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Abstract. An analytical study of the evolution of the distribution of firm size
in an industry is presented. A drift-diffusion model is proposed to express the
time-evolution of density of firm size within the industry. The model blends
the conventional, more or less static, determinants with the kinds of dynamic
considerations introduced by stochastic processes of evolutionary dynamics. The
steady-state distribution as well as the dynamic behavior of the model are derived.
Parameters in the resulting analytical expressions are then fit to a population of
firms in the non-manufacturing service sector. The empirical portion of the paper
validates the proposed evolutionary model.
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1 Introduction

The economics literature is rich with theories in which firm size and the distri-
bution of firm sizes are the determinate results of variables such as production
technology and organization, transaction characteristics and institutional environ-
ment, and market power and market segmentation. This paper studies firm size
distributions in the context of a different theoretical framework.

� This paper is based on work from a chapter of my Ph.D. dissertation (Hashemi 1995), completed
at UCLA. I wish to thank my dissertation advisor, Jack Hirshleifer, for his invaluable support.
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An analytical study of the evolution of firm size distribution in an industry
is presented. In contrast to earlier literature on firm size distributions which
focus on the evolution of size of an individual firm within an industry1, the
present paper develops a model to address the time evolution of density of firm
size distribution, and postulates an evolutionary approach based on the theory of
diffusion processes. The method illustrates how information on the time-evolution
of the size distribution of firms over an extended period of time can be used to
make inferences about an underlying process.

The study is motivated by the observation that the distribution of size of
firms within an industry varies as a function of time. It would be reasonable to
assume that there exists an equilibrium distribution of firm sizes with a certain
mean and variance2, towards which the ensemble of firms considered tend to
converge. The study makes an attempt to model the time evolution of the size
distribution of firms towards this equilibrium.

The dynamics of the proposed evolutionary model rely on two opposing
forces: a mean reversion process which tends to concentrate the distribution, and
a diffusion process which flattens it out. One of the parameters entering into
diffusion is motivated by search and learning, using trial and error and imitation.
Moreover, firm learning takes place in the presence of incomplete information
and bounded rationality.

The question posed by this paper is an original one. While much attention has
been given in the literature to the explanation of the shape of the size distribution
at a given point in time by reference to steady state arguments, the question of
how it changes over time has been relatively ignored. The main objective of
this paper is to contribute to our understanding of some determinants of the
dynamic process governing the size distribution of firms, and to build up a
tractable structure for its analysis. This is achieved by deriving both the steady
state distribution as well as the dynamic bahavior of the model. It is shown that
interesting issues arise when one considers how firm size distributions evolve
over time, rather than simply attending to equilibrium implications of processes.
Moreover, the present paper is one of a rather small group of evolutionary studies
which eschews simulation in favour of analytical derivations.

The model is applied to the evolution of the size distribution of a population
of firms in the child care industry in Metropolitan Toronto, Canada, between
the years of 1971–1987. The empirical portion of the paper illustrates that this
population is well adapted to the model developed in this paper.

1 These studies include Gibrat (1931), Simon (1955), Hart and Prais (1956), Simon and Bonini
(1958), Ijiri and Simon (1977), Jovanovic (1982) and Hopenhayn (1992) among others.

2 To illustrate, consider an industry in which average costs of producing an amountx of output are
a non-increasing function of the size of the firm, for a given quality of output (each firm may have
significant fixed costs, and marginal costs may essentially be constant). Furthermore, consumers
prefer small firms for perceived higher quality of service. Under these assumptions, there would
exist an equilibrium distribution of firm sizes with a certain mean and variance, determined by the
tension between producer and consumer preferences regarding firm size. The equilibrium trades off
productive efficiency against consumer preferences.
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The paper is organized as follows. Section 2 develops and provides an analysis
of the model. Section 3 reports some empirical results. Section 4 concludes and
explores one way in which the model might fruitfully be elaborated.

