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Abstract
This paper models the formation of R&D networks in an oligopolistic industry. In 
particular, it focuses on the coevolutionary process involving firms’ technological 
capabilities, market structure and the network of interfirm technological agreements.
The main result of the paper is that the R&D network can work as a strong selec-
tion mechanism in the industry, creating ex post asymmetries among ex ante similar 
firms. This is due to a self-reinforcing, path-dependent process, in which events in 
the early stages of the industry affect firms’ survival in the long run. In this frame-
work, both market and technological externalities created by the formation of coop-
erative agreements play a role. Although the R&D network creates profound dif-
ferences at the beginning, which are reflected by an unequal distribution of links, it 
tends to eliminate them as it becomes denser and denser. The nature of the techno-
logical environment affects the speed of the transition and some of the characteris-
tics of the industry in the long run.

Keywords  R&D network · Interfirm technological agreements · Industry evolution

JEL  L14 · L24 · O31

1  Introduction

Interfirm technological agreements play an important role in the innovative activity 
of high-tech industries (Hagedoorn 2002). More and more innovation is the result of 
joint R&D efforts and information sharing among firms, in a way that has led some 
authors to talk about “the network (of collaborating firms) as the locus of innova-
tion” (Powell et  al. 1996). The shortening of the product life cycle, the increased 
competition and the complexity of the knowledge base required for innovation force 
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firms to cooperate even in one of the fundamental source of competitive advan-
tage (Caloghirou et al. 2003; Gulati et al. 2000; Hagedoorn et al. 2000; Powell and 
Grodal 2004, Vonortas and Zirulia 2015).

Both in the economics and management field, scholars are more and more inter-
ested in the dynamics of networks, i.e. how networks emerge, evolve and change 
(Ahuja et al. 2012; Hanaki et al. 2010; Tomasello et al 2017). Dynamics is impor-
tant both to understand how structural properties of networks, such as “smallword-
liness”, degree distribution and core-periphery structures emerge (Rosenkopf and 
Schilling 2007; Gulati et al 2012), and to analyze the role of different factors, such 
as history and chance, on firms’ networking strategy, and their consequences on 
firms’ performance (Rosenkopf and Padula 2008; Baum et al. 2014).

In that respect, this paper aims at providing a model of dynamic network forma-
tion which includes i) market competition among firms; ii) a micro-foundation for 
link formation based on profit comparison; iii) firms that are technologically het-
erogeneous both in a vertical and horizontal dimension; iv) feedback mechanisms 
between the evolution of networks, technological capabilities and market structure.

The main result of the paper is that the R&D network can work as a strong 
selection mechanism in the industry, creating ex post asymmetries in ex ante simi-
lar firms. Both the selection process and the evolution of the network structure are 
driven by a self-reinforcing, path-dependent process, in which events in the early 
stages of industry affect firms’ centrality in the initial network with long term con-
sequences in terms of survival. At the same time, in the long run the network lev-
els out the differences among the surviving firms, through a process of “densifica-
tion” of the network that leads to the emergence of a complete or almost complete 
network in the phase of industry maturity. Also, the paper shows that the rate of 
technical progress, in the form of high technological opportunities or availability 
of partners, can affect the industry structure in the long run, and points out the det-
rimental effect on innovation generated by a slow process of technological conver-
gence among firms.

When compared to the empirical evidence on R&D networks and industry evo-
lution, the paper provides a number of insights. First, the model provides an eco-
nomic (incentive-based), micro-founded rationale for the “preferential attachment 
mechanism” (i.e. highly central firms becoming more central in the subsequent peri-
ods), which is a recurrent feature in networks of technological agreements (Powell 
et al. 1996). In my model, more technologically advanced firms are at the same time 
larger (which raises their incentive to invest in process innovation) and better tech-
nological partners, with these two conditions further increasing the convenience of 
forming new links. Second, my model leads to network properties such as the core 
of networked firms and a rise and fall dynamics for the network, which are consist-
ent with what we observe in the data (Delapierre and Mytelka 1998; Crespo et al. 
2016; Tomasello et al. 2017). Finally, my model suggests that R&D networks can 
play a role in generating an industry shake-out, i.e. a sudden decrease in the number 
of firms, which is often observed (Klepper 1997).

The model is based on two streams of literature. More directly, the model con-
nects to the papers considering the formation of R&D networks and relying on 
the tools of network games tools of network games (Jackson and Wolinski 1996). 

150 L. Zirulia



1 3

These include, among others, Goyal and Moraga-Gonzalez (2001), Goyal and Joshi 
(2003), Deroïan (2008), Westbrock (2010), Konig et  al. (2019), which adopt a 
static approach; and, particularly close to my paper, Dawid and Hellmann (2014), 
who develop a dynamic model with Cournot competition, but with technologically 
homogenous firms and an ergodic process of network evolution. My emphasis on 
heterogenous technological capabilities speaks instead to the literature on self-
organising innovation networks (Cowan et al. 2004; Cowan and Jonard 2004, 2009; 
Morone and Taylor 2004; Ozman 2006; Baum et  al. 2010; Savin and Egbetokun 
2016; Vaccario et  al. 2018). While these papers are rich in the representation of 
technology, they do not include explicit models of market competition.

The rest of the paper is organized as follows. Section  2 describes the model, 
whose analytical properties are derived in Section 3. Section 4 presents results from 
numerical simulations. Finally, Section 5 concludes.

2 � The model

2.1 � An informal description

Informally, the model can be summarized as follows. I consider the evolution of an 
industry where firms can introduce process innovations only through bilateral col-
laborations in an R&D activity, while remaining competitors in the market side. 
Firms produce a homogenous product, but they are different from the technological 
point of view: they have different levels of technological knowledge, which result in 
different levels of production costs, and different technological profiles, which allow 
complementarities to be exploited when firms collaborate.

I consider a discrete sequence of periods t = 0,1,2… Each period can be divided 
in two sub-periods (Goyal and Joshi 2003; Dawid and Hellmann 2014): the network-
ing phase, where firms can modify the network structure according to a procedure 
described below, and a market competition phase, where firms, given the network 
structure, compete in the product market. Competition is à la Cournot, so that firms’ 
different production costs are reflected in firms’ different performances. Firms’ 
knowledge level is the result of the history of R&D collaborations for each firm. 
R&D collaborative projects are modeled as pairwise relationships: for each pair of 
firms involved in a collaborative agreement, the cost of the project is assumed to be 
fixed, while its value depends upon the technological capabilities of the two firms.

In the networking phase of each period, two firms are randomly drawn to change 
the current state of their pairwise relationship, leaving the state of the remaining 
R&D network unaltered, as in Jackson and Watts (2002) and Dawid and Hellmann 
(2014). Two firms that are not collaborating can start a collaboration; two firms that 
are collaborating can decide to interrupt it. Capturing the bounded rationality of 
agents facing a complex evolution of network and technological capabilities, firms’ 
decisions are based on the short run consequences on their profits. The resulting net-
work for that period determines firms’ level of knowledge and firms’ technological 
profiles, with the former determining unit costs and thus firms’ performance. The 
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technological capabilities determined by the network in a period constitute the new 
initial conditions for the subsequent period.

