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Abstract
Technological change is a central concern for evolutionary economics, which com-
bines detailed empirical studies and conceptual frameworks with mathematical mod-
eling, among them the NK model from evolutionary biology. Technological change 
is also a central concern for classical and Marxian economics, where it is studied 
under the rubric of “cost share-induced technological change.” Among the contribu-
tions from classical economists is a classical-evolutionary model first introduced by 
Duménil and Lévy. This paper strengthens the classical-evolutionary model’s micro-
economic foundations by deriving it from an underlying NK model. The result is an 
aggregate model suitable for macroeconomic analysis that is grounded in evolution-
ary microeconomic theory. This explicit micro-to-macro link opens avenues for fur-
ther research. The paper presents new results for the classical-evolutionary model, 
including a “generating function” method for creating candidate functional forms, 
and provides three illustrative applications.

Keywords  Technological change · Functional income distribution · Evolutionary · 
Classical · Neo-Marxian

JEL Classification  E11 · E14 · O31

1  Introduction

The nature of innovation and technological change is a fundamental concern of evo-
lutionary economics (Winter 2014; Nelson 2018). Most contributions have focused 
on the complexities of overlapping processes of technological discovery, innovation, 
and diffusion as an explanation for the unavoidably evolutionary nature of economic 
activity (Dosi and Nelson 2013, 2018). Inventors, entrepreneurs, workers, and R&D 
departments continually gain tacit and explicit knowledge of the technologies and 
processes they are using and developing. Whether learning-by-doing on the shop 

 *	 Eric Kemp‑Benedict 
	 eric.kemp-benedict@sei.org

1	 Stockholm Environment Institute, US Center, 11 Curtis Avenue, Somerville MA, 02144, USA

Published online: 7 October 2022

Journal of Evolutionary Economics (2022) 32:1303–1343

http://orcid.org/0000-0001-5794-7172
http://crossmark.crossref.org/dialog/?doi=10.1007/s00191-022-00792-5&domain=pdf


1 3

floor or experimenting at the lab bench, they have some knowledge of what might 
work, but their knowledge is very imperfect, so only a few innovations persist and 
spread. Within the broad program of evolutionary economics, one strand of work 
has theorized technological change using the NK model from evolutionary biol-
ogy (Kauffman and Levin 1987; Altenberg 1997), so-named because it features N 
“genes” and K interactions between genes. The NK model has been applied exten-
sively within evolutionary economics (Dosi and Nelson 2018, p. 75ff).

Classical and Marxian theorists have also long been interested in technological 
change (Kurz 2010), which they endogenize through cost share-induced mechanisms 
(Dutt 2013). Among the classically-inspired models is one that explicitly acknowl-
edges evolutionary concepts, the “classical-Marxian evolutionary” model of Dumé-
nil and Lévy (1992, 2010). It starts at a micro level, with the presumed behavior of 
firms, and analytically traces the implications to the level of a sector or of the whole 
economy. In this sense, the model may be said to be “microfounded”, but the term 
“micro-to-macro” is used in this paper. In practice, “microfounded” now means a 
model that assumes economic actors behave as though they have solved an intertem-
poral optimization problem, a counterfactual behavioral assumption that is rejected 
by both evolutionary and classical economists. What is more, as discussed later, a 
complete model must include macro-to-micro processes, so it does not sit entirely 
on microfoundations (King 2012). Adopting Cantner’s terminology (Cantner 2017), 
the micro unit in this paper is a firm acting in the role of homo agens, rather than 
homo œconomicus.

This paper takes Duménil and Lévy’s model as a starting point, while acknowl-
edging the substantial work on cost-induced technological change that preceded it. 
Some of the earlier literature is referenced below, while other sources can be found 
in (Kemp-Benedict 2019). Duménil and Lévy’s model is evolutionary in the sense 
that firms search uncertainly within the neighborhood of their current technology 
in an attempt to increase their profitability at prevailing prices and wages (a condi-
tion introduced by Okishio 1961 in the proof of his celebrated theorem) in order to 
gain temporary monopoly rents. Duménil and Lévy used this profitability criterion 
to derive what they termed a “selection frontier”. While the strategy of comparing 
the profitability of alternative techniques dates back to the early classical authors, 
the specific expression for the selection frontier was apparently new with Duménil 
and Lévy, and will feature prominently in the theoretical development in this paper.

As first presented, the Duménil and Lévy model was somewhat limited. The link 
to evolutionary theory was informal. Moreover, the selection frontier depended 
only on capital and labor inputs, while making restrictive assumptions about the 
search space for new technologies. The latter two limitations were addressed by 
Kemp-Benedict (2019), who expanded the selection frontier to an arbitrary number 
of inputs and dropped any explicit reference to the search space. Kemp-Benedict 
(2019) showed that the functional form of the aggregate model is meaningfully con-
strained by the underlying microeconomic theory, independent of the details of the 
search space. The result is a very general macroeconomic family of models that is 
ultimately grounded in an evolutionary microeconomic behavioral assumption.

Starting with an NK model, the paper shows how Duménil and Lévy’s selection 
frontier can be combined with other fitness measures to determine the selection of 
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potential innovations. The result can be seen as a generalization to multiple inputs 
of the labor productivity criterion assumed in Auerswald et  al. (2000) and Kauff-
man et al. (2000). Moreover, the selection frontier is expressed in terms of a quan-
tity – cost share-weighted average productivity growth – that has been shown to 
equal the growth rate of total factory productivity (TFP) from a growth accounting 
exercise (Rada and Taylor 2006). This relationship allows the classical-evolutionary 
model to be compared to models based on TFP growth.

It is perhaps worth stating explicitly the approach to economic theory and mod-
eling that this paper adopts. That approach is broadly in line with Shaikh’s (2016, 
p. 102) “methodology for economic analysis.” It starts with a theory of relevant 
factors at the micro level, while allowing for the possibility that only a few of the 
factors may remain relevant at the macro level. It keeps in mind that equilibra-
tion is a hypothesis that requires investigation. It accepts that the functional form 
applicable at the macro level may diverge from the one that applies at the micro 
level and embraces the idea that different microeconomic models can generate the 
same, empirically indistinguishable, macroeconomic model. A further influence 
is Lee (1994), who argued that the accounting, costing, and pricing procedures of 
firms should be included among the relevant micro-level factors for macroeconomic 
theory.

This paper explicitly aggregates a microeconomic NK model to obtain a model 
that can be applied at the level of a sector or the whole economy. One result from the 
aggregation procedure is a demonstration that candidate functional forms for cost 
share-induced technological change can be derived from a “generating function.” 
The generating function is a scalar function of cost shares, and its partial derivatives 
provide a vector-valued function of productivity growth rates. The generating func-
tion is the link between the microeconomic and macroeconomic analysis, so it pro-
vides an explicit route for bridging evolutionary microeconomic theory to aggregate 
analytical macroeconomic models.

After firms innovate, they engage in competitive price and wage setting. The 
resulting economy-wide prices and wages, when combined with firm-level produc-
tivities, then determine firms’ cost shares and therefore influence their next-period 
innovation. This sort of innovative treadmill is the basis for Marx’s theory of the 
declining rate of profit. It is also in line with evolutionary economics, in which prices 
form part of the environment within which innovation and selection take place. As 
(Nelson and Winter 1982, p. 160) note, “The environment (price vector) in turn 
depends...on the genotypes (routines) of all the individual organisms (firms) existing 
at a time – a dependency discussed in the subdiscipline called ecology (market the-
ory).” The price- and wage-setting aspects of competition create a macro-to-micro 
link from prices to firm-level cost shares that complements the micro-to-macro link 
from cost share-induced firm-level innovation to aggregate productivity change.

Specific price and wage-setting strategies, when combined with cost share-
induced technological change, can result in different trajectories for growth and 
distribution. One strategy is of particular interest; as shown by Julius (2005) and 
Kemp-Benedict (2019), and also in this paper, target-return pricing, in which firms 
set their markups to secure competitive profit rates, tends toward an equilibrium 
characterized by constant cost shares and constant capital productivity. Thus, unlike 
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in Kauffman et  al. (2000, p. 144), Harrod-neutral technological change is a result 
rather than an assumption, and it only emerges with a specific price-setting strategy.1

Section 2 places the model developed in this paper in the context of the existing 
literature. Section 3 presents the core model. Section 4 proposes a general candidate 
functional form for cost share-induced technological change that is suitable for prac-
tical macroeconomic modeling. Section 5 offers applications of the model. The final 
two sections discuss the results and conclude.

2 � Relation to existing literature

Duménil and Lévy’s (1992, 2010) model features cost share-induced technologi-
cal change. Models of cost share-induced technological change employ a “distribu-
tive closure”, in the classification of Tavani and Zamparelli (2017, p. 1282). They 
have been well-explored in Marxian theory (Dutt 2013), as well as by Hicks (1932). 
More recently, (Foley 2003) developed a one-sector cost share-induced technologi-
cal change model and argued that it can represent Duménil and Lévy’s model in its 
aggregate form.

Tavani and Zamparelli (2017) claim that models with a distributive closure are 
necessarily tied to theories of abundant labor, and therefore to a specific wage-set-
ting regime. Because there is no pressure on wages in such models, distribution is 
exogenous, leading those authors to conclude that “endogenous technical change 
adds very little to the analysis.” To address this and other perceived limitations of 
prevailing theories of technological change, in a separate paper, Tavani and Zam-
parelli (2021) propose a model in which firms trade off two costly options: investing 
in capital or, through R&D expenditure, in labor-augmenting technological change. 
Their model assumes the direction of technological change, but makes the pace of 
change subject to an optimizing decision. However, there is no reason to limit mod-
els with distributive closures to the abundant labor case. In a dynamic process in 
which technological change is succeeded by price and wage setting, cost shares and 
technologies co-evolve, creating what Shiozawa et al. (2019, p. 87) term “a loop of 
causal change between the price system and technical change.” The model presented 
in this paper, when combined with a price and wage setting mechanism, generates 
such loops of causal change. (Kemp-Benedict 2020) provides an example; further 
examples can be found in Section 5 of this paper.

In addition to having a distributive closure, the model of Duménil and Lévy is 
evolutionary in that it assumes all firms incrementally modify or extend their current 
technology. This is in line with the model introduced by Nelson and Winter (1982, 
chap. 9), in which the search for innovations is a stochastic process. An alternative 
and widely accepted assumption is that firms can choose from an existing set of 

1  Weitzman (1996, 1998) also finds Harrod-neutral change emerging endogenously in a model of inno-
vation. However, the mechanism is quite different: rather than being driven by cost and profitability con-
siderations, diminishing returns are overcome by the combinatorially expanding possibilities opened 
through successive rounds of innovation.
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available techniques.2 The counter-claim from evolutionary economics is that the 
range of options open to a firm depends on its dynamic and evolving capabilities 
(Helfat 2018).