2 Modeling the dynamics of firm size distribution

2.1 Basic assumptions

– Consider an industry consisting ofN firms, identical, except with respect to
size.

– There exists an equilibrium distribution of firm sizes with a certain unknown
mean and variance.

– At any moment in time, a discrepancy exists between the current actual size
distribution of firms and the equilibrium distribution. Firms find themselves in
a dynamic adjustment process toward such an equilibrium, and the evolution
of the size distribution reflects the convergence towards this equilibrium.

2.2 Development of the model

Let n(s, t) be the measure of firms of sizes at time t , wheres measures some
relevant aspect of size in logarithms. The total number of firms betweens1 and
s2 is

N (s1, s2, t) =
∫ s2

s1

n (s, t) ds (1)

It is assumed that

N0 =
∫ ∞

−∞
n(s, t) ds < ∞

where N0 is the total number of firms which is constant, so firms are neither
created nor destroyed and

dN
dt

(s1, s2, t) = Q (s1, t) − Q (s2, t) (2)

whereQ (s, t) is the flux of firms of sizes at time t . However it follows from
(1) that

dN
dt

(s1, s2, t) =
∫ s2

s1

∂n
∂t

(s, t) ds (3)

Thus we get ∫ s2

s1

∂n
∂t

(s, t) ds + Q (s2, t) − Q (s1, t) = 0 (4)

It follows from the fundamental theorem of calculus that

Q (s2, t) − Q (s1, t) =
∫ s2

s1

∂Q
∂s

(s, t) ds (5)
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Thus ∫ s2

s1

(
∂n
∂t

+
∂Q
∂s

)ds = 0 . (6)

Since this equation is true for alls1 ands2 it follows

∂n
∂t

+
∂Q
∂s

= 0 .

So let

f (s, t) =
n(s, t)

N0

denote the probability density of firms. It then follows that

∂f
∂t

+
∂q
∂s

= 0 whereq =
Q
N0

. (7)

This is the basic conservation law andq is a flux of probability (which can be
interpreted as the variation, or number of firms entering and number of firms
exiting a size interval).

In this paper it is assumed that the flux is made of two different parts: adrift
qc and somediffusion (dispersion) qd . Drift describes supply and demand forces
at work, anddispersion describes random processes. Thus,

q = qc + qd . (8)

Drift: There exists some equilibrium distribution of firm sizes with a certain mean
and variance, towards which the ensemble of firms tend. i. e., a flux towards the
equilibrium distribution. Letu > 0 be the mean of this distribution.

The termqc measures the portion of the functionf transported by the drift
velocity

v(s) = λ(u − s) (9)

whereλ > 0 is a fixed parameter.
Thus,

qc = vf (10)

i. e.

qc(s, t) = λ(u − s)f (s, t) . (11)

Diffusion: Although an equilibrium distribution exists, this equilibrium is as-
sumed uncertain from the point of view of the firm. Moreover, owing to in-
dividuals’ imperfect information and limited computational capacity, bounded
rationality is assumed (Simon, 1947). Boundedly rational firms use various pro-
cesses to arrive at the optimal distribution, and they may switch between pro-
cesses over time. Firms follow no precise law to arrive at this optimum, they
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search and learn by means of trial and error and imitation3. This search process
generates randomness in the system4.

Random effects therefore tend to cause a flux from regions of low probability
to high probability. The simplest choice is

qd (s, t) = −ε
∂f
∂s

(s, t) (12)

whereε is a constant diffusion parameter. Thus we have

q = λ(u − s)f − ε
∂f
∂s

(13)

so

∂f
∂t

+
∂

∂s
(λ(u − s)f ) = ε

∂2f
∂s2

. (14)

This is our equation for the density of firm size distribution, wheref measures
density ands measures some relevant aspect of size in logarithms.

Initial conditions in time and boundary conditions with respect tos are needed
to completely formulate the model. In order to allow an analytic solution to the
model equation, I impose the initial condition:

f (s, 0) = f0(s) = Ne
−(s−u0)2

2σ2
0

on s ∈ (−∞,∞), whereN is the normalization constant,N = 1/σ0

√
2π.