2.2 � Firms and market competition

I consider a market where n firms produce a homogenous product. However, firms 
are heterogeneous from the technological point of view. They are located in a bi-
dimensional technological space, and they are identified by the vector (�it, �it) . 
�
it
∈

[

�0, 1
)

 is a parameter measuring the firm’s technological knowledge. In turn, 
technological knowledge determines the unit cost of production according to:

�it ∈ (0, 1) characterizes the technological profile of a firm. I assume that � does not 
affect directly the level of unit cost of production, but it is crucial in determining the 
value of collaborations. One way to justify this representation is to assume that: i) 
two technological fields (say fields A and B) are equally relevant in the industry; ii) 
γ represents the overall level of firm’s knowledge; iii) α is defined as the fraction of 
knowledge in field A over the total level of knowledge.1

I will term 
(

�it, �it
)

 as firm i’s technological capabilities. Firms move over time in 
the technological space, and this is the effect of the network structure. Furthermore, 
I define   �t∈

[

�0, 1
)n as the n-dimensional vector of variable � at time t for all the 

firms; similarly, �t ∈ (0, 1)
n is the vector of all technological profiles at t.

Inverse demand is assumed to be linear:

where Q is the total quantity produced by firms.
Firms are characterized by zero fixed costs of production. Given cit , gross profits2 

are given by Πit = (p − cit)q it
 . Competition is à la Cournot, and it is assumed that 

firms play the (unique) Nash equilibrium in the one-stage game.3 This means that 
the quantity produced by each firm at time t is:

where nt ≤ n is the number of active firms (i.e. firms producing a strictly positive 
quantity) at t. I define Nt as the subset of such firms.

(1)cit = c
(

1 − �it
)

(2)p = A − Q

(3)q∗it =

a − ntcit +
∑

j≠i

cjt

nt + 1

1  Assuming that α is a scalar may appear restrictive. However, as clarified below, the technological pro-
file α is not relevant per se, but it is mainly instrumental to build a measure of technological distance 
between firms, which in turn affects the collaboration value. As an extension, I considered the case of a 
two-dimensional α . The results are very similar to the ones obtained when α is a scalar. Details are avail-
able upon request.
2  Gross is referred to the cost of R&D. See below.
3  The assumed functional forms of demand and cost function, together with A > c(1 − 𝛾0) , assure the 
existence and uniqueness of equilibrium in the Cournot game (Wolfstetter 2000).
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For sake of simplicity, firms that are inactive at time t are supposed to exit the 
market, never to reappear. This in particular implies that at the beginning of period 
t + 1 all their existing links with other firms are severed, and since period t + 1 
onward they are no longer considered in the algorithm for network evolution. The 
discussion below on such an algorithm will make this point clearer. In equilibrium, 
gross profits are given by Π∗

it =

(

q∗it
)2.

2.3 � The effects of the R&D network

In each period t, following the networking phase, the industry is characterized by an 
R&D network gt . I define a binary variable gijt ∈ {0, 1} : when gijt = 1 , a collabora-
tive link exists between firm i and j at time t. The network gt ∈ {0, 1}

n(n−1)

2  is then a 
collection of states for the pairwise relationships among firms. I indicate with g + gij 
the network obtained by replacing gij = 0 in a generic network g with gij = 1 , and 
similarly with g − gij I denote the network obtained by replacing gij = 1 with gij = 0 . 
Furthermore, I define Nt(i) ≡ {j ∈ Nt�{i} ∶ gijt = 1} , that is the set of firms that 
have a collaboration with firm i at time t.

Innovation is modeled as a deterministic reduction in the unit cost of production. 
A network structure corresponds to a list of collaborators for each firm. Suppose 
to take a generic firm i: for i, collaboration with firm j at time t has a specific value 
vijt . The economic interpretation is as follows: whenever gijt = 1 , firms i and j start a 
new R&D project together at time t, which allows them to reduce their unit cost of 
production to an extent that is function of vijt . Therefore, such a value captures the 
opportunities for firm i to “learn” as a consequence of collaboration with firm j. In 
this framework, I refer to the process of learning as a process of knowledge “recom-
bination”, an idea that dates back to Schumpeter and has been recently rediscovered 
also in formal models (Weitzman 1998; Olsson 2000). According to this interpreta-
tion, the creation of new knowledge relies on pre-existing knowledge (of the pair) 
as major inputs. In the model, firm i’s knowledge (i.e. its technological capabilities) 
is completely described by the vector 

(

�it, �it
)

 . Being exposed to firm j’s knowledge 
in the collaboration, firm i recombines its knowledge and improves upon it to an 
extent that is increasing in firm j’s level of technological knowledge (which is taken 
as a proxy for learning opportunities), decreasing in firm i’s level of technologi-
cal knowledge (capturing decreasing returns in learning) and depending on firms’ 
technological profiles according to a well specified function. Firm’s technological 
profiles are modified after collaboration, too.4 This representation of the learning 
process has the big advantage of parsimony, since the distribution of technological 
capabilities in the industry identifies both the outcome of market competition and 
the effects of technological collaboration.

More specifically, the value from collaboration is given by vijt = f
(

dt(i, j)
)

�jt−1 . 
It is increasing in �jt , since the more the collaborator is knowledgeable, the more 

4  A similar representation of knowledge, in the context of knowledge creation as knowledge recombina-
tion, can be found in Cowan et al. (2004). See also Carminati (2016) for a model where R&D collabora-
tions depend upon on size and composition of technological knowledge portfolios.
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the firm can learn from it. It is also increasing in the value assumed by a function f, 
whose argument is given by the technological distance between firms, as defined by 
dt(i, j) =∣ �it−1 − �jt−1 ∣ . Some authors have argued that firms need to be technologi-
cally “not too distant, nor too near” for effective collaboration to take place (Noote-
boom 1999). This is because there are two opposing forces: if firms are distant, their 
different technological profiles can create opportunities for complementarities and 
synergies; but if they are too distant, they lack the “absorptive capacity” (Cohen and 
Levinthal 1989) to learn from their collaborator and cognitive distance can harm 
effective communication. This conjecture has found empirical support (Mowery 
et al. 1998; Sampson 2007) and it is reflected in the particular functional form cho-
sen for f, which is assumed to be a concave parabola (Savin and Egbetokun 2016):

  a1, a2, a3 > 0

f (dt(i, j)) ≥ 0∀dt(i, j) ∈ [0, 1]
 

The vector 
(

a1, a2, a3
)

 determines the exact shape of the parabola and identifies 
two key features of the technology prevailing in industry. a2

2a3
 corresponds to the opti-

mal technological distance, i.e. the value of d that maximizes f as the result of the 
counterbalancing forces of absorptive capacity and search for complementarities.5 a1 
is a measure of “technological opportunities”, being the maximal value assumed by 
the function f, i.e. a1 = max

d
f (d).

