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Abstract
This paper studies the diffusion of products and behaviour with coordination effects
through social networks when agents are myopic best responders. We develop a
new network measure, the contagion threshold, that determines when a p-dominant
action—an action that is a best response when adopted by at least proportion p of an
agent’s opponents—spreads to the whole population starting from a group of players
whose size is smaller than half and independent of the population size. We show that
a p-dominant action spreads to the whole network whenever the contagion threshold
of that network is greater or equal to p. We then show that in settings where agents
regularly or occasionally experiment and choose non-optimal actions, there exists a
threshold level of experimentation below which a p-dominant action is chosen with
the highest probability in the long run. This result implies that targeted contagion,
a network-wide diffusion of actions initiated by targeting agents, is justified even in
settings where agents’ decisions are noisy.
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1 Introduction

The adoption of new products and behaviour through social influence is a well-
documented phenomenon.1 This phenomenon provides a justification for targeted
contagion, a process by which a firm initiates a cascading adoption of a product from
a relatively small group (compared to the population size) of consumers, called ini-
tial adopters, to the whole population. The feasibility of targeted contagion depends
on the structure of interactions and payoffs, and the behavioural assumptions that
underlie individual decision processes.2

This paper studies how the interaction structure and payoffs interactively deter-
mine the feasibility of targeted contagion of products and behaviour with coordi-
nation effects (i.e. where individuals benefit from coordinating their activities by
making the same decisions).3 The existing literature in this topic focuses on exam-
ining contagion in unbounded networks (Morris 2000; Oyama and Takahashi 2015).
However, most social interactions are best described by finite networks, and most of
the simplifying assumptions that are applicable to contagion dynamics in unbounded
networks do not hold for finite networks.4 Moreover, the literature does not address
the question of whether targeted contagion is economically reasonable in settings
where individuals regularly or occasionally experiment with their choices (see for
example McKelvey and Palfrey (1995), Anderson et al. (2001) and Ellison (2006)
for evidence of noisy decision making). In such settings, targeted contagion is eco-
nomically reasonable if the level of experimentation does not prevent actions from
spreading through contagion. To address these gaps in the literature, we examine the
following two questions: For a diffusion process on networks where agents are best
responders and payoffs exhibit coordination effects, which actions are contagious
and when is contagion feasible? In situations where individuals experiment with their
choices, when is it economically reasonable to engage in targeted contagion?

To address these questions, we consider two related evolutionary game models. In
Model 1, evolution with best response, we consider a diffusion process where agents,
who are myopic best responders, interact through a finite network and revise their
actions over time (Morris 2000; Oyama and Takahashi 2015). Here, myopia means
that agents choose best responses to the most recent actions taken by their network
neighbours. It captures the notion of bounded rationality; that is, in the real world,
individuals have short memories and do not worry about the long-run consequences
of their actions (Egidi et al. 1992).

1See Bass (1969), Rogers (2003) and Young (2009) among others who document evidence of the diffusion
of consumer durables and new products through social influence.
2Morris (2000), Alós-Ferrer and Weidenholzer (2008), Galeotti and Goyal (2009), Campbell (2013),
Goyal et al. (2014), Tsakas (2017) and Beaman et al. (2018) all demonstrate how the payoff and interaction
structures, and the underling behavioural assumptions determine the feasibility of targeted contagion.
3Examples of products and behaviour with coordination effects include information technologies, legal
standards, social norms, and political actions such as protests and tactical voting.
4For example, when the network is unbounded, an action is said to spread contagiously if it can spread
to the whole population starting from a finite group of initial adopters (Morris 2000). However, when the
network structure is finite, it is necessary to have knowledge of the number and identity of agents that can
trigger the contagious spread of an action.
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In Model 2, evolution with best response and mutations, we consider a diffusion
process where agents follow the structural and behavioural assumptions of Model 1,
but in addition, they regularly or occasionally make mistakes and choose actions that
are not best responses (Young 1993; Ellison 2000). Individual mistakes are either
due to deliberate experimentation where agents try-out new actions (possibly because
of lack of complete information about the game), or due to random errors in action
implementation leading agents to choose unintended actions.