The dynamics of the model rely on two opposing forces: a mean reversion
process which tends to concentrate the distribution towards an equilibrium one,
and a diffusion (disruptive) process which flattens it out. The disruptive compo-
nent counteracts the shrinkage of the variance, withε representing a measure of
perturbation. The stabilizing component however provides a competing force to
offset this diffusion; it shrinks the variance of the distribution, withλ measuring
the speed of convergence. In this model there exists an equilibrium distribution of
firm sizes with meanu and varianceσ2, determined as the stabilizing forces that
tend to eliminate diversity come into balance with disruptive (mutation) forces
that constantly renew it.

3 Following Alchian (1950), I propose that modes of behavior replace optimum equilibrium con-
ditions as guiding rules of action, and emphasize a form of conscious adaptive behavior on the part
of the individual firm, akin toimitation and trial and error.

4 Although the present paper builds on previous literature such as Jovanovic (1982) and Hopenhayn
(1992), it takes a slightly different approach. Jovanovic (1982) models the evolution of size of an
individual firm over time, where noise is generated by firm specific shocks independent over time
and across firms. Hopenhayn (1992) likewise models the time-evolution of firm size, where noise is
generated by shocks. The model developed in this paper is concerned with the smooth evolution of
density of firm size distribution, and noise in the present model is generated by the process of search
and learning on the part of boundedly rational firms.
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2.3 Analysis of the model

Given the prescribed initial and boundary conditions, it can be shown that the
model contains a steady-state solution. Setting∂f

∂t in equation (14) equal to 0,
the steady-state behaviour can be expressed by the following equation:

f (s) = Ce− λ
2ε (s − u)2

(15)

In order to describe the time-behavior of the model, the model is solved for its
analytic solutionf (s, t), describing the evolution of the distribution through time.
There exists a unique analytic solution for this model, expressed by the following
equation:

f (s, t) = Neλt
√

a
a + β

e
− ((s−u)eλt +u−u0)2

2σ2
0+ 2ε

λ (e2λt −1) = Neλt
√

a
a + β

e
− (s−ut )

2

2σ2
t (16)

where

a =
σ2

0

2

β =
ε

2λ
(e2λt − 1)

ut = E [f ]t = u(1 − e−λt ) + u0e−λt

σ2
t = σ2

0e−2λt +
ε

λ
(1 − e−2λt )

u0 represents the initial mean size,σ2
0 represents the initial variance of the dis-

tribution, andN is the normalization constant:N = 1/σ0

√
2π.

The process derived from the model is size distributions of the population
at chosen sequence of times through the observation period. From the analytic
solution to this model, the dynamics of the size distribution can be followed
through time given our initial distribution functionf0.

The expectation of the distribution shown in equation (16) is the first moment,
expressed by:

ut = u(1 − e−λt ) + u0e−λt (17)

Moreover, using the expression for the second moment of the distribution,
the variance of the distribution,σ2

t , can be expressed by5:

σ2
t = σ2

0e−2λt +
ε

λ
(1 − e−2λt ) (18)

To examine the behaviour off in equation (16) ast → ∞, one observes that
f (s, t) → f∞(s) as t → ∞, where

5 Alternatively, a more straight-forward way to derive an expression for the mean and variance of
the distributionf (s, t) shown in equation (16), is to mathematically express this solution in the form

c1e
−(s−c2)2

2c3 . The first and second moments can then be extracted from this expression.
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f (s, t) →t→∞ N

√
2aλ

ε
e

(s−u)2

2 ε
λ = f∞(s)

and that limt→∞ E [f ]t = u. Moreover, the diffusive limit, i.e., the limit ast → ∞
of the variance is6: limt→∞ σ2

t = ε/λ.
The model in equation (14) says that if we start with a normal distribution,

and let the model drive the distribution, the distribution mean will converge
to u, and variance to a constant,ε/λ. With the parameter estimates and the
initial size distribution specified, the time dependence of the firm size distribution
characteristics for a specific population of firms will next be found, from the
model equations developed.