Given the total value of collaboration Vit

�

gt
�

=
∑

j∈Nt(i)

vijt , �it is determined by

where Lit = Lit−1 + Vit

(

gt
)

 and 𝜆 > 0. Equation (5) captures the decreasing returns in 
the innovative process.

Finally, I assume that through collaboration firms modify their technological pro-
file. Formally:

�it = �it−1 otherwise, where Γit−1 =
∑

j∈Nt(i)

�jt−1 and � ∈ (0;1].

The final technological profile of a firm at time t is a linear combination of its old 
technological profile and a weighted average of technological profiles of collaborat-
ing firms. A collaborator is weighted more if it has a high knowledge level (which 

(4)f (dt(i, j)) = a1 −
a2
2

4a3
+ a2dt(i, j) − a3dt(i, j)

2

(5)�it = 1 − e−�Lit

(6)�it = ��it−1 + (1 − �)
∑

j∈Nt(i)

�jt−1

Γit−1

�jt−1 ifNt(i) ≠ {∅}

5  Deriving f with respect to d yields a2 − 2a3d = 0 . The first condition identifies a maximum point since 
the function is concave (the second derivative of f with respect to d, −2a3 , is always negative). In addi-
tion, parameters are assumed to be chosen such that the maximum point lays in the appropriate interval.
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implies more opportunities of learning). When 𝜌 < 1 , firms become technologically 
more “similar” to their collaborators. When � = 1 , firms maintain their technologi-
cal profiles in the process of learning (when they recombine their knowledge).

2.4 � The evolution of the network

Network dynamics is based on a process line with Jackson and Watts (2002) and Dawid 
and Hellmann (2014). Each period two firms among the ones still in the market are ran-
domly chosen to possibly change their network state. Firms that are not currently col-
laborating can decide to form a collaborative link, firms that are already collaborating 
can severe the existing link. Each link has the same probability to be revised.

I assume that maintaining a collaborative link costs each firm a fixed amount 
E > 0 in each period. E has to be interpreted as the firm’s contribution to the joint 
R&D project. For a firm involved at time t in ∣ Nt(i) ∣ collaborations, net profits are 
equal to Πit− ∣ Nt(i) ∣ E.

The proposed algorithm can be reformulated as follows: each period, two firms 
are allowed to modify their portfolio of collaborations, starting a new collaboration 
between each other if it does not exist, or interrupting it if exists. The state of the 
remaining network is unaltered: all the other collaborations in which these firms are 
involved, and the collaborations of all the remaining firms are automatically con-
firmed. In other words, network at time t-1 and time t may differ only for the state of 
one link.

Suppose that at period t, the link ij (i.e. the potential or existing link involving 
firms i and j) is randomly chosen to be updated. Define Πit(g;�;�) as the profit for i 
resulting from market competition when the network is g and the initial technologi-
cal capabilities are given by (�, �).

If gijt−1 = 1 , the link is severed if Πit

(

gt−1 − gij;𝛼t−1;𝛾t−1
)

> Πit

(

gt−1;𝛼t−1;𝛾t−1
)

− E 
or Πjt

(

gt−1 − gij;𝛼t−1;𝛾t−1
)

> Πjt

(

gt−1;𝛼t−1;𝛾t−1
)

− E , while in the opposite case it is 
maintained. This means that a firm wants to sever an existing link if profits without 
the link and the saving on the R&D cost are higher than the profits with the link. 
If gijt = 0 , the link is formed if Πit

(

gt−1 + gij;�t−1;�t−1
)

− E ≥ Πit

(

gt−1;�t−1;�t−1
)

 
and Πjt

(

gt−1 + gij;�t−1;�t−1
)

− E ≥ Πjt

(

gt−1;�t−1;�t−1
)

 . If a link does not exist, it is 
formed when for both players the gain stemming from forming the link is higher 
than the R&D cost they have to sustain.

To avoid that with probability 1 no link is profitable at t = 0, I assume that E ≤ E∗ , 
where E∗

= (
A−(n−1)c(1−�max

1
)+(n−2)c(1−�0)

n+1
)

2

− (
A−c(1−�0)

n+1
)

2

 and �max

1
= 1 − e−�(L0+a1).

In terms of behavioral assumptions, the proposed rule implies that agents are 
myopic, since they decide only on the basis of their current pay-off, but at the same 
time they have rational expectations within a given period, since during the net-
working phase at time t are able to predict correctly the marginal cost of their rivals 
at time t and the Nash equilibrium that will be played in the market phase. This 
assumption of myopic behavior aims at the representing the bounded rationality of 
agents who face a highly complex and uncertain future evolution of the R&D net-
work and of the technological capabilities of firms in the industry.
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I can also note how, differently from Jackson and Watts (2002) and Dawid and 
Hellmann (2014), I exclude mistakes in the process of link revision, i.e. links that 
are interrupted when they are profitable, or formed when they not. In Dawid and 
Hellmann (2014), in particular, perturbations are required to make the process 
ergodic and look for stochastically stable networks. Mistakes would not have such a 
role in the present setting, and for sake of simplicity are not considered.

3 � Analytical results

In this section I provide some analytical results. First, I consider the incentives to 
form collaborative links at the level of the single pair of firms. I will also show 
two numerical examples, for the set of parameters I will consider in the simulations. 
Then I will turn to the long run properties of the system. Although the stochastic 
process generated in the model is rather complex, a clear and intuitive result holds 
for the network state in the long run.

3.1 � Firms’ cooperative strategies

I introduce the following function:

Suppose to take a generic pair of firms i and j. Fix the technological capabilities 
of the other (n-2) firms, and from �k, k ∈ N∕{i, j} derive the unit cost of such firms. 
Studying F(⋅) I can answer to the following question: how does the gross gain (i.e. 
the variation in profits excluding R&D costs) for i of forming a link with firm j vary, 
as a function of j’s and i’s technological capabilities?6

In order to make computation easier, I write F as:

where qi(+ij) and qi(−ij) represent the quantities produced by firm i with and with-
out the link with firm j respectively. The first factor represents a necessary condition 
for collaboration: the net effect of counterbalancing forces on firm i’s profits given 
by the reduction in its costs and in firm j costs must be positive, i.e. firms must 
increase the quantity they produce (and consequently their profits). Consistent with 

(7)
Fi(�j, �j�(�, �)−j) = (

A−nc(1−�i)(e
−�(�j f (d(i,j)))+c(1−�j)e

−�f (d(i,j))�i+
∑

k∉i,j

ck

n+1
)

2

_

(

A−nc(1−�i)+c(1−�j)+
∑

k∉i,j

ck

n+1
)

2

(8)Fi(�j, �j|(�,�)−j) = (
c(1−�j)(e

−�f (d(i,j))�i−1)−nc(1−�i)(e
−��j f (d(i,j))−1)

n+1
)

(qi(+ij) + qi(−ij))

6  Notice that implicitly I restrict my attention to the cases where the formation of the link does not lead 
to the exit of any firms.
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the existence of an interior solution, firms i and j are assumed to be close enough in 
knowledge levels so that the necessary condition is always satisfied.