To make this idea concrete: In real economies, many techniques and technologies 
coexist. Electricity can be generated from natural gas turbines or coal-fired power 
plants; web applications can be developed in a PHP or Python environment; passen-
gers can be transported in narrow-bodied or jumbo airplanes. Switching from one to 
the other of these options is costly and time-consuming. It may require entirely new 
staff with different skills and entail substantial learning. These are strategic shifts 
that require high-level decisions. More accessible changes include upgrading a gas 
turbine, refactoring a web application to use a different Python library, or changing 
the seat spacing in an aircraft. Such changes are not routine and their potential cost 
may mean that multiple parties have to sign off on the change. However, they make 
use of existing skills and knowledge. Even more accessible options include modify-
ing staffing levels and schedules at the power plant, modifying a single Python class 
to improve website responsiveness, or switching hand soap in airplane lavatories 
from installed dispensers to pumped bottles. Such changes are minor, almost routine.

While these different types of modification are extremely different, they are all 
examples of innovations. They also illustrate that capital investment and productiv-
ity growth can be complements, rather than substitutes as (Tavani and Zamparelli 
2021) assumed. Other innovation can occur through purposeful R&D, for example 
at a lab bench. Companies that rely on such innovations nearly always have their 
own permanent research staff, whose work may span the range from routine modifi-
cations of established products to exploratory research for entirely new ones.

This paper assumes that most innovations are unspectacular and comparatively 
easily implemented, in what Murmann and Frenken (2006) call the “periphery” of 
a technology, rather than its “core”. In contrast, a number of different technological 
change models assume that while discovery may be difficult, firms can readily access 
any existing innovation. This is true, for example, of those models that assume an 
innovation possibility frontier as introduced by Kennedy (1964). (Duménil and 
Lévy’s “selection frontier” is an entirely different concept.) Technological change in 
innovation frontier models is reflected in the expansion of the frontier, but the choice 
of technique is a matter of relative cost of operation, rather than cost of adoption. A 
prominent example in this category includes the well-known model of Samuelson 
(1965). A less clear-cut example is the recent one-sector representative-firm model 
of Zamparelli (2015). He followed Kennedy by assuming that firms are constrained 
by an innovation possibility frontier, but incorporated adoption costs by assuming 
that any given firm’s frontier depends on its R&D expenditure. An alternative to the 
innovation possibility frontier that still assumes a fixed set of available techniques 
is offered by Shiozawa et al. (2019). Those authors build a theory around what they 
term the “minimal price theorem,” which explains how the microeconomic process 

2  Evolutionary economics admits the possibility of exploratory but highly uncertain “long-jumps” on 
rugged fitness landscapes (Levinthal 1997), but that is a quite different process from taking a large step 
towards a well-defined technological frontier.
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in which firms choose from among a set of alternative existing techniques generates 
price stability as a macroeconomic outcome.

The present paper continues the work begun in (Kemp-Benedict 2019) by deep-
ening the microeconomic foundation for the classical-evolutionary model. In con-
trast to Zamparelli, the model in this paper, like that of Duménil and Lévy, follows 
evolutionary economics by assuming that discovery has a stochastic element (Nel-
son and Winter 1982). However, unlike (Duménil and Lévy 1992; 2010), the path 
from microeconomic behavior to macroeconomic outcomes is made explicit. This 
feature – explicitly aggregating across heterogeneous firms rather than assuming a 
representative firm – distinguishes the present work from nearly all of the above-
cited papers. The exceptions are (Okishio 1961) and (Shiozawa et  al. 2019), who 
started with a disaggregated input-output model to derive macroeconomic results, 
but unlike this paper, those papers assumed a fixed set of available techniques. 
Finally, this paper allows for any number of inputs to production, whereas nearly all 
of the papers reviewed here treat labor and capital as inputs. The exceptions, again, 
are (Okishio 1961) and (Shiozawa et al. 2019).

In summary, the model presented in this paper is unique because it explic-
itly aggregates a microeconomic evolutionary model, in which firms make use of 
an arbitrary number of inputs, to derive macroeconomic results. Moreover, contra 
(Tavani and Zamparelli 2017), when combined with a pricing mechanism, the result 
is a distributive-closure model in which distribution and productivity growth are 
determined endogenously.

3 � Development of the model

This section derives the core classical-evolutionary model. After introducing some 
essential concepts, the first step in the derivation is to construct a classical-evolu-
tionary model for a single firm (or, in this paper, a single “unit”, which might be a 
division within a firm).3 To be clear, this is for expository purposes only; the model 
makes sense only in the context of inter-firm competition, and the single unit does 
not constitute an independent “Robinson Crusoe” economy. This is made explicit in 
the following step, in which the model is aggregated across multiple units.

3.1 � Production systems, fitness, and profitability

In the “production recipes” approach of (Auerswald et al. 2000), a recipe is a set 
of engineering instructions for producing outputs given inputs. As the evolution-
ary economics literature makes clear, this is a strong simplification; technologies 
are not “blueprints” or “recipes” executed in the same way by every firm (Dosi 
and Nelson 2013, p. 28ff). However, it is a useful heuristic device for thinking 
through the nature of technological change. The present paper follows this line 

3  An alternative would be to use products, rather than firms or divisions, as the unit of analysis (as in 
Cantner et al. 2012).
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of reasoning by assuming that production systems, incorporating both technolo-
gies and procedures, can be reasonably represented by a (possibly very large) set 
of production elements, each with (possibly very many) variants, with an arbi-
trary number of interactions between elements, yielding an NK model (Altenberg 
1997). This paper follows the bulk of the literature by assuming a discrete set 
of variants for each elements, but the model could be adapted to a continuum of 
variants as proposed by (Valente 2014).

A specific choice of variant for each production element can be represented 
by a “string” s, which represents the production system (Frenken 2001). In the 
evolutionary analogy, s is the genotype for the production system. The production 
system then exhibits certain features – its phenotype – as a result of its genotype. 
The phenotype, in turn, determines how “fit” the system is for its purpose, which 
can be represented by a fitness function ϕ(s), which has that property that if a sys-
tem s′ is more fit then the incumbent system s, then 𝜙(s�) > 𝜙(s) . The NK model 
represents complexity through interactions, so that changing one element in the 
string alters the fitness response to changes in other elements.

While some authors identify fitness with profitability (e.g., Kauffman et  al. 
2000; Nelson and Winter 1982, p. 160), in this paper they are kept separate. Prof-
itability certainly matters, and is indeed central to the decision-making process 
proposed in this paper. However, fitness is influenced also by how well a process 
works with existing procedures, the skills of the people who will implement it, 
desirability of product features, and so on. Some aspects of fitness are elusive, 
but some may be captured analytically, as in the study of the German compact car 
market by Cantner et al. (2012).

Among the features that make up a production system’s phenotype are factor 
productivities. Certain of these are likely to feature in a fitness evaluation, and 
not always for reasons of cost. For example, Dosi and Nelson (2018, p. 49) noted 
that an important motivation for mechanization in the 19th century was to reduce 
the risk of strikes. Otherwise, broad cost considerations, such as persistently high 
labor costs, can drive innovation in particular directions. To take a 20th century 
example, during the oil crises of the 1970s and 1980s, considerable effort was 
directed to saving on products from crude oil and natural gas. In this way, a gen-
eral apprehension of costliness can drive innovation in some directions more than 
others.

Costs enter more directly in a step after R&D has been carried out – capital budg-
eting (Graham and Harvey 2001). A capital budgeting assessment looks at costs and 
potential revenues as an input to a decision whether to invest. For novel technolo-
gies being developed within protected niches, current profitability may be ignored 
in hopes that future development will make an invention profitable (Geels and Schot 
2007; Perez 2010). However, for the bulk of investment decisions, a case must be 
made that the investment can be profitable, whether in a business plan submitted 
to a bank or investor, or in an analysis carried out by a firm’s accountants. Follow-
ing (Okishio 1961), this assessment is presumed to be carried out at constant prices 
and wages, and following (Duménil and Lévy 1992; 2010), the criterion is the aver-
age profit rate. As discussed in the next subsection, imposing this criterion leads to 
Duménil and Lévy’s “selection frontier.”
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3.1.1 � The selection frontier

In Duménil and Lévy’s (1992, 2010) model, as well as the model presented in 
this paper, innovating units search in the vicinity of their existing production sys-
tem. Search may be directed, but has an irreducible random element. The fruits 
of the search are candidate innovations characterized by factor productivities. As 
in (Zamparelli 2015 p. 246), the potential profits from candidate innovations are 
initially private to the unit, or the firm in which it is located, but if adopted, com-
peting units will rapidly close the gap. Seeking short-term monopoly rents, firms 
assess profitability at fixed prices and wages, and reject any candidate innovations 
that will not raise the profit rate. Imposing this criterion results in an expression 
for the selection frontier, which depends on cost shares and productivity growth 
rates.

The selection frontier is derived by comparing a unit’s prevailing technology 
to alternatives. This is a technique familiar from early classical authors, and it 
underpins the well-known construction of the wage-profit frontier in capital the-
ory (e.g., see Scazzieri 1990). However, unlike the wage-profit frontier, which is 
an upper bound on production possibilities based on prevailing (and presumably 
known) techniques, the selection frontier is calculated with reference to the firm’s 
extant technology, which will normally be far from a global optimum. Rather 
than an external limit set by the state of technological development, the selection 
frontier is an internal limit set by the firm’s capital budgeting criteria. As noted 
below, the most profitable technologies are located off of the frontier, rather than 
on it.

Productivities of non-capital inputs, such as labor, fuels and other intermedi-
ate goods, and raw materials, are denoted by νi, where i ∈{1,…,n} is the list of 
inputs. The corresponding prices (for labor, the wage), are denoted by pi. Output 
of the decision-making unit – for example, a firm, or a division within a firm – is 
denoted Y, which is sold at a price P. Following the advice of Lee (1994), the 
value of the unit’s capital stock, K, is that determined by its accounting depart-
ment. The unit’s profit rate, net of indirect costs per unit of the capital stock c, is 
then

For the final expression, the ratio PY/K, which is the capital productivity, has 
been introduced into the vector of productivities as the zeroth element, ν0.

This paper makes several simplifying assumptions. First, the contribution of 
total indirect cost per unit of capital, c, which appears in Eq. 1, is assumed not 
to change over time. The composition of that term can differ from one firm to the 
next (Lee 1994). It may include depreciation, capitalized up-front expenditure, 
including that incurred during R&D, or administrative costs. Further, while the 
profit rate is evaluated with respect to the value of the total capital stock in the 
equation above, that need not be the case. Shaikh (2016, p. 66ff.) has shown that 

(1)r =
Y

K

(
P −

n∑
i=1

pi

�i

)
− c =

�0

P

(
P −

n∑
i=1

pi

�i

)
− c.
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competitive processes tend towards equal marginal profit rates rather than aver-
age profit rates. Moreover, while the procedure below assumes that firms compare 
an estimated post-innovation profit rate for the entire firm to the prevailing profit 
rate, firms apply capital budgeting procedures on a project-by-project basis. An 
alternative approach would be to require that the incremental profit rate pass a 
hurdle rate (one of the dominant procedures found by Graham and Harvey 2001, 
p. 197). As discussed briefly below, incorporating these changes would make the 
model slightly more complex, but it would not essentially change.