3 Empirical application

3.1 Data

The empirical analysis applies the model to the log size distribution of a popula-
tion of child care service organizations in Metropolitan Toronto, Canada, between
the years of 1971–1987. The data set consists of a total of 2214 firm sizes coming
from 290 organizations, and observations were available annually7.

Figure 1 provides a description of the evolution of the distribution of firm
size in the data between the years of 1971–1987. The horizontal axis on each
histogram measures firm size in logarithms, and the histograms are scaled such
that the area under each histogram equals 1.

3.2 Method of estimation

A second order partial differential equation model has been proposed to ex-
press the dynamics of firm size distribution. The model has five parameters:
u0, u, ε, σ2

0, andλ. u0 denotes the initial mean of the size distribution (1971), and
u denotes where the initial mean is heading.σ0 is the standard deviation at time
zero (1971),ε represents the diffusion parameter, andλ determines the rate of
convergence.

The statistical analysis is done in a Bayesian way (Zellner, 1975; Gelman et
al., 1995) with non-informative prior distributions for all model parameters. The
analysis can be divided into the following four main steps:

6 The process derived from the diffusion model evolves according to an Ornstein-Uhlenbeck,
but with a transition, such that the mean tends tou, instead of 0 (Feller, 1966). The Ornstein-
Uhlenbeck process is the most general normal stationary Markovian process with zero expectations.
For t > T , the transition density from (T,s) to (t,y) is normal with expectatione−λ(r−t)s and
varianceσ2(1 − e−2λ(r−t)). As t → ∞, the expectation tends to 0 and the variance toσ2. The
analytic solution derived for our diffusion equation is a normal distribution for all t. There is the
seλt factor; with a change of variables, it can be shown that the solution is normal with a constant
multiplied by it.

7 I am grateful to Joel Baum for his generous provision of the data set.
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Fig. 1. Histogram of firm sizes (1971–1987). Histograms are scaled such that the area under each
histogram equals 1
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1. Specification of the statistical model: A statistical model, given by a fam-
ily of probability distributionsf (D |θ), needs to be specified.D denotes the
(observed) data, andθ is a vector of unobservable or unobserved quantities
(model parameters or missing data).f (D |θ) is the likelihood function.
For the model of firm sizes we haveθ = (u0, u, σ2

0, ε, λ). The likelihood
function is given by the product of normal densities with meansui (t) and
σi (t), whereui (t) andσi (t) refer to firm sizei (i = 1, . . . , n). ui (t) andσi (t)
follow from the normal diffusion parametrization (refer to equations (13) and
(14)).

2. Specification of theprior distribution: Information aboutθ is incorporated
into the prior distribution π(θ). π(θ) reflects what is known aboutθ before
the data were observed. I used non-informative (flat) prior distributions for
all model parameters.

3. Computation and interpretation of theposterior distribution, i. e., the condi-
tional probability distribution of the parametersθ, given the observed data:
The posterior distribution of θ, g(θ|D), is given byBayes theorem, i. e.,

g(θ|D) =
f (D |θ)π(θ)∫
f (D |θ)π(θ)dθ

.

The posterior distribution contains all the information aboutθ after having
observed the dataD . Computing the posterior distribution can be a diffi-
cult task. However, recent computational and methodological advances have
made these computations feasible. In particular, Markov Chain Monte Carlo
techniques have been the most popular tool to tackle problems in comput-
ing posterior distributions. Typically, after having obtained a sample from
the posterior distribution, a posterior summary ofθ consists of the posterior
means (or medians) and posterior standard deviations (or posterior credibility
intervals) for each parameter inθ.
Markov Chain Monte Carlo (Gilks et al. 1996) was used for computing
the posterior distribution; in particular, a random walk Metropolis algorithm
(Tanner et al., 1993) with a burn-in of 50000 iterations followed by 6 Mio.
iterations was used. Every 3000th iteration was stored, such that a posterior
sample of size 2000 was used for the final results. Convergence checks of
the Metropolis sampler revealed no problems regarding the stability of the
estimates.