I can show that the following propositions hold (the proofs can be found in the 
appendix):

Proposition 1 Ceteris paribus, gains from the collaboration increase when firms’ 
technological distance move towards the “optimal technological distance”, and 
decrease otherwise.
Proposition 2 Ceteris paribus, the effect of an increase of �j on the gains from the 
collaboration is ambiguous. Possibly, an inverse U relation holds between �j and 
gains from collaboration.
Proposition 3 Ceteris paribus, the effect of an increase of �i on the gains from the 
collaboration is ambiguous. Possibly, an inverse U relation holds between �i and 
gains from collaboration.
Proposition 4 Ceteris paribus, gains from the collaboration decrease when the 
remaining firms’ average knowledge increases.

The first proposition is unsurprising. Proposition 2 is more interesting. The 
rationale for the possibly non-monotonic relationship is straightforward, however. 
High technological knowledge of a collaborator is good for a firm since the oppor-
tunities of learning increase and the extent the collaborator can learn from you is 
limited, but at the same time it is bad since knowledge is positively correlated with 
size. If a firm i’s potential collaborator is knowledgeable, then its unit cost is low 
and i is “large”. This makes i a “small” firm, in relative terms. Since I consider pro-
cess innovation, smaller firms have lower total gains per unit of cost reduction, and 
their incentive to collaborate and innovate, ceteris paribus, is smaller. This is the so-
called “cost spreading” argument, which has been claimed to be one of the advan-
tages in innovation by large firms and it has found empirical support (Cohen and 
Klepper 1996).

The nature of the opposing forces is symmetric in Proposition 3. If firm i is 
highly knowledgeable, it assures great opportunities of learning to its potential col-
laborator, and the reduction in its unit cost is smaller in absolute value. At the same 
time firm i is “large”: so that reduction in unit cost of production can be spread over 
a larger quantity.

Finally, the average knowledge of other firms (Proposition 4) comes into play 
through the usual channel: its effect on firm’s size. Its increase decreases the gains 
from collaboration, since it makes the firm “smaller” in relative terms.

The results show the complex nature of the interaction between the technologi-
cal and markets aspects concerning firms’ incentives to collaborate. Furthermore, 
they stress the feedbacks between firms’ incentives and the evolution of the network. 
Network evolution affects firms’ incentive to collaborate through market competi-
tion and opportunities for learning. In turn, the network changes according to firms’ 
decision. Firms’ strategies and the network coevolve, a point that has already been 
raised by business scholars (e.g. Koza and Lewin 1998).

Figures  1 and 2 show the behavior of F(⋅) under the parameterization of the 
“Standard Simulation” discussed in the next session. In the first case (Fig.  1), 
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�i = 0.35 and 
∑

k≠i,j

�k

n−2
= 0.35 . Firm i is sufficiently small so that the inverse U rela-

tionship between gains from collaboration and �j emerges. When �j is large enough 
(approximately 0.5), the negative effect on size prevails on the positive effect of 
technological opportunities. If instead �i = 0.5 (Fig. 2), firm i’s size guarantees that 
an increase of �j monotonically increases the gains from collaborations.

3.2 � The long run properties of the system

Although the stochastic process describing the evolution of the R&D occurs on a 
rather complicated state space, it is possible to derive clear results about the limit 
behavior of the network structure.

The industry at time t is completely characterized by the state 
{

gt, �t, �t
}

 . Then, it 
is easy to verify that the underlying stochastic process satisfies the Markov property. 
Proposition 5, whose proof can be found in the appendix, concerns the long run 
properties of such a process.

Proposition 5 As t → ∞, each link is absent with probability 1. The absorbing 
states of the process are characterized by the empty network, and the set of these 
states is reached almost surely in the long run.

The intuition behind this result is simple and comes directly from the existence 
of marginal decreasing returns in the outcome of collaboration. Since innovative 
opportunities become smaller and smaller as firms continuously invest in R&D, 
while its cost is constant and strictly positive, it will come a time where forming 
or maintaining collaborative links is not convenient, irrespectively of other firms’ 

Fig. 1   Gains from collaboration-1
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technological capabilities. Loosely speaking, when (“almost”7) everything that 
could be discovered has been discovered, investing in R&D becomes unprofitable. 
Nevertheless, I am mainly interested in the transition phase of the system, per se and 
for the way it affects the final equilibrium is reached. This will be the subject of next 
section, where numerical simulations of the model are reported.

4 � Simulation results

In this section I discuss the results emerging from a series of numerical experi-
ments performed with the model. Although several exercises are possible, the ones 
reported here are illustrative of the basic mechanisms underlying the model.

In the “Standard Simulation”, I consider a situation where competition is 
tough at the beginning. Market size is A = 65, 16 firms populate the industry at 
time 0, and their initial unit cost is about 47.56 (c = 50, Li0 = 5∀i ∈ N ). The ini-
tial network is empty. The “optimal” technological distance is 0.25, and tech-
nological parameters are chosen in a way that the expected value of f(d) is 0.5, 
( a1 = 0.56, a2 = 0.5, a3 = 1 ), under the assumption of technological profiles that 
are uniformously distributed along the interval (0,1). The R&D cost is “high”, 
E = 0.0230, and corresponds to 0.975*E∗ , where E∗ is the largest R&D cost for 
which firms at optimal distance will form a link given their initial costs. � = 1 , so 
that technological profiles are time-invariant. I run the experiments for 1000 peri-
ods, by which a steady state is reached.

Figures 3 and 4 reports the results for the average of 40 replications. As for all the 
figures in the paper, bars indicate the 95% confidence interval for the true population 
statistics.

Figure  3 reports the number of active firms over time.8 The number of active 
firms has a sudden drop around period 45: a shakeout occurs. In the steady state, less 
than 8 firms on average are in the market, then slightly less than half of the initial 
number of firms. The shakeout (defined as a significant and rapid reduction in the 
number of firms active in the market) is a typical feature of the evolution of indus-
tries in early stages, as represented by the theory of industry life cycles (Klepper 
1997). In the model, it is the process of network formation that creates the shakeout 
among firms that are symmetric at the beginning. In other words, the existence of a 
R&D network (i.e. the possibility for firms to form cost-reducing links) operates as a 
strong selection mechanism.

Figure  4 further elaborates on this point, and shows an interesting dynamic 
involving market structure and the network of collaborating firms.

The figure reports the dynamics of three variables: total output produced in the 
market, normalized by market size ( Q

A
 ); market concentration, measured by the Her-

findahl index; and network density, which is the fraction of existing links over the 

8  Figure 3 reports the average number of firms active in each period across simulations. For this reason, I 
observe fraction of firms.

7  As the simulation will make clear, the precise quantification of “almost” is endogenous to the model.
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total number of possible links (considering only the firms still in the market). The 
scales of these variables are different. For preserving readability and comparison of 
behavior over time, total quantity and density are to be read along the left axis, while 
the right axis is for the Herfindahl index.