In the NK model approach to production systems, productivities are pheno-
typic expressions of the genotype s, so that νi = νi(s), where now i ∈{0,…,n} to 
include capital productivity. Note that the mapping from s to ν will typically be 
many-to-one; several designs can yield essentially identical productivities. Thus, 
catching up with a competitor need not entail copying that unit’s exact techniques. 
It is possible to close the gap opened by a unit’s innovation without reducing the 
heterogeneity that characterizes evolutionary innovation (Cantner 2017).

Different designs may be further distinguished through the fitness function, so 
that �(s�) ≃ �(s) , while �(s�) ≠ �(s) , but it is possible that the fitness mapping 
is also many-to-one, allowing for a great deal of variety. Reduction of variety 
emerges from standardization, a process that provides external benefits to a group 
of interrelated firms (e.g., those sharing a dominant design: see Murmann and 
Frenken 2006).

The model assumes that, through a capital budgeting exercise, the unit’s 
management evaluates whether, while holding prices fixed, a candidate pro-
duction system s′ would be more profitable than the incumbent, s. If it is, then 
the firm can enjoy at least temporary monopoly rents. Introducing the notation 
Δ�i = �i(s

�) − �i(s) as the change in productivity of the i th input, Δr as the change 
in the profit rate, and suppressing the dependence on s to keep the notation com-
pact, the condition that the estimated post-innovation profit rate must be greater 
than the prevailing profit rate while holding wages and prices fixed reads

In the final term, the ratio 𝜈̂i = Δ𝜈i∕𝜈i is the productivity growth rate. This 
“hat” notation for growth rates is used throughout the paper.

To put Eq. 2 into a more convenient form, note that the cost shares of differ-
ent inputs, σi, evaluated using the productivities of the proposed new process and 
prevailing prices, are

The profit share σ0 is equal to one minus the sum of the cost shares of non-
capital inputs. Dividing Eq. Eq.  2 by ν0 and using this expression for the cost 
shares then gives

(2)Δr =
Δ𝜈0

P

(
P −

n∑
i=1

pi

𝜈i + Δ𝜈i

)
+

𝜈0

P

n∑
i=1

pi

𝜈i + Δ𝜈i
𝜈̂i > 0.

(3)�i =
pi

P

1

�i + Δ�i
, i ∈ {1,… , n}.
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This result, also derived in Kemp-Benedict (2019) is a generalized form of 
Duménil and Lévy’s (1992, 2010) selection frontier, covering an arbitrary number of 
inputs. In vector notation, it can be written compactly as

The expression on the left-hand side of this inequality will be called, in this 
paper, the “selection index”. The selection frontier consists of production sys-
tems for which the selection index is zero, while the index is positive for profitable 
innovations.

To return to the simplifying assumptions, if indirect costs per unit capital, c, were 
to change, or if the capital budgeting rule included a hurdle rate, the right-hand-side 
of inequality Eq. 5 would be nonzero. As noted above, the resulting model would 
be more complicated, but not essentially different. It could, however, be interesting. 
It would introduce possible dependence on changing cost of capital, level of R&D 
expenditure, or capital budgeting policy. The avenues opened by this observation are 
left to future work.

3.1.2 � The selection frontier and “total factor productivity”

There is a direct link between the selection frontier and the growth rate of total fac-
tor productivity (TFP).4 TFP growth, denoted by Â , is calculated empirically as the 
difference between real output growth and growth in inputs, weighted by cost shares:

Here, Qi = Y/νi is the quantity of input i. As (Rada and Taylor 2006) showed, 
because Q̂i = Ŷ − 𝜈i , this is equal to

This result demonstrates that Â is equal to the expression for the selection index.
Candidate innovations are selected if the selection index � ⋅ �̂ is positive. On its 

face, this rule suggests that total factor productivity must always be seen to grow. 

(4)Δr = 𝜎0𝜈̂0 +

n∑
i=1

𝜎i𝜈̂i =

n∑
i=0

𝜎i𝜈̂i > 0.

(5)� ⋅ �̂ > 0.

(6)Â = Ŷ −

n∑
i=0

𝜎iQ̂i.

(7)

Â = Ŷ −
n∑
i=0

𝜎i
�
Ŷ − 𝜈i

�

= Ŷ

�
1 −

n∑
i=0

𝜎i

�
+

n∑
i=1

𝜎i𝜈i

=
n∑
i=0

𝜎i𝜈i = � ⋅ �̂.

4  This section treats TFP growth strictly as a measured quantity, with no theoretical commitment 
to growth accounting. For a critique of growth accounting and the production function approach, see 
(Felipe and McCombie 2013; Felipe and Fisher 2003).
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However, empirically that is not the case; measured TFP growth can both rise and 
fall. The reason this is not a contradiction is that the selection frontier is calcu-
lated at fixed prices and wages. After a period of innovation, prices and wages will 
change, e.g., through price competition and wage bargaining, altering the values of 
the cost shares. Observed values of � ⋅ �̂ will reflect both innovation and the subse-
quent price and wage adjustment, and can be either positive or negative.

3.1.3 � Improved and profitable production systems

The model presented in this paper follows (Kauffman et  al. 2000) in treating the 
“distance” d between production recipes as the number of changes in production 
elements required to move from one to the other. In Shaikh’s (2016, p. 102)) meth-
odology, this is a micro-level factor that will not appear in the macro model, but it 
provides an explicit link to existing work using the NK model.

The set of production systems that can be reached through altering d different pro-
duction elements with respect to the incumbent system s is denoted Nd(s) . Of those 
systems, only some will be an improvement on the incumbent system. In terms of the 
fitness function ϕ(s), the set of improved production systems Nimpr

d
(s) is given by

Of the improved systems, only some will be profitable; that is, only some will 
have a positive selection index.

Expressing the selection frontier in terms of the NK model, cost shares are evalu-
ated using prevailing prices but (as shown previously) for the proposed substitute 
production system s′ , rather than the prevailing system s,

The productivity growth rate is given by the difference between the productiv-
ity of the new system and the prevailing system, divided by the prevailing system 
productivity,

The set of profitable production systems within a distance d of the incumbent sys-
tem s, Nprof

d
(s) then consists of those alternative systems s′ in Nd(s) with a positive 

selection index,

Combining the criteria of fitness and profitability, the set of profitable production 
systems within distance d of the incumbent system s with improved fit are located 
within the intersection Nimpr

d
(s) ∩N

prof

d
(s).

(8)N
impr

d
(s) ≡ {

s� ∈ Nd(s) ∣ 𝜙(s
�) > 𝜙(s)

}
.

(9)�i(s
�) =

pi

P�i(s
�)
for i ∈ {1,… , n}, �0(s

�) = 1 −

n∑
i=1

�i(s
�).

(10)𝜈̂i(s
�|s) = 𝜈i(s

�) − 𝜈i(s)

𝜈i(s)
.

(11)N
prof

d
(s) ≡ {

s� ∈ Nd(s) ∣ 𝜎(s
�) ⋅ 𝜈̂(s�|s) > 0

}
.
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3.2 � The classical‑evolutionary model for a single unit

This subsection treats the case of a single unit, with index k, as one of a set of 
numerous such units, all working along similar lines and more or less clearly 
observing what the others are doing. Each unit k is presumed to choose a distance d 
within which to search. (However, to avoid cascading subscripts, the k subscript on 
d is suppressed.) Depending on its R&D strategy, a unit may execute no search at 
all (d = 0), or look within a distance d = 1,2,…,D, where D is a maximum distance 
determined by time, capacity, and cost constraints on search. Each unit looks in what 
it believes to be a promising direction, searching within a subset of possibilities 
N

k
d
(sk) ⊂ Nd(sk) near its incumbent technology. The sets of improved and profitable 

production systems Nk,impr

d
(sk) and Nk,prof

d
(sk) are determined as in Eqs. 8 and 11.

To connect the NK model with the classical-evolutionary model of Duménil and 
Lévy (2010) and Kemp-Benedict (2019), it will prove useful to introduce a function 
Φk

d
(sk) that is equal to the expected value of the selection index for profitable process 

that improve upon the incumbent process, relative to the size of the search space.
Mathematically, Φk

d
(sk) can be calculated by first summing �(s�) ⋅ �̂(s�|sk) across 

all alternative production systems s′ that are both improved and profitable – that is, 
they lie within the intersection Nk,impr

d
(sk) ∩N

k,prof

d
(sk) – and then dividing by the 

cardinality of firm k’s search space |Nk
d
(sk)| . However, it turns out to be more useful 

to sum over all of the improved production systems Nk,impr

d
(sk) and multiply each 

term in the sum by a factor that is equal to one when the selection index is positive, 
and equal to zero otherwise. Being equal to one when its argument is positive and 
zero otherwise is the defining property of the Heaviside (or step) function, h(⋅),5 so 
the terms in the sum can be written �(s�) ⋅ �̂(s�|sk)h(�(s�) ⋅ �̂(s�|sk)).6

The normalizing factor is the cardinality of the firm’s search space, |Nk
d
(sk)| . 

However, here again it is useful to express this factor indirectly, through an “effi-
ciency of search” �k

d
(sk) that is equal to the quantity of improved production systems 

as a fraction of the size of the search space,

In terms of the above definitions and expressions, Φk
d
(sk) can be written

(12)�k
d
(sk) ≡ |Nk,impr

d
(sk)|

|Nk
d
(sk)|

.

(13)Φk
d
(sk) =

𝜖k
d
(sk)

|Nk,impr

d
(sk)|

∑
s�∈N

k,impr

d
(sk)

�(s�) ⋅ �̂(s�|sk)h(�(s�) ⋅ �̂(s�|sk)).

5  See https://​mathw​orld.​wolfr​am.​com/​Heavi​sideS​tepFu​nction.​html for more on the Heaviside function.
6  It is here that changes in the term c in Eq. 1 would appear if, contrary to the assumption in this paper, 
that term were not constant. The sum would then be over �(s�) ⋅ �̂(s�|sk)h(�(s�) ⋅ �̂(s�|sk) − Δck).
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3.2.1 � Moving to a continuum model

The development so far has remained faithful to the discrete nature of production 
systems and decision-making units. However, at this point it is useful to transition 
to a continuum representation, on two assumptions: that there is an extremely large 
search space;7 and search is focused mainly on incremental changes. The second 
assumption is consistent with a comparatively mature sector. For example, in the 
model of (Kauffman et al. 2000), the optimal search distance tends to decline with 
rising labor productivity, while in the model of (Saviotti and Pyka 2004), sectors 
become saturated, with gradually slowing opportunities for growth. The assumption 
of incremental change is also consistent with a production technology character-
ized by a dominant design, in which most innovation takes place in the “periphery” 
rather than the “core” (Murmann and Frenken 2006).