4. Evaluating the fit of the model:Posterior predictive model checks were used
to check whether a specific feature of the observed data, sayT (D), was
compatible with the model prediction. That is,T (D) was compared to the
posterior predictive distributionh(T (Dnew)|D), whereDnew denotes a new
data set generated from the posterior distribution. The posterior predictive
distribution was given by

h(T (Dnew)|D) =
∫

f (T (Dnew)|θ)g(θ|D)dθ.
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Fig. 2. Posterior means and 95% credibility intervals of means of log-normal distributions (1971–
1987)

As Markov Chain Monte Carlo was used for computing the posterior distri-
bution, the simulation of samples from the posterior predictive distribution
was straighforward (Sect. 3.3 elaborates further).

3.3 Estimation results and model checks

The results obtained from the Bayesian analysis are reported in Tables 1 and
2, and in Figures 2 and 3. Table 1 reports the estimates obtained for the model
parametersu0, u, ε, σ0, andλ, where for each parameter, posterior means and
posterior 95% credibility intervals (in parantheses) are given. Table 2 reports the
mean and standard deviation of log-normal distributions of firm sizes for each
year, where the posterior means and posterior 95% credibility intervals are given.
The means and standard deviations of the log-normal distributions follow from

X ∼ N (u, σ2) =⇒ Y = exp(X ) ∼ LN (u, σ2),

Table 1. Parameter estimates: posterior means and posterior 95% credibility intervals (in parentheses)

µ0 µ σ0 ε λ

3.73 3.44 0.53 0.15 0.44

(3.64, 3.82) (3.40, 3.48) (0.47, 0.60) (0.07, 0.27) (0.20, 0.78)
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Table 2. Yearly means and standard deviations of log-normal distributions: posterior means and
posterior 95% credibility intervals (in parantheses)

Year Mean Standard deviation

1971 48.0 (43.9, 52.9) 27.2 (22.6, 33.3)

1972 44.3 (41.9, 46.9) 24.7 (24.7, 29.6)

1973 41.9 (40.0, 44.0) 26.3 (24.8, 28.1)

1974 40.4 (38.7, 42.3) 25.6 (24.2, 27.2)

1975 39.4 (38.0, 41.1) 25.1 (23.8, 26.6)

1976 38.7 (37.5, 40.2) 24.8 (23.5, 26.3)

1977 38.3 (37.2, 39.6) 24.5 (23.2, 26.0)

1978 38.0 (36.9, 39.2) 24.3 (23.1, 25.8)

1979 37.8 (36.7, 38.9) 24.2 (22.9, 25.7)

1980 37.6 (36.6, 38.7) 24.1 (22.8, 25.6)

1981 37.5 (36.4, 38.6) 24.1 (22.7, 25.5)

1982 37.4 (36.3, 38.6) 24.0 (22.7, 25.5)

1983 37.4 (36.2, 38.6) 24.0 (22.7, 25.4)

1984 37.4 (36.1, 38.6) 23.9 (22.6, 25.4)

1985 37.3 (36.1, 38.6) 23.9 (22.6, 25.4)

1986 37.3 (36.0, 38.5) 23.9 (22.5, 25.3)

1987 37.3 (35.9, 38.5) 23.9 (22.5, 25.3)

with E[Y ] = exp(u) exp(σ2/2), Var[Y ] = exp(2u) exp(σ2) (exp(σ2) − 1).

The results show a tendency towards a concentration of firm sizes: the mean
of firm sizes decreases from 48.0 in 1971 to 37.3 in 1987, as shown in Figure 2,
while the standard deviation decreases from 27.2 to 23.9 during the same time
period. Figure 3 graphically illustrates the evolution of the firm size distribution
(log-normals) over time, superimposed on the histograms of Figure 1 which
describe the time evolution of the distribution of firm sizes in the data. This
figure illustrates that the nice pattern which we see in the fitted log normals is
being pulled out of a set of histograms whose shape is irregular.

