rect. Exog. Endog. 118 25.4% 0.96 3.44 )0.55 3.08
30 Rect. Exog. Endog. 119 24.9% 1.04 3.53 )0.41 2.66
31 Skew Exog. Endog. 118 39.1% 0.84 1.77 0.03 2.75
32 Skew Exog. Endog. 119 37.0 0.97 1.68 0.16 3.06
33G Skew Exog. Endog. 119 32.5 0.98 2.23 0.00 2.51
34G Skew Exog. Endog. 120 37.6 0.79 1.86 0.01 2.40

PIMS market share determination
35 Rect. Endog. Endog. 116 21.0 1.66 4.00 )0.27 2.88
36 Rect. Endog. Endog. 119 21.2 1.38 3.82 )0.90 5.60
37 Rect. Endog. Endog. 118 19.7 1.29 4.87 )1.19 6.12
38 Skew Endog. Endog. 113 27.9 1.25 2.10 )0.12 3.69
39 Skew Endog. Endog. 115 26.6 1.30 2.98 0.04 2.65
40 Skew Endog. Endog. 116 29.8 1.25 2.48 0.22 3.13
35±3 Rect. Endog. Endog. 313 28.6 0.87 3.00 )0.70 4.07
38±2 Skew Endog. Endog. 210 32.3 0.83 2.25 )0.48 3.42
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realistically determined by using an empirical formula derived from PIMS
(Pro®t Impact of Market Strategy) studies:17

MSj � 1

n

� �Xn
i�j

1

i

� �
; j � 1; . . . ; n ; �5�

where MSj is the market share of the jth ®rm among a total of n ®rms. To
explore these possibilities, the coe�cients on POTENTIAL in the en-
dogenous ®rm number determining equations were reduced by 30 percent
for the rectangular case and 20 percent for the skew case, leading to
decreases in both the maximum and average number of ®rms.18 Market
shares were determined precisely according to equation (5) with proba-
bility 0.5. To allow di�erences in the strength of ®rst mover advantages,
market shares generated by equation (5) were raised to the exponent 0.8
with probability 0.25 (reducing the asymmetry of normalized market
shares) and to the exponent 1.25 with probability 0.25 (increasing the
asymmetry of shares). Other assumptions were as in simulation runs 13±
14 and 18±20. The last panel of Table 5 reports the ®rst mover quasi-rent
results of six simulation runs embodying these changes, three for rectan-
gular pro®t potential cases and three for skew potential cases. Data for
two representative runs including the ®rst, second, and third entrants are
also presented. The runs for ®rst movers alone exhibit less skewness than
their original counterparts. The three-®rm simulations (including those
not reported in Table 5) had full-sample a values as low as those obtained
in earlier simulations, but right-hand tail a values were higher and top ten
percent share values were lower. Thus, the revised assumptions did not
provide a superior approximation to observed real-world innovation re-
ward size distributions.

Figure 7a±d graphs on Pareto coordinates four representative size dis-
tributions from the ®rst 20 simulation runs ± three with distribution pa-
rameter outcomes most closely approximating those observed empirically
and one (from run 13) with one of the lowest top ten percent ®rst mover
quasi-rent shares. All are concave to the origin, as were all distributions
constructed from actual data. None exhibits an outlying value some dis-
tance removed from the main cluster of observations, as emerged with the
detailed German patent value data (Fig. 1) and also the Harvard University
patent royalty and drug pro®t distributions reported in Scherer (1998).
However, such outliers appeared in earlier trial simulations (not explicitly
reported here) and cannot be ruled out for alternative random draw con-
stellations. Endogenous entry run 13 stands out for its consistently steep
right-hand tail slope.

17 See e.g. Buzzell and Gale (1987), who do not, however, report the market share formula
identi®ed by the referee.
18 As a result, the average number of ®rms was reduced to 3.52 in the rectangular case and
2.42 in the skew case, compared to 4.47 and 2.63 in comparable previous simulations.
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6.3 Evaluation

To the extent that the simulation runs track with reasonable ®delity the
kinds of uncertainties encountered in real-world innovation histories, it
would appear that ex ante innovation pro®t potentials are more likely to be
skew-distributed than rectangularly distributed, and entry into innovation
``markets'' appears to be approximated better by the assumption of exoge-
neity than endogeneity.

Skewness of the innovation pro®t potentials seems eminently plausible.
The distributions of manufactured product sales at the four- or ®ve-digit
level of disaggregation are known to be skew, and although most innova-
tion markets are probably narrower subsets of ®ve-digit product categories,
skewness appears to persist at the quite narrow seven-digit level of disag-
gregation.

Because inventive and innovative e�orts are known to be responsive to
the pull of demand (see Schmookler, 1966; Scherer, 1982) and because
would-be innovators plainly search aggressively for pro®t-earning oppor-
tunities, our ®nding that an endogenous entry assumption yields less real-
istic size distributions than an exogenous entry assumption merits deeper
critical scrutiny. If innovative pro®t potentials are skew-distributed and
contests to appropriate them are of a winner-take-all character, skew out-
come distributions could result even if innovation races attracted su�-
ciently many entrants to leave zero ex ante pro®t expectations, as a large
class of theoretical models postulates (see Reinganum, 1989). However,
empirical studies by Mans®eld et al. (1981, p. 627), Gort and Klepper
(1982, p. 629), and Utterback (1994, Chapter 2) reveal that in the great
majority of cases, ®rst movers do not appropriate all the pro®ts from an
innovation race. It is frequently possible to invent around ®rst movers'
patents, and most innovations attract a stream of rival ®rms, some early,
some late, o�ering variants and imitations. Two phenomena appear to
explain the apparent failure of entry to rise systematically (even if sto-
chastically) with the size of an innovation pro®t potential. For one, it may
be so di�cult to predict in advance the existence and size of an innovation
pro®t potential that matching of entry attempts to pro®t prospects operates
quite imperfectly ± so much so that little or no correlation exists between
the pro®t potential and the number of ®rms, holding R&D costs constant
(see also on this problem Richardson, 1960). Second, as Henderson and
Cockburn conclude from a detailed analysis of rivalry in new drug devel-
opment (1994a, b), ®rms' capabilities to undertake innovations are often
heterogeneous and specialized. An imperfect match between capabilities
and opportunities undermines the correlation between pro®t potentials and
entry.

7 Conclusion

From our research and research by others, e.g., on invention patent renewal
rates (see e.g. Lanjouw et al., 1996), it is clear that strong regularities per-
vade the size distribution of rewards realized on technological innovations.
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The distribution is highly skew, so that a relative handful of successful
innovators reap the lion's share of pro®ts from innovative e�orts. For the
richest data, a log normal distribution provides the best overall ®t. In this
paper we have attempted to determine what stochastic processes might lie
behind the observed size distributions. Some kind of iterated proportional
stochastic growth process of the sort ®rst proposed by Robert Gibrat seems
the most plausible candidate. The simplest Gibrat processes yield over
plausible time intervals log normal distributions with parameters approxi-
mating those we have observed in the real world. However, the stochastic
events experienced in the evolution of a technological innovation almost
surely have a richer stochastic structure than does the simplest Gibrat
process. In this paper we have attempted to characterize that structure and
determine through simulation experiments whether realistic size distribu-
tions emerge. Some of the experiments, and especially those which tap skew
pro®t potentials and assume stochastically exogenous entry into innovation
rivalries, yield size distributions approximating those observed in the real
world. The simulated distributions, however, do not probe the extremes of
skewness found for patented inventions. To approximate even more closely
what occurs in the uncertain world of innovation rivalry, further stochastic
elements may have to be identi®ed.
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