The assumption of incremental change means that terms on the order of 𝜈̂i𝜈̂j can 
be neglected. It is possible to show that with this assumption

Thus, �(s�) can be replaced by σ(sk). Moreover, the continuum approximation 
allows for the introduction of a probability measure d�̂f k

d
(�̂) that gives the density 

of the discoverable and improved production systems within a neighborhood of dis-
tance d of a particular productivity growth rate vector 𝜈̂.8

In the continuum approximation, Φk
d
(sk) is a function of the cost shares σk = σ(sk), 

and can be written

This function will do a great deal of work in subsequent expressions.

3.2.2 � The generating function

Taking the first derivative of Eq. 15 with respect to σk,i gives

(14)�(s�) ⋅ �̂(s�|sk) ≃ �(sk) ⋅ �̂(s
�|sk).

(15)Φk
d
(�k) = ∫ d�̂f k

d
(�̂)

(
�k ⋅ �̂

)
h
(
�k ⋅ �̂

)
.

7  The underlying NK model has N elements, each with multiple variants. Denoting the number of vari-
ants per element by V, there are VN possible combinations. Even for modest numbers that can yield a 
large value; 10 elements with 5 variants each yields nearly 10 million possible combinations. Yet, even 
that understates the size of the search space, since those numbers are typical of what (Murmann and 
Frenken 2006) term the “first-order subsystem technology cycle” (e.g., for early glider design as shown 
in their Table 3 on page 940). Below that level are second-order subsystems and components, each of 
which has its own potentially large search space.
8  The density function can be defined formally as

 
  Due to the granularity of actual innovation processes, the elements of the vector ε cannot in fact be 
taken arbitrarily close to zero. The assumption is that they can be brought close enough to zero to justify 
a continuum model for aggregate analysis.

f k
d
(v̂) = lim

�→0

1∏n

i=0
𝜀i

𝜖k
d

�
sk
�

���N
k,impr

d

�
sk
����

�����

�
s� ∈ N

k,impr

d

�
sk
�����v̂ −

�

2
≤v̂� s���sk� < v̂ +

�

2

������
·

1315A classical-evolutionary model of technological change



1 3

The second term appears because the derivative of the Heaviside function is the 
Dirac delta function. But, because xδ(x) = 0 for any x, the second term vanishes.

The first term in Eq.  16 is the important one. It is the expected value of 𝜈̂i 
over alternative production systems that lie beyond the selection frontier. Because 
firms are assumed to adopt candidate production systems only if they satisfy the 
selection  criterion, the first term is the expected value of the productivity growth 
rate. Indicating the expected value with angle brackets,

Comparing to Eq. 15, it can be seen that Φk
d
(�k) = �k ⋅ ⟨�̂⟩kd.

From this point forward, the scalar function Φk
d
(�k) will be referred to as the 

“generating function”, because its derivatives generate expressions for productivity 
growth rates.

It might be objected that it is not legitimate to take a derivative with respect to 
a single cost share in isolation, because cost shares must add up to one. Varying 
one cost share implies variation in at least one other cost share. However, while that 
condition must be imposed eventually, it is not formally necessary at this stage in the 
derivation. It turns out to be more convenient to introduce it at a later stage because 
the second derivatives of Φk

d
(�k) exhibit some nice properties that can be used to 

restrict the possible functional forms for a cost share-induced technological change 
model. Imposing the condition that cost shares sum to one at this point would hide 
the underlying properties, creating unnecessary analytical difficulties.

3.2.3 � Conditions a generating function must satisfy

As written, Eq. 17 is not operational, because the probability density f k
d
(�̂) is not 

known. One could be specified – that is the procedure followed by (Duménil and 
Lévy 2010), who proposed a uniform probability density on a disc. However, as 
shown by (Kemp-Benedict 2019), it is not necessary to specify the probability den-
sity, because Eq. 17 places analytically useful conditions on the possible forms for 
the generating function.

To derive the conditions, take the derivative of ⟨𝜈̂i⟩ with respect to σj,

Even without knowing the probability density f (�̂) , it is possible to say a great 
deal about the matrix M = [Mij]. This is the Jacobian matrix of the productivity 
growth rates with respect to the cost shares, and will sometimes be referred to as the 
Jacobian in this paper. It has the following features:

(16)
𝜕Φk

d

𝜕𝜎k,i
= ∫ d�̂f k

d
(�̂)𝜈̂ih

(
�k ⋅ �̂

)
+ ∫ d�̂f k

d
(�̂)𝜈̂i

(
�k ⋅ �̂

)
𝛿
(
�k ⋅ �̂

)
.

(17)⟨𝜈̂i⟩kd =
𝜕Φk

d

𝜕𝜎k,i
= ∫ d�̂f k

d
(�̂)𝜈̂ih

�
�k ⋅ �̂

�
.

(18)
𝜕⟨𝜈̂i⟩kd
𝜎k,j

=
𝜕2Φk

d

𝜕𝜎k,i𝜕𝜎k,j
= � d�̂f k

d
(�̂)𝜈̂i𝜈̂j𝛿

�
�k ⋅ �̂

� ≡ Mij.
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	M1.	 Because 𝜈̂i𝜈̂j = 𝜈̂j𝜈̂i , M is symmetric;9

	M2.	 Because (
∑

ixi𝜈̂i)(
∑

ixj𝜈̂j) = (x ⋅ �̂)2 for an arbitrary vector x, and the probability 
density is non-negative and strictly positive within part of its domain, M is non-
negative;

	M3.	 From M2 and because (
∑

i𝜎k,i𝜈̂i)𝛿(�k ⋅ �̂) = (�k ⋅ �̂)𝛿(�k ⋅ �̂) = 0 , M is positive 
semi-definite, with a null vector equal to the cost shares σk;

	M4.	 Because 𝜈̂i𝜈̂j𝛿(�k ⋅ �̂) = 0 when σk,i = 1 (and therefore all other σk,j = 0), Mi⋅ = 
M⋅i = 0 when σk,i = 1.

Furthermore, condition M3 implies that

so ⟨𝜈̂i⟩kd is homogeneous of order zero in the cost shares. Because ⟨𝜈̂i⟩kd is itself a 
derivative of Φk

d
(�k) from Eq. 17, condition M3 implies that the generating function 

Φk
d
(�k) is homogeneous of order one in the cost shares.
Importantly, the conditions M1-M4 hold regardless of the details of the specific 

search distance d undertaken by unit k or the probability density functions f k
d
(�̂) . 

Instead, they follow from the selection frontier and the fact that probability densities 
are non-negative. These results provide guidelines for suggesting candidate aggre-
gate models for cost share-induced technological change, which is the procedure fol-
lowed in this paper.

This approach – proposing candidate aggregate functional forms that meet cri-
teria derived from a microeconomic analysis – can be distinguished from the more 
conventional approach to NK models, in which aggregate results are derived from 
candidate firm-level functional forms. The motivation for following this approach is 
twofold. First, either choice entails model-specific assumptions. Second, as Shaikh 
(2016, p. 101ff.) notes, there are good reasons to specify functions at the aggregate 
level for macroeconomic analysis, because a variety of microeconomic specifica-
tions can give rise to the same aggregate model.

The strategy pursued in this paper, of constraining an aggregate model through 
the construction of a microeconomic model of which some features remain unspeci-
fied (e.g., search efficiency or the density function), opens the possibility for analyti-
cal or simulation exercises to further constrain the aggregate functional form. Con-
ditions M1-M4 can be seen as a minimal set.

3.3 � Aggregating across multiple units

To aggregate across multiple units, the model assumes that the different units pro-
duce a comparable output and, for the output and all inputs, there are well-defined 
anchor prices. Different units might pay prices somewhat higher or lower than the 

(19)
n�
j=0

𝜎k,j
𝜕⟨𝜈̂i⟩kd
𝜎k,j

= 0,

9  This is also true by construction, since the matrix of second derivatives of a smooth scalar function is 
symmetric.
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anchor – for example, a large firm might buy at a discount due to high volume 
and a stable customer relationship, and one firm might sell into a high-end market 
while another sells into a mid-level market – but the set of prices is assumed to 
move together with the anchor, with price differentials absorbed in productivities.10 
Every unit therefore sells into a market with anchor price P and input prices pi, i 
∈{1,…,n}, and produces an output Yk that is comparable to the output of other units.

Aggregate output from all units is

while the share of output is αk = Yk/Y. Total demand Qi for the i th input across all 
units is

where νk,i = νi(sk). The share of demand across units is denoted βk,i = (Yk/νk,i)/Qi.
The growth rate of total output can be calculated from the above. Using standard 

results for growth rates, and working to first order in the growth rate, the result is

The growth rate of the quantity of input is similarly given by

The growth rate of the average productivity of input i, νi, across all units can be 
calculated to first order from these expressions,

The result is a sum of two terms. As indicated, the first term captures compo-
sitional changes with no technological change within units. The second term is 
the average productivity change across units, weighted by the unit’s share of total 
demand for the input.

(20)Y =
∑
k

Yk,

(21)Qi =
∑
k

Yk

�k,i
,

(22)Ŷ =
∑
k

𝛼kŶk.

(23)Q̂i =
∑
k

𝛽k,i
(
Ŷk + 𝜈̂k,i

)
.

(24)
𝜈̂i = Ŷ − Q̂i =

∑
k

(
𝛼k − 𝛽k,i

)
Ŷk

�������������������
composition

+
∑
k

𝛽k,i𝜈̂k,i

�������
productivity change

.

10  This assumption is compatible with using national accounts data for empirical macroeconomic mod-
eling. No matter how disaggregated the input-output table may be, the sectors that enter into it include 
a very large number of firms with different characteristics. Nevertheless, the sectoral price indices and 
sector-by-sector technical coefficients are taken to be broadly representative.
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3.3.1 � The aggregate generating function

The cost share of input i for unit k can be written in terms of the average cost 
share σi = piQi/PY as

The aggregate function Φ(σ) can then be defined as the production-weighted 
share of the unit-level Φk

d
(�k),

Taking the partial derivative of this expression with respect to σi and applying 
Eq. 17 gives the result

The final expression is the second term in Eq. 24: average productivity growth 
across units. Thus, the key feature of the unit-level Φk

d
(�k) – that their first partial 

derivatives are productivity growth rates – carries over to the aggregate expres-
sion. The difference between the unit-level and aggregate expressions is an addi-
tional term in Eq. 24 arising from compositional changes.