The evolution of the industry can be described as follows. At the beginning the 
density of the network is growing relatively slowly. Since R&D costs are relatively 
high, market relatively small and the average level of knowledge in the industry low, 
firms need to find partners located almost at the optimal technological distance, and 

Fig. 3   Standards Simulation: Number of Active Firms

Fig. 4   Standards Simulation: Total Quality, Herfindahl Index and Network Density
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this process is assumed not be instantaneous. This creates differences in the relative 
competitiveness of firms, expressed by a sharp increase in the concentration index. 
However, given the low average level of knowledge in the market, the process of 
“knowledge recombination” is reflected by a limited growth rate for total output, 
which, given the assumptions, is only depending on the average knowledge of firms.

When the shakeout occurs, the time series for the network density has a break: 
this is due to the fact that the firms exiting the market have typically no links, and 
then they lowered the average number of links. However, the process of links forma-
tion continues, until a complete network (density 1) emerges for around 100 peri-
ods. Concentration continues to grow, but then it starts declining when the density 
reaches a sufficiently high level: the network operates first as a mechanism creating 
different knowledge levels and then as a mechanism favoring the “catching-up” of 
relatively less knowledgeable firms.9

For around 100 periods, therefore, I can observe a sort of “equilibrium”, where 
almost equal size firms operate in a complete network.

The behavior of total output, reflecting the behavior of average knowledge, fol-
lows an S-shaped curve. The growth rate of total output is the highest during the 
formation of the network after the shakeout. The increasing density of the network, 
the increase in the average level of knowledge (which creates more opportunities 
for recombination) and the fact that marginal decreasing returns are not limiting 
innovative opportunities yet, generate a high rate of growth in the average knowl-
edge level. Interestingly, the inflection point in the output series roughly corre-
sponds to the time in which a complete network is formed. Then, the “equilibrium” 
in market structure and network dynamics is accompanied by a low growth of the 
average knowledge level.

Since I model innovation as a process in which knowledge is both an input and 
an output, I interpret the results in the following ways: in the early phases network 
formation mainly drives the creation of knowledge, in the late stage it is existence of 
a large pool of knowledge which preserves the incentive for firms to form new links 
(i.e. the cause-effect relation between network formation and knowledge creation is 
reversed while time elapses).

The final period occurs when technological opportunities have substantially been 
depleted. Total output and market shares stabilize, and firms start to remove all their 
links. The final long run equilibrium is then reached when the empty network is 
finally obtained.

It is also interesting to look at the evolution of the network structure over time, 
especially for the phase immediately preceding and following the shakeout.

Figure  5 reports the behavior of the group degree centralization index over 
the simulation time. This index takes a firm’s degree (its number of links) as 
its centrality measure, and it basically summarizes how the links are distributed 
across firms. It takes value 0 when all the firms have the same number of links 
(as it happens in a regular network, like the complete network), and value 1 in a 

9  This result is clearly associated to the asymptotic behaviour of the cost function: knowledge is always 
created, if a firm is connected, but at a decreasing rate.
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star, where there is one firm connected to all the others, and no other links exist 
(Wasserman and Faust 1994).

Formally, define as nit the number of links that firm i has at time t, and n∗
t
= max

i
nit . 

The group centralization index is defined as follows:

The index shows a marked growth until the shakeout period: this implies that 
in this phase links are more and more unequally distributed across firms. Then, 
the value of the index falls down in a similar way, to reach the value of zero when 
the network becomes complete. Then it naturally grows again, when firms start 
removing their links, and comes back to zero, when the network is empty.

4.1 � Discussion

Two results deserve further explanations. The first point is that, even if firms are 
symmetric ex ante, the opportunity of forming R&D links can generate profound 
asymmetries ex post: in the long run, these are reflected in firms’ survival.

Table 1 reports the statistics concerning the number of links for firms at period 
40 (just before the shakeout) and their survival in the long run. The variable link40 
takes value 1 if the firm has at least one link at period 40; the variable surviving has 
value 1 if the firm survives the shakeout.

(9)CD(t) =

∑

i∈Nt

(n∗
t
− nit)

[(nt − 1)(nt − 2)]

Fig. 5   Standards Simulation: Degree Centralization
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The table clearly shows that firms exiting the market are firms without links. Fur-
thermore, an inspection of the network structure in the initial phase shows that the net-
work structure, at the shakeout, is typically given by a single component of connected 
firms, while remaining firms are disconnected. A first strong selection occurs between 
firms that are in network, and survive at the first shakeout, and firms that “are not 
able” to join the network “reasonably” soon. The fact that firms without links even-
tually exit the market is not obviously surprising, since it is the natural consequence 
of the assumption that costs are reduced only through collaborations. The interesting 
point is the mechanism through which some firms are excluded by the R&D network.

Second, I need to explain also the evolution of the network structure, in par-
ticular the increase in centralization in the initial phase. The firms’ polarization 
in two groups of connected and disconnected firms is a candidate for a first basic 
explanation, but the evolution within the main component can also be an important 
determinant.

I will show that both the selection process and the evolution of the network struc-
ture are driven by a self-reinforcing, path-dependent process, in which events in the 
early stages of industry affect firms’ centrality in the initial network with long term 
consequences in terms of survival (Arthur 1990). Forming links at the beginning 
(which in the model is due to random factors, and in the real world could correspond 
to different managerial practices, social contacts or other small “historical accident” 
affecting firms’ networking propensity) propels a positive feedback mechanism that 
favors the centrality of such firms, and entraps excluded firms in their status. How-
ever, among the surviving firm, the negative feedbacks end up prevailing, and firms 
converge in market shares and knowledge levels.

The first mover advantage of firms forming links at the beginning comes from 
the net effects of forces described in the previous section. Firms that are “lucky” and 
form links in the first periods become larger than the other firms. This increases their 
incentive to form new links, since in this phase decreasing returns are not substantial 
yet. At the same time, large firms are more knowledgeable (they are larger because 
they are more knowledgeable) and they offer their collaborators more opportunities 
to learn. A complementarity exists between “large” and “small” firms: large firms 
are willing to cooperate because of the “cost spreading” argument and because of 
the search for technological complementarities; small firms are willing to collabo-
rate because of the high level of knowledge they can find in large firms. The final 
effect of this process is the tendency to reinforce the centrality of first movers’ firms, 
which results in the sharp increase of the centralization index. This process comes 
naturally to an end since the number of possible links to be formed is limited. This 
corresponds to the phase of industry maturity, when the network becomes complete.

Table 1   Network activity and 
survival

Surviving

Link40 0 1 Total
0 303 3 306
1 48 286 334
Total 351 289
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At the same time, firms that are not able to form links in the initial phase are 
excluded by the subsequent process of the network formation: their incentive to start 
collaborations decreases because such firms are getting smaller and smaller, and 
they are a limited source of learning opportunities for their potential collaborators.