Finally, I checked for possible violations of the diffusion model by comparing
the empirical distribution of firm sizes with the model predictions. This was
achieved by dividing yearly firm sizes into 10 intervals (1− 10, 11− 20, 21−
30, 31−40, 41−60, 61−80, 81−100, 101−150, 151−200), and checking whether
the observed frequencies were within their 95% posterior predictive credibility
intervals. This is shown in Figure 4. The squares in this figure denote the observed
frequencies and the vertical bars denote their 95% predictive credibility intervals.
The results show no problems regarding the fit of the model, since among the 17×
10 frequencies, only 5 (2.9%) fall outside their predictive credibility intervals.
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Fig. 3. Time evolution of the size distribution of firms (log-normals), superimposed on histograms
of Figure 1, describing the time evolution of the distribution of firm sizes in the data (selected years)

4 Concluding remarks

This paper presents an analytical study of the evolution of the distribution of firm
size in an industry. The dynamics of the model rely on two opposing forces: a
mean reversion process, and a diffusion process. The steady state distribution
of the model as well as its dynamic behavior are derived. Paramters in the
resulting analytical expressions were fitted to data on the child care industry in
Metropolitan Toronto, Canada.

4.1 Implications

The model developed in this paper connects up well with the literature on the
survivor principle (Stigler, 1958), which has been widely used to determine the
equilibrium distribution of firm sizes in industries (Saving, 1961; Weiss, 1964;
Frech and Ginsberg, 1974; Keeler, 1989, among others). While the survivor



An evolutionary model of the size distribution of firms 519

Fig. 4. Observed frequencies of the size intervals and posterior predictive distributions (means and
95% credibility intervals), 1971–1987
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principle can be employed to draw inferences about the equilibrium distribution
of firm sizes, it does not deal with the processes responsible for bringing about
the equilibrium. The analysis in this paper goes beyond devoting attention to
the final equilibrium, and focuses on the disequilibrium process, in light of the
theories arising out of the evolutionary literature. It is shown that interesting
issues arise when one considers how empirical size distributions evolve over
time rather than simply attending to equilibrium implications of processes. The
model developed in this paper further allows the estimation of both the final
equilibrium distribution, and the rate of progress toward equilibrium.

4.2 Model limitations

By considerations of analytic tractability, the model developed in this paper con-
stitutes a considerable simplification. The forces determining the distribution of
firm sizes within an industry are so varied however, that any theoretical attempt
to describe the effects of their interactions must be either simplified or else
hopelessly complicated. Moreover, since a significant part of the Industrial orga-
nization literature is devoted to the study of industry evolution, even a simplified
model for examining the disequilibrium process governing industry dynamics
may not be without interest. In what follows, I will elaborate on two limitations
in the present analysis.

One limitation owes to the assumption regarding the initial condition. In
Section 2, the initial size distribution of the population was approximated to
be distributed normally about some average value [u0]: f (s, 0) = f0(s) on s ∈
[−∞,∞]. This assumption, although limiting, was chosen on grounds that it
allowed an analytic solution to the diffusion model. It can be removed using
numerical methods.

A second limitation of the model developed in this paper, owes to the fact that
it does not allow entry into and exit out of the population (births and deaths).
As a result, the analysis does not allow for the determination of the relative
importance of entry/exit versus growth of existing firms, in bringing about the
evolution in the size distribution of firms.

Generally however, the diffusion model developed in this paper is capable
of extrapolation to new and different situations. The model can be solved an-
alytically for a variety of realistic assumptions pertaining to the rates of entry
and exit. These extensions would no doubt enrich the model and should prove
insightful but only at the expense of considerable complexity. I hope this paper
is sufficient to indicate that the endeavor shows promise.
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