3.3.2 � Conditions for the aggregate generating function

Multiplying Eq. 27 by σi and summing gives

From Eq. 25, the product σiβk,i is equal to αkσk,i, so this is

This result shows that Φ(σ), like the unit-level Φk
d
(�k) , is homogeneous of 

order one, so its partial derivatives are homogeneous of order zero; this is equiv-
alent to condition M3 from above. What is more, the matrix of second partial 
derivatives of any smooth continuous function is symmetric, including those of 
Φ(σ), so condition M1 is also satisfied. Because shares must always be less than 
or equal to one, if the average σi = 1 for any input i, then it must be true for every 
unit, so that condition M4 is satisfied as well.

(25)�k,i =
piQi,k

PYk
=

pi

PYk

Yk

�i,k
=

�k,i

�k

piQi

PY
=

�k,i

�k
�i.

(26)Φ(�) ≡ ∑
k

�kΦ
k
d
(�k) =

∑
k

�kΦ
k
d

({
�k,i

�k
�i

})
.

(27)
𝜕Φ(�)

𝜕𝜎i
=
�
k

𝛼k
𝛽k,i

𝛼k
⟨𝜈̂i⟩kd =

�
k

𝛽k,i⟨𝜈̂i⟩kd.

(28)
n�
i=0

𝜎i
𝜕Φ(�)

𝜕𝜎i
=
�
k

n�
i=0

𝜎i𝛽k,i⟨𝜈̂i⟩kd.

(29)
n�
i=0

𝜎i
𝜕Φ(�)

𝜕𝜎i
=
�
k

𝛼k

n�
i=0

𝜎k,i⟨𝜈̂i⟩kd =
n�
i=0

𝛼kΦ
k
d
(�k) = Φ(�).
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For condition M2 it is necessary to take the second partial derivative of Eq. 27 
with respect to σj, which is

Multiplying on the left and right by an arbitrary vector x, the result is

But the quantity in parenthesis is the product on the left and right by a vector with 
elements xiβk,i of the unit-level matrix elements Mij. These are all non-negative from 
condition M2, as are the αk, so the sum is non-negative as well. This means that the 
left-hand side is non-negative, so the aggregate Φ(σk) satisfies condition M2.

3.4 � Applying the model in practice

The conclusion from the derivation above is that the aggregate generating func-
tion Φ(σ) satisfies all of the conditions M1-M4 that are satisfied by the unit-level 
functions. Moreover, the first partial derivatives of the function with respect to cost 
shares gives the contribution to aggregate productivity growth rates arising from 
unit-level productivity changes in Eq. 24. This gives a way to construct candidate 
functional forms for a cost share-induced model of productivity change:

1.	 Propose a scalar function Φ(σ) that is homogeneous of order one in the cost 
shares, to ensure that condition M3 is satisfied;

2.	 Take partial derivatives with respect to cost shares to find productivity growth 
rates, thereby ensuring condition M1;

3.	 Constrain parameters such that the Jacobian matrix ∂Φ/∂σi∂σj satisfies conditions 
M2 and M4.

4 � A candidate functional form

This section presents a reasonably flexible candidate functional form for Φ that can 
generate a model of cost share-induced technological change satisfying the condi-
tions M1-M4. As shown below, the probability density can be a linear combination 
of probability densities, so a functional form can be a linear combination of any 
viable functional form. Thus, the ones considered below can be combined with suit-
able weights. This is done in the final subsection in this section.

4.1 � Linear generating function

The simplest candidate function of order one in the cost shares is the linear function

(30)
𝜕2Φ(�)

𝜕𝜎i𝜕𝜎j
=
�
k

𝛽k,i𝛽k,j

𝛼k

𝜕⟨𝜈̂i⟩kd
𝜕𝜎j

.

(31)
n�
i=0

n�
j=0

xi
𝜕2Φ(�)

𝜕𝜎i𝜕𝜎j
xj =

�
k

1

𝛼k

�
n�
i=0

n�
j=0

xi𝛽k,i
𝜕⟨𝜈̂i⟩kd
𝜕𝜎j

xj𝛽k,j

�
.
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Taking first partial derivatives, productivity growth is found to be

This is the standard form in post-Keynesian models, with ⟨𝜅̂⟩ = 0 and ⟨𝜆̂⟩ taking 
the Kaldor-Verdoorn form. As shown in Kemp-Benedict (2019), an expanded ver-
sion of the Kaldor-Verdoorn law is consistent with the classical-evolutionary model.

4.2 � CES‑type generating function

For an arbitrary number of inputs, a CES-type function provides a candidate gener-
ating function:

However, it is important to recognize that while this is a model of technological 
change and the functional form resembles that of a CES function, this expression 
does not have the same interpretation of a constant elasticity of substitution. Rather, 
it is a convenient functional form of order one in the cost shares.

The requirement that the bi sum to one in Eq. 34 is a convention, so that A is the 
dimensioned quantity (with dimensions of 1/time). Assuming the generating func-
tion given in Eq. 34, the expected productivity growth rates are given by

Taking a further derivative with respect to the same cost share,

If A and the bi are all positive, then this expression is non-negative – and there-
fore satisfies condition M2 – only if k ≥ 1. Taking the derivative with respect to a 
different cost share σj, where j≠i, gives

If k > 1, then this expression is negative or zero. This means that unless k = 0, all 
inputs act as substitutes, at least to first order: a rise in the cost share of one input leads to  

(32)Φ = a(t) ⋅ �.

(33)⟨𝜈̂i⟩ = 𝜕Φ

𝜕𝜎i
= ai(t).

(34)Φ = A

(
n∑
i=0

bi�
k
i

) 1

k

,

n∑
i=0

bi = 1.

(35)⟨𝜈̂i⟩ = 𝜕Φ

𝜕𝜎i
= Abi𝜎

k−1
i

�
n�
i=0

bi𝜎
k
i

� 1

k
−1

.

(36)𝜕⟨𝜈̂i⟩
𝜕𝜎i

= (k − 1)Abi𝜎
k−2
i

�
n�
i=0

bi𝜎
k
i

� 1

k
−1�

1 −
bi𝜎

k
i∑n

i=0
bi𝜎

k
i

�
.

(37)𝜕⟨𝜈̂i⟩
𝜕𝜎j

= (1 − k)Abibj𝜎
k−1
i

𝜎k−1
j

�
n�
i=0

bi𝜎
k
i

� 1

k
−2

, j ≠ i.
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both a rise in the productivity of that input and a fall (or no change) in the productivity 
of all other inputs, other things remaining the same. If that is not the case, then another 
functional form might be more suitable. However, it may often be the case, even when 
casual observation suggests otherwise. For example, rising labor productivity is often 
accompanied by falling capital and energy intensity in the first instance, suggesting 
that perhaps energy and capital must always rise and fall together. But a rise in the 
energy cost share would most likely be addressed by investment in energy-saving capi-
tal goods. The relevant question is, what is the first-order impact of a rise in the cost 
share of an input? For many inputs, the answer will be, “No change,” while others will 
be increased in order to compensate for reduced use of the costly input. Complementa-
rity is a second-order phenomenon arising from the imposition of the selection frontier 
and the requirement that cost shares sum to one.

The CES-type functional form satisfies the criterion that the Jacobian matrix ele-
ments should go to zero when the corresponding cost share goes to one, as long as k 
≥ 1. If σi = 1 while all others are zero, then

and Eq. 36 is equal to zero. For the off-diagonal elements, the fact that σj = 0 for j≠i 
means that Eq. 37 is equal to zero, as long as k ≥ 1.

These results imply that a CES-type function satisfies all of the conditions M1-M4 for 
the Jacobian matrix as long as k ≥ 1. The interesting case is when k is strictly greater than 
one; while k = 1 is acceptable, it reduces to the constant productivity growth function.

4.3 � Linear combinations of probabilities and R&D expenditure

In some cases, the probability distribution might be best expressed as a linear com-
bination of probability distributions,

In that case, the expected values of the productivity growth rates can be written 
as a weighted sum, using the same weights,

where 〈⋅〉k is the expectation with respect to density fk.
This rule is particularly useful for the functional form assumed by Dosi et  al. 

(2010) and Caiani et al. (2019).11 In those models,

(38)
bi�

k
i∑n

i=0
bi�

k
i

= 1

(39)f (�̂) =
∑
k

wkfk(�̂),
∑
k

wk = 1.

(40)⟨�̂⟩ = �
k

wk⟨�̂⟩k,

11  Those papers embed technological change within larger agent-based models in order to explore the 
interaction between Keynesian and Schumpterian dynamics (Dosi et  al. 2010) and between inequality 
and innovation (Caiani et al. 2019). This paper takes inspiration from the way in which they introduced 
R&D expenditure into their technological change sub-models, but does not explore them further.
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where 𝜃 is the probability of acquiring a candidate innovation, and fA is the prob-
ability density of achieving a particular set of productivity growth rates given that an 
innovation has been acquired. Because ⟨�̂⟩ = 0 if the probability density is 𝛿(�̂) , the 
corresponding expectation is

(Dosi et al. 2010) and (Caiani et al. 2019) assume that the probability of acquir-
ing a candidate innovation is zero if R&D expenditure D is zero and increases to 
100% probability asymptotically as D rises. Specifically, they assume

While this assumption is prima facie plausible, some incidental expenditure of 
time and financial resources occurs continually in most settings. That expenditure 
will not be reflected in reported R&D costs. An alternative assumption might be

4.4 � Changing variables

Suppose that the probability density function can be written in the following form,

where S is a rotational and scaling matrix. A rotation might be called for if it is more 
likely to find technologies with combinations of productivity growth rates; for exam-
ple, if there are ample opportunities for reducing labor input by increasing capital 
expenditure, but very few where both labor and capital productivities rise simulta-
neously. A scaling is called for if the possibilities for productivity improvement in 
one particular input shrink over time. This second possibility is true for physically 
constrained processes, in which the conversion efficiencies from raw material to pro-
cessed goods cannot be raised above a certain level – waste can be reduced, but 1 kg 
of flour will always require at least 1 kg of wheat.

In such cases, a change of variables from �̂ to x = S
−1

⋅ �̂ leads to the following 
changes. First, because the probability distribution is a density,

Second, because the rest of the integrand consists of ordinary functions,

A generating function for the distribution g can be defined with respect to a set of 
“pseudo-shares” τ, which need not sum to one,

(41)f (�̂) = 𝜃fA(�̂) + (1 − 𝜃)𝛿(�̂),

(42)⟨�̂⟩ = 𝜃⟨�̂⟩A.

(43)� = 1 − e−�D.

(44)𝜃 = 1 −
(
1 − 𝜃min

)
e−𝜁D, 0 < 𝜃min < 1.

(45)f (�̂) = g(S−1 ⋅ �̂),

(46)d�̂f (�̂) = d�̂g(S−1 ⋅ �̂) = dxg(x).

(47)� ⋅ �̂h(� ⋅ �̂) = � ⋅ S ⋅ xh(� ⋅ S ⋅ x).
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The generating function in terms of the proper shares, which do sum to one, is 
then

In this way, a generating function that takes certain types of constraints into 
account can be expressed in terms of a possibly simpler functional form.