Overall, this suggests an industrial structure where one can identify three kinds 
of firms, identified by their position in the network in the initial phase: 1) central 
actors, whose position is strongly path-dependent and that can gain a (temporary) 
leadership in the market; 2) (temporarily) peripheral actors, that is firms that are 
active in the network in relatively laggard positions, but are destined to catch up 
with the leader, if able to survive the shakeout; 3) isolated firms, which are not able 
to join the network soon, being trapped in a self-reinforcing mechanism of exclu-
sion, and which end up exiting the market.

For a quantitative assessment, I run two OLS regression on the data generated by 
the simulations. I considered the variation on the number of links between period 40 
and period 10 as dependent variable (newlink40), and I regressed it on the number 
of times a firm has been called to change its network status from period 10 to period 
40 (newcalled40) and on the number of links the firm have at period 10 (link10). In 
a sparse network, the first variable is clearly supposed to have a positive coefficient. 
Table 2 shows that, at the beginning of the life cycle, also the sign of the coefficient 
for the second variable is positive, and significant. I have the confirmation that the 
“Matthew effect”10 is at work here: firms that are more central at the beginning are 
more likely to attract new collaborators in the following periods. This property is 
often found in networks of alliances (see, for instance, Powell et al 1996).

Concerning the selection process, the picture so far must be enriched includ-
ing the role played by the externalities arising in the process of network formation. 
When two firms form a link, they always create a negative externality upon the 
remaining firms (“business stealing” effect). However, when two firms start to col-
laborate, this also creates a positive “technological externality”, but only for firms 
connected with these two firms. The new projects increase the rate of growth of 
knowledge of the two partners, with a positive effect on the technological opportuni-
ties for their collaborator. The increasing network density is strongly penalizing for 
firms outside the active network at the beginning, since they find increasingly dif-
ficult to join the network.

It is interesting to compare my results with the (static) analysis by Goyal and 
Joshi (2003) and the dynamic analysis in Dawid and Hellmann (2014) Goyal and 
Joshi, in a setting with Cournot competition, ex ante identical firms and fixed costs 
for link formation, they show that only three network structures can be sustained 
as equilibria, as a function of the level of the link formation cost: the empty net-
work, the complete network and the dominant group network, in which only a non-
singleton, fully connected component is formed. In a dynamic extension of Goyal 
and Joshi, Dawid and Hellmann show that the dominant group architecture is the 
characterize stochastically stable R&D networks, and, contrary to Goyal and Joshi, 

10  The term refers to the Gospel According to St Matthew: “For unto every one that hath shall be give, 
and shall have abundance: but from him that hath not shall be taken away even that which he hath”.
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produce generically unique predictions about the size of the dominant group can be 
obtained. My model generates as a long run structure a dominant group network as 
well, and it provides a dynamic non-ergodic mechanism that leads to this structure, 
through a process of rise and fall in the network which consistent with empirical evi-
dence and interact with industry evolution.

In commenting the results, there is an important final remark that has to be done. 
The results of the model are not purely dependent on the randomness associated to 
link revision. In particular, the shakeout is not simply driven by the fact that some 
firms are not drawn to form links. Randomness plays a role because it perturbs an 
initially symmetric situation, giving some firms an initial advantage. After that, an 
economic self-reinforcing mechanism operates, which significantly reduces the role 
of randomness. In other words, the model shows the instability of a symmetric mar-
ket structure, when firms can form pairwise links. For this reason, it seems reasona-
ble to start with an empty network in a symmetric set-up (in terms of knowledge lev-
els). If the network at time t = 0 were a non-empty network (for instance, a random 
graph), this would guarantee some firms (the firms with more collaborations at t = 0) 
an exogenously given advantage, which would increase the probability of such firms 
to become central actors in the evolution of the network. The same argument applies 
if one removes the assumption of equally efficient firms at t = 0. Furthermore, as 
Section 4.3 will show, the results do not depend on isolated firms being fixed in their 
level of knowledge.

4.2 � Comparative dynamics

A natural question concerns possible exercises of comparative dynamics. In theory, 
several different parameterizations can be discussed. Here, I consider two of them.

First, I increase technological opportunities. a1, a2, a3 are chosen in a way that 
the expected value of f(d) becomes 0.75 (instead of 0.5).11 I call this experiment 
Simulation A. The opportunities for knowledge recombination within collaborative 
projects increase, making collaboration more attractive, ceteris paribus. Notice that 
high opportunity here does not mean that there is “more” to learn in the long run 
(unit cost is bounded from below, and it always (potentially) converges to 0), but 

Table 2   The “Matthew effect” 
at work

newlink40 Coeff Std. Err t P >|t|

newcalled 0.2363637 0.0195672 12.08 0.000
link10 0.7089678 0.0574208 12.35 0.000
constant 0.3405201 0.0848473 -4.01 0.000
Number of obs 640
F(2,637) 149.58
R-squared 0.3196

11  In particular, a1 = 0.84375 , a2 = 0.75a3 = 1.5.
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that learning is easier. The effect on market structure is ambiguous, a priori. On one 
hand, more firms can engage in collaboration, especially at the beginning. On the 
other hand, the average knowledge growth rate is expected to be higher, and this 
is detrimental for the survival of firms that do not join immediately the network. 
As figures show, both effects are at work: with “high opportunities”, the equilib-
rium number of firms is higher (the long run level of concentration is lower), but 
the shakeout occurs typically earlier. Technological progress is faster, as expected. 
Notice, finally, that the network does not reach density 1. This is easily explained by 
the fact that the faster depletion of innovative opportunities makes inconvenient the 
formation of links before a complete network is reached (Fig. 6).

Until now, I considered time invariant technological profiles. Empirical evi-
dence suggests that interfirm technological agreements are important in explain-
ing the movement of firms over time, and they can lead firms to become techno-
logically more similar at the dyadic level (Mowery et al 1998).

In order to study the impact of variation of � on network evolution, I consider the 
case where technological heterogeneity matters in the outcome of collaboration, fix-
ing the optimal distance at 0.5 (but keeping fixed the expected value of f).12

For this case, I run two sets of simulation, one with � = 1 (Simulation B), the 
other with � = 0.99 (Simulation C). The results are reported in Figs. 7 and 8.

The first remark concerns the comparison between Simulation B and the Stand-
ard Simulation. Although the qualitative picture is rather similar, one can observe 
a slightly higher level of concentration in the long run. This is due to the rela-
tionship between the optimal distance and the initial distribution of technological 
profiles. It is intuitive to see that, once the assumption of uniformously distributed 
firms is maintained, increasing the optimal technological distance over a certain 
threshold makes less likely for firms to find a partner at the optimal technological 
distance, especially for firms with intermediate technological profiles. Since at the 
beginning this is what really matters, more frictions are introduced in the search of 
a satisfying partner. Firms lucky enough to find such partners get a stronger advan-
tage. Progress is less rapid, concentration is higher and the network less dense. 
This is clearly an example which shows that the hypothesis on the initial distribu-
tion of firms matters, especially for certain technological environments, because 
it affects the opportunity for cooperation in the industry. This aspect deserves fur-
ther analysis in the future.