To take the example from above of physically restricted productivities, a scaling 
matrix might have the form

With such a scaling matrix, as productivities approach their maximum levels 
�max
i

 , productivity growth slows asymptotically.

4.5 � A flexible functional form

In this section different elements are combined to create a unified model. First, 
construct a linear combination of the constant productivity growth and CES-type 
functions,

Second, introduce R&D expenditure using the parameter 𝜃 from Eq. 44,

Finally, place physical limits on selected productivities using the (diagonal) scal-
ing matrix S from Eq. 50. This gives the final expression for the generating function,

The model of cost share-induced technological change is found by taking partial 
derivatives of the generating function with respect to cost shares,

As a further step, embodied technological change and increasing returns to 
scale can be captured by making the ai depend on the sectoral growth rate g 

(48)Φg(�) ≡ � dx� ⋅ xh(� ⋅ x)g(x).

(49)Φ(�) = Φg(� ⋅ S).

(50)S =

⎡
⎢⎢⎢⎣

1 −
�0

�max
0

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1 −
�n

�max
n

⎤
⎥⎥⎥⎦
.

(51)Φ1(x) = a(t) ⋅ x + A

(
n∑
i=0

bix
k
i

) 1

k

,

n∑
i=0

bi = 1.

(52)Φ2(x) = Φ1(�x).

(53)Φ(�) = Φ2(� ⋅ S) = Φ1(�� ⋅ S).

(54)⟨𝜈̂i⟩ = 𝜃Siiai(t) + A𝜃kSk
ii
bi𝜎

k−1
i

�
n�
i=0

bi𝜃
kSk

ii
𝜎k
i

� 1

k
−1

.
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(Metcalfe and Foster 2010). Indeed, as shown in Kemp-Benedict (2019, pp. 
10-12), the coefficient on growth can be a fully independent cost share-depend-
ent function. Maintaining the simpler assumption that there are no cross-terms 
between cost shares and sector growth rates,

The result is a flexible functional form for an aggregate model of cost share-
induced technological change that satisfies conditions (the conditions M1-M4) 
derived from an evolutionary microeconomic model.

5 � Applications

Cost share-induced technological change is only part of the technological 
change dynamic. Following the introduction of an innovation, the innovating 
firms enjoy temporary monopoly rents. However, as other firms emulate them, 
competition through innovation gives way to price competition, while workers 
bargain, more or less successfully, for a share of the increased revenues.

The combination of new factor productivities, through innovation, and factor 
costs, through competitive price and wage setting, results in new cost shares. 
The outcome depends on how prices and wages are set. For example, (Okishio 
1961) assumed that the wage was fixed, while competition for capitals drove 
profit rates to a common level. The Okishio theorem states that under these con-
ditions the profit rate must rise, contradicting Marx, but as (Okishio 2001) later 
noted, the result is ambiguous if the wage can adjust.

While a fixed wage rate was a standard assumption of the classical economists 
of the 18th and 19th centuries, contemporary classical economists often impose 
a fixed wage share (Foley et  al. 2019). If capital and labor are the only two 
inputs to production, this is equivalent to a common post-Keynesian assump-
tion of a fixed markup. However, numerous variants are observed within firms 
(Lee 1994), some of which have been incorporated into post-Keynesian models 
(Lavoie 2014, p. 165ff.). Among the variants is target-return pricing, in which 
firms set their markups in order to achieve a particular profit rate.

In this section, three different applications are presented. The first combines 
cost share-induced technological change with target-return pricing in a two-fac-
tor, one-sector model in order to show how this particular combination gener-
ates Harrod-neutral technological change as a long-run tendency. The second 
shows how cost share-induced technological change stabilizes prices in a two-
sector model. The third is an empirical analysis that applies the flexible func-
tional form of the previous section to the US economy from 1970-2019. In each 
example, the focus is on the contribution to average productivity change from 
unit-level productivity changes – the second term in Eq. 24 – and ignores pro-
ductivity growth due to compositional changes.

(55)ai = ai0 + ai1g.
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5.1 � Labor and capital inputs with target‑return pricing

The first example takes the simplest case for the cost share-induced technologi-
cal change model, in which capital and labor are the only inputs to production, and 
combines it with target-return pricing. The example illustrates several points: that the 
theory elaborated in this paper can substantially reduce the number of free parameters 
in macroeconomic models; that the price-productivity cycle survives aggregation; and 
that this particular pricing strategy produces Harrod-neutral technological change as a 
long-run tendency.

5.1.1 � Applying the conditions

The demonstration starts with the expected values of the productivity growth rates 
rather than the generating function. Notation for cost shares is conventional: π, for the 
profit share, and ω, for the wage share. The corresponding productivities are κ and λ.

Condition M1, that the Jacobian of productivity growth rates with respect to cost 
shares is symmetric, implies

Condition M3, that the cost shares are a null vector of the Jacobian, implies both

and

This is three equations for four entries in the Jacobian matrix, which means that 
there is a single independent entry, say M = 𝜕⟨𝜅̂⟩∕𝜕𝜋 . Because the Jacobian matrix 
is positive semi-definite (condition M3), the independent entry must be non-negative: 
M ≥ 0. Moreover, from condition M4, it must be zero, M = 0, when π = 1 and ω = 0. 
Together, these conditions imply that M is either identically zero, or is nonzero at 
some cost shares but is zero at at least one point, showing that M cannot be a nonzero 
constant.

The full Jacobian matrix can now be found by substituting M for 𝜕⟨𝜅̂⟩∕𝜕𝜋 in Eq. 57 
and using Eqs. 56 and 58. The result is

(56)𝜕⟨𝜅̂⟩
𝜕𝜔

=
𝜕⟨𝜆̂⟩
𝜕𝜋

.

(57)𝜋
𝜕⟨𝜅̂⟩
𝜕𝜋

+ 𝜔
𝜕⟨𝜅̂⟩
𝜕𝜔

= 0

(58)𝜔
𝜕⟨𝜆̂⟩
𝜕𝜔

+ 𝜋
𝜕⟨𝜆̂⟩
𝜕𝜋

= 0.

(59)M =

�
𝜕⟨𝜅̂⟩
𝜕𝜋

𝜕⟨𝜅̂⟩
𝜕𝜔

𝜕⟨𝜆̂⟩
𝜕𝜋

𝜕⟨𝜆̂⟩
𝜕𝜔

�
=

�
M −

𝜋

𝜔
M

−
𝜋

𝜔
M

�
𝜋

𝜔

�2

M

�
.
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5.1.2 � Total change in productivity growth rate

The Jacobian matrix gives the partial derivatives of the productivity growth rates 
with respect to cost shares. The total change in one of the productivity growth rates 
is given by summing over all of the partial derivatives multiplied by the changes in 
individual cost shares.

It is at this point that the condition that cost shares sum to one becomes use-
ful. Prior to this point, it would have obscured the properties of the Jacobian matrix 
summarized in conditions M1-M4, but now it ensures that if the profit share were to 
change by Δπ, then the wage share must, of necessity, change by −Δπ.

The total first-order change in the productivity growth rate under such a change 
would be

5.1.3 � Introducing target‑return pricing at the unit level

Equation  60 is as far as the conditions M1-M4 take us, but that is pretty far: the 
number of potentially independent functions in the Jacobian matrix is reduced from 
four to one, and the remaining function must satisfy additional criteria. However, as 
an economic model it is not complete, because prices will subsequently change in 
light of changing productivities and possibly other conditions, leading to a new set 
of cost shares.

This recursive dynamic is an essential feature of cost share-induced technologi-
cal change models. In some of those models the pricing formula is very simple: a 
constant wage or wage share. However, other pricing formulae are possible. This is 
a positive feature of cost share-induced technological change models, because the 
separation between innovation and pricing allows for a variety of different assump-
tions about how prices and wages are set.

To take a concrete and important example, suppose that each unit k applies target-
return pricing, in which it adjusts prices to reach a (possibly unit-specific) target 
profit rate rk. Then,

Rearranging this equation shows that prices are adjusted such that

5.1.4 � Finding an aggregate expression

Equation  62 is a unit-level expression, including for the productivity growth rate. 
What is more, the unit-level productivity growth rate is the realized value rather 

(60)Δ⟨𝜅̂⟩ = Δ𝜋
�
1 +

𝜋

𝜔

�
M =

Δ𝜋

1 − 𝜋
M.

(61)Δrk = Δ(�k�k) ≃ �kΔ�k + �kΔ�k = 0.

(62)Δ𝜋k = −𝜋k
Δ𝜅k

𝜅k
= −𝜋k𝜅̂k.
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than the expectation. However, because 𝜅̂k does not appear on the left-hand side 
Eq. 62, and the right-hand side is linear in 𝜅̂k , taking the expectation with Eq. 17 is 
straightforward:

The aggregate expression is found by averaging both sides of this equation across 
units, weighted by production shares αk,

Because αkπk = βk,ππ from Eq. 25, and 
∑

k�k,� = 1 , this becomes

Substituting this expression into Eq. 60 gives

This is a macroeconomic expression, derived through explicit aggregation from a 
micro level model.

5.1.5 � Harrod‑neutral technological change

It is possible that M is identically zero. In that case, Eq.  66 says simply that the 
capital productivity growth rate is a constant. The more interesting case is one in 
which M is nonzero away from π = 1. Because M is positive, Eq. 66 exhibits a stable 
dynamic, tending towards ⟨𝜅̂⟩ = 0 . That is, it tends towards Kaldor’s stylized fact of 
constant capital productivity.

What is more, from Eq. 65, when ⟨𝜅̂⟩ = 0 , the profit share is not changing, which 
is another of Kaldor’s stylized facts. Thus, for a generic two-factor model, target-
return pricing produces an equilibrium position that features Kaldor’s stylized facts 
of constant capital productivity and profit share.

Labor productivity growth is unconstrained. At the equilibrium, cost shares are 
not changing, so the labor productivity growth rate is a constant as well. This model 
therefore yields Harrod-neutral technological change as a long-run tendency, a result 
that was noted in Kemp-Benedict (2019).

Other pricing and wage-setting strategies would give different results. For exam-
ple, a classical assumption of constant (conventional) wage share would imply 
Δπ = 0 and thus Δ⟨𝜅̂⟩ = 0 from Eq. 60. If ⟨𝜅̂⟩ is negative at the outset, then it will 
remain negative, and the pursuit of profitability will result in the Marxian result of a 
continually declining profit rate.

As this example makes clear, in theories of cost share-induced technological 
change, price and wage-setting decisions are separate from innovation decisions. 
Just as in post-Keynesian theory the analytical separation of saving decisions from 
investment decisions leads to such surprising results as the paradox of thrift, the 

(63)Δ𝜋k = −𝜋k⟨𝜅̂⟩kd.

(64)
�
k

𝛼kΔ𝜋k = −
�
k

𝛼k𝜋k⟨𝜅̂⟩kd.

(65)Δ𝜋 = −𝜋
�
k

𝛽k⟨𝜅̂⟩kd = −𝜋⟨𝜅̂⟩.

(66)Δ⟨𝜅̂⟩ = −
𝜋

1 − 𝜋
M⟨𝜅̂⟩.
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separation of innovation from pricing in classical theory results in unintended mac-
roeconomic outcomes, which are reflected in a perpetually renewed, and perpetually 
frustrated, pursuit of profit.

5.2 � Price stability in a two‑sector model

Shiozawa et al. (2019), through their minimal price theorem, demonstrated that in 
an interlinked economy with many products and sectors, prices will fall more or less 
rapidly to a stable minimal level if all producers seek to minimize their costs. The 
theorem assumes an existing and stable set of techniques. Noting that technological 
change will alter the set of techniques, Shiozawa et al. (2019, pp. 86-87) argued that 
one cause of price change is technological change.

This example will show that cost share-induced technological change can in fact 
stabilize prices in a multi-sector setting. The reason for this is that the technical 
coefficients in an input-output matrix are both (inverse) productivities and, when 
adjusted for price, cost shares. While all cost shares can be represented as a price 
ratio divided by a productivity, the relevant prices for the intermediate cost shares 
are determined within a price system that is itself determined by the technical coef-
ficients. Cost share-induced technological change tends to yield steady cost shares 
and productivity growth rates as long-run tendencies, so models with intermediate 
demand tend to generate stable relative prices and trendless technical coefficients.12

This claim will be illustrated with a concrete example – a “toy model” that cap-
tures some key features of a multi-sector economy. It has two sectors: an “extractive 
sector” that takes a natural resource and provides only intermediate goods; and a 
“final goods sector” that provides all final goods but also intermediate goods.

5.2.1 � The price system

The price equations for the economy are

In these equations, a subscript f refers to the final goods sector and an e to the 
extractive sector. The price pR is the resource price, and ν is the resource productiv-
ity in the extractive sector. Sector wages are given by wf, we and labor productivities 
by λf, λe. The technical coefficients are denoted aij so that, for example, af﻿﻿f is pur-
chases of final goods by the final goods sector and aef purchases of extractive sector 
goods by the final goods sector.

(67a)pf = �f

(
wf

�f
+ pf aff + peaef

)
,

(67b)pe = �e

(
we

�e
+ peaee + pf afe +

pR

�

)
.

12  There are conditions under which prices or productivities will not stabilize. Hence the claim is that 
cost share-induced technological change can, but not necessarily will, stabilize prices in a multi-sector 
economy.
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The μi in Eqns. (67a, b) are profit margins, which are related to the profit shares 
via πi = 1 − 1/μi. Wage shares are given by ωi = wi/piλi, and the resource cost share 
in the extractive sector by ρ = pR/peν. The intermediate cost shares αij are equal to

5.2.2 � Dynamics

The cost share-induced technological change sub-model is specified through sector-
specific generating functions,

From Eq. 67, prices are set by fixed markups μf and μe, with full and immediate 
pass-through of costs. As a result, the profit shares do not change. A further assump-
tion is that nominal wages track productivity, so the ratios wi/λi do not change.

5.2.3 � Specifying parameters and initial values

The model above was run with a specific set of parameter values.13 They are not 
meant to represent any particular economy, so while a dollar sign $ is used to repre-
sent a currency unit, it does not represent the US dollar.

Sector prices are initialized to pf = pe = $1/unit output. The resource price is 
$30/resource unit. Markups are (μf,μe) = (1.32,1.29). Labor productivities are initial-
ized to (λf,λe) = (1000,1500) units/worker-day, which, when combined with labor 
productivities and the initial price levels, gives initial wage rates of $360 and $338/
worker-day. Capital productivities in both sectors are initialized to κ = 0.4/year, and 
resource productivity to 100 extractive sector units/resource unit. Technical coeffi-
cients are initialized to

Taken together, these initial values determine the initial cost shares.
The generating functions were assumed to be as in Eq. 54, with 𝜃 = 1, no trans-

formation (Sii = 1), and constant coefficients. The k parameter was set to 1.5 for both 
sectors and A to 1/year. In the final goods sector, the weights b were set to (0.2, 0.6, 
0.1, 0.1) for the cost shares (πf,ωf,αf﻿﻿f,αef). In the extractive sector, they were set to 
(0.2, 0.5, 0.1, 0.1, 0.1) for the cost shares (πe,ωe,αee,αfe,ρ). The constant a terms were 

(68)�ij =
pi

pj
aij.

(69a)Φf = Φf (�f ,�f , �ff , �ef ),

(69b)Φe = Φe(�e,�e, �ee, �fe, �).

(70)
[
aff afe
aef aee

]
=

[
0.30 0.05

0.10 0.20

]
.

13  The Scilab script is available from the author upon request.
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determined by initializing labor productivity growth rates 𝜆̂f ,e to 1.5%/year and all 
other productivity growth rates to zero.

5.2.4 � Running the simulation

The model simulation was run for 100 years. At year 20, there is a one-time and per-
manent shock to the resource price, which rises by 10%, from $30/resource unit to 
$33/resource unit. As can be seen in Eq. 67, after an initial period in which the ris-
ing resource cost is immediately passed through by the extractive sector to the final 
goods sector, and then passed along by the final goods sector, prices begin to return 
to their original values. This occurs because of technological change driven by ris-
ing cost shares (Fig. 1).

The impact of the changing cost shares on technological change can be seen 
in Fig.  2. The 10% rise in resource price is permanent, and it translates into a 

Fig. 1   Prices  in the final and 
extractive goods sectors
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corresponding 10% rise in resource productivity that is approached asymptotically 
over time. As the extractive sector price rises, it initially drives the final goods sec-
tor to save on the output of the extractive sector. However, as extractive sector prices 
return to their prior levels, the final goods sector makes greater use of the extractive 
sector’s output, returning the technical coefficient to its original level. Note that this 
does not mean that it returns to the same technique. For example, the resource might 
be used to produce both fuel (e.g., woodfuel or petroleum) and materials (e.g., wood 
beams or plastics). The initial price rise might drive greater efficiency in fuel use, 
but subsequent resource productivity improvements lower costs, inviting expanded 
use of materials.

The long-run impact of the jump in resource price is more efficient use of 
resources in the economy as a whole through an increase in resource productivity 
ν. Otherwise, the economy returns to its original state. The nominal resource price 
remains at its new, higher, level (an exogenous assumption), but other prices return 
to their original levels.

The responsiveness of the productivity-price system to a shock depends on the 
availability of productivity-enhancing technology and the speed with which it can 
be brought into production. That can only be understood through additional analysis, 
such as technical assessments or empirical testing. To illustrate how such a question 
might be answered, the next example looks at capital, labor, and energy inputs into 
the US economy.

5.3 � Energy costs and technological change in the US

The final example is an application of the functional form given in Eq.  54 to an 
actual economy: the US from 1970 to 2019. For this purpose, a one-sector model is 
constructed with capital, labor, and fossil energy inputs (where “fossil” includes oil 
and natural gas, but excludes coal). The model is meant to be illustrative, rather than 
diagnostic, in keeping with the goals of this paper. Nevertheless, some of the results 
are interesting and will be discussed below.

5.3.1 � Data

The data needed to fit the model are shares of GDP and productivities for capital, 
labor, and fossil energy. Time series for the capital stock and GDP are given by the 
corresponding “national accounts” variables in Penn World Tables  10.0 (PWT10: 
see Feenstra et  al. 2015): real GDP (rgdpna) and capital stock (rnna) at constant 
2017 prices. Employment is given by the the PWT10 variable “empl” and the labor 
share by the variable “labsh”. Energy rents for crude oil and natural gas are given by 
World Bank World Development Indicators (WDI).14

Consumption of petroleum and natural gas for industrial purposes is taken from 
data collected by the US Energy Information Adminstration (EIA) April 2022 

14  According to the World Bank’s methodology (World Bank 2011), fossil resource rents are effectively 
the profits of fossil extractive sectors as a share of GDP.
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Monthly Energy Review. The heat content of petroleum consumption for the com-
mercial sectors is taken from Table 3.8a, for industry from Table 3.8b, and for elec-
tricity generation from table 3.8c. Natural gas consumption in volumetric terms for 
the commercial, industrial, power generation, and pipeline transport sectors is taken 
from Table 4.3 and converted using EIA factors for the heat content of natural gas.15

Labor productivity is computed as GDP divided by employment, capital produc-
tivity as GDP divided by the capital stock, and energy productivity as GDP divided 
by the total heat content of petroleum and natural gas by economically productive 
sectors. The labor cost share is given by the PWT10 value, fossil energy by the sum 
of the WDI crude oil and natural gas rent shares, and the profit share as the balance. 
The profit rate is estimated as the profit share multiplied by the capital productivity.
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Fig. 3   Historical wage share
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Fig. 4   Estimated productivity of oil and natural gas consumption

15  Data from the Monthly Energy Review can be downloaded from https://​www.​eia.​gov/​total​energy/​data/​
brows​er/. The heat content of natural gas is available from https://​www.​eia.​gov/​dnav/​ng/​ng_​cons_​heat_​
dcu_​nus_a.​htm. The time series for heat content begin in 2003; the 2003 values were used for earlier 
years.
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5.3.2 � Historical trends

Some trends are of interest. The first, which has been widely observed, is a gen-
eral downward trend in the wage share (Fig.  3). The trend paused in the mid-
1980s, and reversed during the 1990s boom, but then resumed after 2001.

The second notable trend is that energy productivity began rising after the 
1972 oil crisis, and accelerated after the 1979 oil crisis, as shown in Fig. 4. After 
that it grew more slowly, and recently it has appeared to stabilize at around 0.7 
2017$/PJ. That apparent stabilization could be due to physical constraints, which 
could be reflected in a maximum energy productivity, as in Eq. 50. Alternatively, 
it could be due to a falling energy cost share (see Fig. 5), and therefore little pres-
sure to raise energy productivity.

The third and final trend is that the profit rate has been rising since the early 
1980s, as shown in Fig. 6. It could be rising for technical reasons or because of an 
upwardly-rising target rate. In either case, because the profit rate is changing, then 
from the first example the expectation is that there will be departures from Kaldor’s 
stylized facts. Such departures have, in fact, been seen: capital productivity and the 
profit share have generally been rising, while labor productivity growth has slowed.

1970 1980 1990 2000 2010 2020

0
1

2
3

4
Energy Rents

year

%
 o

f G
D

P

Fig. 5   Historical oil and natural gas rents
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5.3.3 � Fitting the model

The data are fit to a model of cost share-induced technological change along the 
lines of Eq. 54. R&D expenditure is not considered, so 𝜃 = 1. Also, the Kaldor-Ver-
doorn term is not included, so the ai are constants. Capital productivity is denoted 
by κ, labor productivity by λ, and energy productivity by ν. Angle brackets 〈⋅〉 are 
suppressed. The corresponding shares are π, ω, and ε.