The changes when � is smaller than 1 are radical. At the beginning the evo-
lution is the same. This is not surprising, since the process of technological 
convergence takes time. The difference occurs after the shakeout. The process 
of network formation soon comes to an end. The reason for that is simple: the 
emergence of one single component inevitably lead to the overall convergence to 
a single technological profile, which is detrimental for innovation. In the forty 
replications, the final value of the average technological distance lies in the 
interval [0.002,0.02]. This implies that both technological progress and conver-
gence in market shares stop.

12  a1 = 0.5517 , a2 = a3 = 2.2069
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This result shows the important role that entry, a factor not considered in the 
model, can play. In a relatively mature industry, in which the technological pro-
files of incumbents have converged, new entrants have an important role to play. 
They can bring into the market different capabilities. This also help the new firms to 
survive, although less efficient, because of their role in the network. Extending the 
model to the role of new entrants is an interesting avenue for future research.

Fig. 6   Simulation A: Total Quality, Herfindahl Index and Network Density

Fig. 7   Simulation B: Total Quality, Herfindahl Index and Network Density
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4.3 � Extensions

In this section I check the robustness of the results with respect to two main 
assumptions of the models. First, I implement two other algorithms driving the 
formation of the R&D network; second, I introduce, although in a simple way, an 
alternative source for cost reduction. Overall, the model exhibits robustness with 
respect to these changes.

Concerning the rules for links revision, it has been maintained the hypothesis 
of revision of one link per period. Given this restriction, two different algorithms 
have been considered. The first one can be defined as “socially oriented”, and it 
aims at capturing the idea that meetings are more likely between firms that have 
collaborators in common. In practice, the algorithm works as follows:

a)	 One firm is picked up randomly. Each firm has the same the probability to be 
chosen.

b)	 With probability ∣Ni(t)∣

n−1
 the firm revises the state of one of its existing links; other-

wise, the firms revise the state of one of its non-existing links.
c)	 In the case of revision of an existing link, a firm j ∈ Ni(t) is chosen with uniform 

probability.
d)	 In the case of revision of a non-existing link, a given firm j is chosen by i to revise 

the state of the link with probability:

i.e. the probability of "meeting" is increasing to the number of collaborators that 
the two firms have in common.

(10)
1 + �Ni(t) ∩ Nj(t)�

∑

k∉Ni(t)

1 + �Ni(t) ∩ Nk(t)�

Fig. 8   Simulation C: Total Quality, Herfindahl Index and Network Density
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The second algorithm will be labeled as “economically oriented”. It is meant 
to capture the active, “rational” firm’s search for optimal partners.

a)	 One firm is picked up. Each firm has the same the probability to be chosen.
b)	 For each k ≠ i , net profits for i resulting from the meeting with k are computed. 

In particular, if the link ik does not exist, firm i correctly predicts the willingness 
of k to cooperate or not. I indicate with Πit(ik) such profits.

c)	 The firm j that is chosen is given by:

In case of ties, the firm with the highest index is chosen.
Figures 9 and 10 reports the Herfindahl index, the total output and network den-

sity for the same parameterization of the “Standard Simulation”, when the algo-
rithms of network formation are respectively the “socially” oriented algorithm (Sim-
ulation D) and the “economically” oriented-one (Simulation E).

The effects of the “socially” oriented algorithm are negligible. The results are 
easy to interpret. What is crucial in the model are the first links formed, when 
the self-reinforcing mechanism is at the work. Since at the beginning the network 
is sparse, the probability of meeting is basically uniform, and the differences are 
necessarily of minor importance. When the network has reached a sufficiently high 
density (i.e. in the periods just preceding the shakeout), firms active in the network 
become significantly more likely to meet. But these firms are also the more likely 
to be willing to start cooperation, since they are larger and more knowledgeable. 
The effect, then, is simply to make the convergence towards the complete network 

(11)j ≡ arg max
k∈Nt(t)

Πit(ik)

Fig. 9   Simulation D: Total Quality, Herfindahl Index and Network Density
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slightly more rapid, and consequently the shakeout slightly more rapid, without an 
impact on the qualitative behavior of the system.

The “economically oriented” algorithm has instead a more significant effect. This 
is similar to an increase in technological opportunities: the shakeout occurs earlier, 
but involves fewer firms. This algorithm substantially reduces the frictions in the 
network formation, and then it leads to a stronger role of the first mover advantage. 
The intuition is that firms that are lucky and drawn to possibly form links (firm i 
in the algorithm) are more likely to actually form them, since they can choose a 
valuable partner among the remaining firms, and they are not constrained to form 
link only with a randomly drawn potential partner. Therefore, for them, it is less 
likely than they end up excluded from the network and then from the industry. At the 
same, the pressure is stronger on firms which do not form links early in the history, 
because they are not drawn or they are not valuable partners for those firms that are 
drawn. I expect that a similar result would be obtained with all the algorithms that 
reduce the frictions in partnering choices by being more calculative.

In terms of alternative sources of cost reduction, a simple formulation has been 
considered. I relax the assumption that costs can be reduced only through collabora-
tion. Each period, each firm is assumed to start an "in-house" R&D project.13 More 
generally, other factors (for instance, learning by doing) can lead to such a reduction 
in costs. The assumption is that this process of cost reduction does not require any 
investment by the firm. Introducing explicitly an R&D cost (i.e. a fixed cost simi-
lar to the costs required for cooperative R&D) in the framework of a simultaneous 
game would create a problem of multiple equilibria, when firms are close enough 
in knowledge levels (and so in size). Even if one assumed some rule to pick up one 
equilibrium, this would be too complex to implement.

Fig. 10   Simulation E: Total Quality, Herfindahl Index and Network Density

13  See Tedeschi et al. (2014) for an agent-based model where firms can switch between stand-alone and 
collaborative innovation.

171Path dependence in evolving R&D networks



1 3

In economic terms, this assumption can be justified by claiming that collabora-
tive projects are typically started for larger, costlier (and with higher benefits) pro-
jects than in-house R&D. The assumption of no cost approximates a situation where 
each firm can always cover the costs of internal R&D, and the costs can be conse-
quently not modelled. Furthermore, in the present context, I introduce in-house R&D 
to check the robustness of the results, and not to fully model the choice between in-
house and cooperative R&D. Here, one major point is to check the robustness of the 
selection result due to the network formation. With positive costs (and indivisibility), 
small firms would not invest in R&D alone either (for the cost spreading argument). 
Then the “no cost” situation can be interpreted an upper bound for outcome of the 
selection process: selection cannot be stronger than the case of “costless” R&D.

Following the notation of the paper, I label viit the value of such an in-house pro-
ject. I consider two possible formulations:

In the first case (Simulation F), I consider a cumulative process: more knowl-
edgeable firms have more valuable in-house projects; in the second case (Simulation 
G), instead, the value is independent from firm’s level of knowledge. This second 
case is clearly more favorable to ’laggard’ firms, and it is introduced mostly as a 
benchmark case.

The effect of this modification (Figs. 11 and 12) goes in the predicted direction: 
selection is less strong. In the "cumulative" version (Fig. 11, with � = 0.4 ), results 
are similar to the “Standard Simulation”. In this formulation, in house R&D and 
cooperative R&D are complementary: starting cooperative projects increases the 

(12)viit = �f (0)�it

(13)viit = �f (0)k

Fig. 11   Simulation F: Total Quality, Herfindahl Index and Network Density
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value of in-house R&D, and the presence of in-house R&D increases the incentive 
of cooperative R&D through its effect on size. Then the two effects, strengthening 
and weakening the selection process, substantially cancel out.

In the second case, the effect of decreased concentration is stronger. In this 
case (Fig. 12), � = 0.2 and k = 0.5, which means that in-house R&D is equivalent 
to a collaboration with a firm having the same technological profile and knowl-
edge 0.1. However, the main point here is that the results of the model respond 
“smoothly” to a limited ability of firm to progress autonomously in cost reduction: 
the logic in the arguments put forth in the previous sub-section is still valid.

5 � Conclusion

In this paper I presented a model of dynamic R&D network formation, in which the 
focus was explicitly on the joint dynamics of market structure, firms’ technological 
capabilities and network evolution.

My results show the importance of R&D networks as powerful selection mecha-
nism, leading firms that are not able to join the network or that occupy weak posi-
tions to exit the market. These results are consistent with previous theoretical work 
on R&D networks, which predict the emergence of asymmetric networks with 
a dominant group architecture, to which my model adds a dynamic non-ergodic 
mechanism that leads to this structure, through a process of rise and fall in the net-
work which is consistent with empirical evidence and interact with industry evolu-
tion. This emphasis on asymmetric networks, which have profound effects on mar-
ket structure, is consistent with the empirical evidence on the firms’ motivation to 
engage in collaboration (Hagedoorn 1993).

Fig. 12   Simulation G: Total Quality, Herfindahl Index and Network Density
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The model could be extended in a number of directions. First, as already men-
tioned in the paper, the role of new entrants in the coevolution of industry and net-
work. Second, I could relax the assumption of product homogeneity, to assess the 
intensity of competition can affect network evolution. Third, and more ambitiously, 
the model could be extended to a two-industry context, where profitable cooperation 
may occur also across industries, and networks and industry coevolve.

Appendix

Proof of Proposition 1
Simple derivations show that:

As long as firms are close enough, the second factor is positive.14 The sign of the 
derivative is then determined by a2 − a3d(i, j) , which is positive if firms’ distance is 
lower than the optimal one, and negative otherwise.

Proof of Proposition 2
Deriving one obtains:

The quantities in the first two square brackets are positive, so it is the first addend. 
The sign of the second addend depends on

which is negative for � sufficiently small.
From the study of the second derivative, it can be shown that it is negative for � 

sufficiently small. Then the point (if any) where the derivative becomes 0 must be a 
maximum point. If gains from the collaboration are positive, there are consequently 
three possible cases: the increase in �j 1) has always a positive effect; 2) has always a 
negative effect; 3) has a positive effect initially, and then has a negative effect.

�F

�d(i, j)
= �(a2 − a3d(i, j))c[

n�j(1 − �i)(e
−�(�j f (d(i,j)) − 1) − �i(1 − �j)(1 − e−�f (d(i,j)�i )

n + 1
]

�F

��j
= c[

n�f (d(i,j))(1−�i)e
−��j f (d(i,j))+1−e−��i f (d(i,j))

n+1
][qi(+ij) + qi(−ij)]

+c[
(1−�j)(e

−�f (d(i,j)�i−1)−n(1−�i)(e
−��j f (d(i,j))−1)

n+1
][

dqi(+ij)

d�j
+

dqi(−ij)

d�j
]

dqi(+ij)

d�j
+

dqi(−ij)

d�j
=

c[�f (d(i, j))n(1 − �i)e
−��j f (d(i,j)) − e−��if (d(i,j)) − 1]

n + 1

14  Notice however that the condition of positivity here is stricter than the necessary condition of positive 
gains from collaboration.
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Proof of Proposition 3
Deriving one obtains:

The first addend is negative, while, if the necessary condition for positive gain 
holds, the sign of the second addend depends on [ dqi(+ij)

d�i
+

dqi(−ij)

d�i
].

It can be shown that:

The first quantity in square brackets is larger than 1, while the second is smaller 
than 1 for �f (d(i, j)) small. Their difference is then positive.

The overall effect is ambiguous. Studying the second derivative, one gets 𝜕
2F

𝜕𝛾i
2
< 0 

for � sufficiently small. Then the point (if any) where the derivative becomes 0 must 
be a maximum point. There are consequently three possible cases: the increase in �j 
1) has always a positive effect; 2) has always a negative effect; 3) has a positive 
effect initially, and then a negative effect.

Proof of Proposition 4
The proposition comes directly from:

Proof of Proposition 5
I consider the situation where a stable oligopolistic structure has emerged, in the 

sense that the number of firms will remain constant in the future (the market struc-
ture at time t will be maintained in all the periods if A−ntcit

nt+1
> 0∀i ∈ Nt ). I have to 

prove that lim
t→∞

Pr(gijt = 1) = 0∀ij ∈ N2

t
 . If lim

t→∞

Pr(gijt = 1) ≠ 0 I would have 
lim
t→∞

�i = lim
t→∞

�j = 1 . By continuity of F(⋅) (which is the gain function defined in Sec-
tion 4.1), this implies lim

t→∞

Fi(�j, �j) = lim
t→∞

Fj(�i, �i) = 0 . But then, since E > 0, the link 
will asymptotically become unprofitable. Given that each link is updated with a pos-
itive probability, it will be severed with probability 1 as t → ∞ , and then I have the 
initial claim.

�F

��i
= c[

−�f (d(i,j))(1−�j)e
−��i f (d(i,j)+n(e

−�
�

�j f (d(i,j)−1)

n+1
][qi(+ij) + qi(−ij)]

+c[
(1−�j)(e

−�f (d(i,j)�i−1)−n(1−�i)(e
−��j f (d(i,j))−1)

n+1
][

dqi(+ij)

d�i
+

dqi(−ij)

d�i
]

�

dqi(+ij)

d� i
+

dqi(−ij)

d� i

�

= c

⎡

⎢

⎢

⎢

⎣

n
�

1 + e−��j
f
(dij)

�

− (1 − �j)�f (d(i, j))e−��if (d(i,j))

n + 1

⎤

⎥

⎥

⎥

⎦

�F

�
∑

k≠i,j

ck
=

2

n + 1
[

(1 − �j)(e
−�f (d(i,j)�i − 1) − n(1 − �i)(e

−��j f (d(i,j)) − 1)

n + 1
]
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