Given the possible saturation of energy productivity in Fig. 4, a maximum energy 
productivity �max is proposed. The scaling matrix is therefore

With these assumptions, the sum that appears in parentheses in Eq. 54 is given by

In terms of this factor, the expressions for the productivity growth rates are

The model defined by Eqs. 72 and was first fitted using R’s built-in optim func-
tion using data from 1970-2000 and then compared to the entire dataset, which cov-
ers the time period 1970-2019. The sample size was therefore 90 (that is, annual 
observations of 3 parameters over 30 years), while there are 8 independent param-
eters (the bi’s sum to one, removing one degree of freedom), so there are 11 obser-
vations for each parameter. Historical and fitted values are plotted in Fig. 7 and the 
fitted parameters in Table 1.

Regarding the comparison between simulated and historical data shown in 
Fig.  7, one immediate observation is that the simulated values, particularly for 
capital and labor productivity growth rates, are much less volatile than the histor-
ical values. This is because, as implemented, the model simulates potential rather 
than realized output. While capacity utilization could have been endogenized 
in an expanded model (e.g., as in Kemp-Benedict 2020), for this example it is 
assumed to be steady, so sharp drops in utilization during recessions or abrupt 
rises during booms are not reflected in the model estimates. Once this differ-
ence is acknowledged, a further observation is that the model performs reason-
ably well out of sample; that is, over the period 2000-2019. Energy productivity 
growth is reproduced particularly well, but so are the relatively elevated capital 

(71)S =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1 −
�

�max

⎤
⎥⎥⎦
.

(72)Θ ≡
n∑
i=0

biS
k
ii
�k
i
= b��

k + b��
k +

(
1 −

�

�max

)
b��

k.

(73a)𝜅̂ = a𝜅 + Ab𝜅𝜋
k−1Θ

1

k
−1
,

(73b)𝜆̂ = a𝜆 + Ab𝜆𝜔
k−1Θ

1

k
−1
,

(73c)𝜈̂ =
(
1 −

𝜈

𝜈max

)
a𝜈 + A

(
1 −

𝜈

𝜈max

)k

b𝜈𝜀
k−1Θ

1

k
−1
.

1335A classical-evolutionary model of technological change



1 3

productivity growth rate in the 2000s and  lower labor productivity growth. The 
trends are explained by historically low wage and energy cost shares and a high 
profit share.

Regarding the parameter estimates, the maximum energy productivity, �max , 
is of particular interest. Historically, energy productivity roughly doubled in 
15 years, from around 0.2 2017$/PJ in 1970 to around 0.4 2017$/PJ in 1985, as 
shown in Fig. 4. It then underwent a second, slower rise, to 0.7 2017$/PJ, over the 
20-year period from 1985 to 2005. The estimated maximum is around 1.0 2017$/

1970 1980 1990 2000 2010 2020

−4
−2

0
2

4
Capital Productivity Growth

year

%
/y
ea

r

historical
simulated

1970 1980 1990 2000 2010 2020

−2
0

1
2

3

Labor Productivity Growth

year

%
/y
ea

r

historical
simulated

1970 1980 1990 2000 2010 2020

−5
0

5
10

Energy Productivity Growth

year

%
/y
ea

r

historical
simulated

Fig. 7   Productivity growth rates, historical and simulated: shaded area shows period used for fitting the 
model
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PJ, suggesting that further attempts to raise fossil energy productivity will face 
diminishing returns.

5.3.4 � Reflections on the model results

While the cost share-induced technological change model presented in Eqs.  72 
and may appear complex, it is in fact structurally simple, with cost shares as 
explanatory variables and productivity growth rates as dependent variables. Still, 
the model is rich enough to offer some interesting results. First, historical pro-
ductivity growth trends are broadly explained by the model, including the recent 
productivity slowdown. Some argue that the persistent slowdown is evidence of 
“secular stagnation” (e.g., see Teulings and Baldwin 2014). In this paper, slow 
labor productivity growth is the result of a declining wage share, a feature of the 
US economy that is indeed likely to persist (Taylor and Omer 2020). The causal 
chain in the model is from the supply side – a low wage share means less pres-
sure to raise labor productivity. It complements demand-side arguments linking 
distribution to slower GDP growth (e.g., Cynamon and Fazzari 2015). Taylor and 
Omer (2020) combine both supply-side and demand-side drivers in a unified anal-
ysis, albeit with a different microeconomic behavioral assumption than the one 
adopted in this paper.

Also of interest is the estimated upper bound on fossil energy productivity. If it 
reflects a real constraint, then it is one more reason to curtail fossil energy use. But 
no further reasons are needed, as climate change requires immediate action (IPCC 
2022). Severe impacts and risks are unavoidable, but to avoid yet worse impacts, 
fossil fuels must be kept in the ground (SEI 2021). This model could be used to 
assess the impact of fossil fuel prices on resource use efficiency and decarboniza-
tion, but prices cannot stand alone. As argued in (Kemp-Benedict 2018 p. 212), a 
paper that applied the model of cost share-induced technological change as pre-
sented in (Kemp-Benedict 2019) to a renewables transition, a strategy of raising fos-
sil fuel prices should be accompanied by constraints on exploration and extraction, 
as well as policies to stimulate investment in renewables.

Table 1   Fitted parameter values parameter estimate units

A 1.467 1/year
k 1.267
aκ − 0.212 1/year
aλ − 0.980 1/year
aν − 0.072 1/year
bκ 0.158
bλ 0.751
bν 0.091
�max 1.028 2017$/PJ
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6 � Discussion

This paper has explicitly constructed an aggregate classical cost share-induced 
technological change model starting from an evolutionary NK microeconomic 
model. In this way it has deepened the microeconomic foundations of the clas-
sical-Marxian evolutionary model first proposed by (Duménil and Lévy 1992), 
elaborated by the same authors (Duménil and Lévy 2010), and extended by 
(Kemp-Benedict 2019). As part of the construction, the paper introduced Dumé-
nil and Lévy’s “selection frontier” analysis to an evolutionary NK model. The 
paper further established some new results for the classical-evolutionary model, 
including the concept of a “generating function” for creating cost share-induced 
technological change models, the introduction of physical limits on factor pro-
ductivities, and the effect of R&D expenditure.

The classical-evolutionary model can explain some stylized facts. First, total fac-
tor productivity (TFP) as calculated from national accounts tends to exhibit posi-
tive growth, although it can sometimes decline. The paper showed that the selection 
frontier is equivalent to the requirement that measured TFP growth, calculated at 
prevailing prices and wages, must be positive if profit-seeking firms are to imple-
ment a potential innovation. Subsequently, prices and wages change, which then 
changes the value. Thus, the selection frontier is compatible with negative TFP 
growth but imparts a bias towards positive growth. This result arises from an evo-
lutionary process of random but purposeful discovery of incremental innovations. 
Second, as demonstrated in this paper but also shown by Julius (2005) and Kemp-
Benedict (2019), target-return pricing combined with cost share-induced technologi-
cal change gives a dynamic with an equilibrium solution characterized by Harrod-
neutral technological change. Thus, unlike in Kauffman et al. (2000), Harrod-neutral 
technological change can be derived rather than imposed on an NK model.

The aggregation procedure used in this paper assumed that incremental produc-
tivity growth is sufficiently modest, and the search space sufficiently dense, that a 
continuum approximation can hold. Those assumptions might be reasonable for 
mature sectors. However, much interesting work within evolutionary microeconom-
ics has focused on firm behavior with the emergence of new technologies (Kauff-
man et  al. 2000; Auerswald et  al. 2000; Saviotti and Pyka 2004). Indeed, that is 
central to the Schumpeterian origins of the field. The present paper suggests pos-
sible extensions to microeconomic simulation models based on the NK model. First, 
by imposing the selection frontier or, for protected niches, gradually imposing that 
criterion as a technology matures. Second, by using the discrete version of the gen-
erating function provided in Eq. 13; the gradient of that function with respect to cost 
shares gives the direction of cost share-induced technological change. Microeco-
nomic models can also shed light on the possible time evolution of the parameters 
within aggregate cost share-induced technological change models. In particular, the 
exhaustion of the search space opened by a major innovation should lead to gradu-
ally shrinking opportunities for further productivity growth.

The classical-evolutionary model is best seen as a component within larger 
models. In particular, it does not explain the composition term in the expression 
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for aggregate productivity growth in Eq.  24, nor the way in which prices and 
wages are set. Evolutionary economics has something to say about the first of 
these. The dynamics of sectors, in which firms enter, exit, grow, and wane are the 
subject of studies on firm behavior and capabilities (Helfat 2018), which may be 
mediated by interactions across value chains (Cantner et al. 2019). The aggrega-
tion process applied in this paper, which led to Eq. 24, provides a link between 
studies on firm dynamics to those of technological change.

The second topic, price and wage setting, has been extensively studied within 
Sraffian (Aspromourgos 2004) and post-Keynesian (Lee 1999; Lavoie 2001; Coutts 
and Norman 2013) economics, supplemented by classical-Marxian inspired theories 
of conflict wage setting (e.g., Goodwin 1967; Rowthorn 1977; Bhaduri and Marglin 
1990). This suggests the potential for fruitful combinations of evolutionary, clas-
sical, Sraffian, and post-Keynesian theory. To illustrate some of the possibilities, 
the paper presented two examples: a two-input, one-sector model with target-return 
pricing and a two-sector, three-input model with fixed markups. A third example, an 
empirical investigation of the US economy, reproduced historical trends both within 
and out of sample, and suggested a possible upper bound on fossil fuel productivity.

7 � Conclusion

Both evolutionary and classical economics pay particular attention to processes of 
technological change. Evolutionary theory focuses on the uncertain, groping, but 
purposeful process of discovery, while classical economics treats the role of costs 
in driving innovation in one direction or another. Duménil and Lévy (1992; 2010) 
linked the two traditions in a classical-Marxian evolutionary model of cost share-
induced technological change, and (Kemp-Benedict 2019) elaborated on their 
model. This paper deepens the evolutionary microeconomic foundations of the 
model by systematic derivation from an evolutionary NK model. As part of the deri-
vation, it was shown that Duménil and Lévy’s “selection frontier” is directly related 
to empirical measures of total factor productivity growth.

The paper presents a general approach to generating candidate functional forms 
for cost share-induced technological change. It then uses that approach to propose 
a specific functional form that takes into account both physical limits on factor pro-
ductivities and the impact of R&D expenditure and applies it to three examples, 
including an empirical model for the US economy between 1970 and 2019. The 
classical-evolutionary model thus provides a microeconomically grounded founda-
tion for macroeconomic analysis.
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