We use Model 1 to examine which actions (of a coordination game) are contagious
and when contagion is feasible, and Model 2 to examine when targeted contagion is
economically reasonable in settings where agents’ decisions are noisy. Formally, an
action is contagious on a finite network if: (i) it can spread from a small group of
initial adopters, whose size is less than half and independent of the population size,
to the whole population; (ii) it is uninvadable – it can spread from a strictly smaller
group (of initial adopters) than is needed to leave a state where it is adopted by the
whole population. In Model 2, individual mistakes ensure that every configuration
of actions is played with a positive probability at any period. We define the long-
run equilibrium of this model as the configuration of actions that is played with the
highest probability in the long run. Targeted contagion is then said to be economi-
cally reasonable if the contagious action in Model 1 is also the long-run equilibrium
of Model 2 (i.e. if the long-run equilibrium is a configuration containing only the
contagious action).

We develop a new network measure – the contagion threshold – that deter-
mines when contagion is feasible in finite networks. Let aj be the p-dominant
action/strategy of a coordination game (i.e. a strategy that is a best response when
played by at least proportion p of an agent’s neighbours). The contagion threshold of
a finite network is the maximum value of p such that action aj spreads contagiously
in that network starting from the second-neighbourhood (i.e. the set of all agents
within two steps away from a given agent, with that agent included) of any agent.
This definition is similar to the definition of the contagion threshold for unbounded
networks and 2 × 2 coordination games in Morris (2000) — the contagion thresh-
old of an unbounded network is the maximum p such that aj spreads contagiously
from a finite group of agents. The difference arises because for contagion dynamics
in finite networks, it is necessary to have knowledge of the size and identity of the
initial adopters that trigger the contagious spread of a p-dominant action.

We show, for Model 1, that a p-dominant action of a coordination game, if it exists,
is contagious on any sufficiently large and strongly connected network (i.e. a net-
work where every pair of agents is connected through some path) with the contagion
threshold greater or equal to p. The set of initial adopters that trigger the contagious
spread of a p-dominant action corresponds to the smallest second-neighbourhood of
the network. The smallest second-neighbourhood of any network is independent of
the population size and it can be as small as three agents. More generally, the smallest
second-neighbourhood is smaller for networks with a lower density of connections.5

5The network density is the number of links connecting agents divided by the total number of links
possible.
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This result suggests that the cost of targeted contagion, measured as the number of
initial adopters that trigger the contagious spread of a p-dominant action, is lower
for sparsely connected than highly connected networks. We discuss this and other
implications of these results in more detail in Section 3.

For Model 2, we show that there exists a threshold level of noise below which
targeted contagion is economically reasonable. Specifically, below the threshold level
of noise, a configuration containing only a p-dominant action is the unique long-
run equilibrium in a strongly connected network with the contagion threshold greater
or equal to p. Above the threshold level of noise, noisy dynamics becomes more
prominent relative to best response dynamics, which makes contagion a less relevant
means of spreading an action to the whole population. Targeting therefore becomes
economically unreasonable because targeted agents will ultimately switch to other
actions through experimentation.

This paper is closely related to the literature that examines how the network struc-
ture affects the contagious spread of actions that exhibit coordination effects (Morris
2000; Alós-Ferrer and Weidenholzer 2008; Oyama and Takahashi 2015).6 Morris
(2000) shows that, for best response dynamics on unbounded networks, a p-dominant
strategy of a 2 × 2 coordination game is contagious if p is less or equal to the
contagion threshold. Alós-Ferrer and Weidenholzer (2008) consider a model of imi-
tation dynamics and show that, with some restrictions on the information structure, a
Pareto-dominant equilibrium of a 2 × 2 coordination game is contagious on any net-
work that is strongly connected. Oyama and Takahashi (2015) consider a model of
best response dynamics on unbounded networks and show that either a risk-dominant
or a Pareto-dominant strategy is contagious in the presence of a third dominated strat-
egy. Like Oyama and Takahashi (2015), we generalize the analysis in Morris (2000)
to multiple strategy coordination games. However, Oyama and Takahashi (2015),
focus on two types of networks – linear and non-linear networks – so that a strategy is
contagious if it can spread contagiously in either of these two networks. Our analysis
is richer in that we establish the conditions under which a strategy is contagious on
any given network. A more fundamental difference between our analysis and Morris
(2000) and Oyama and Takahashi (2015) is that we examine contagion in finite net-
works and provide steps for computing the smallest number of initial adopters needed
to trigger contagion.

Our analysis and results from Model 2 are related to the literature on stochastic
evolutionary game dynamics in networks (Ellison 1993, 2000; Blume 1995; Bern-
inghaus and Schwalbe 1996; Young 1998; Lee and Valentinyi 2000; Lee et al. 2003;
Alós-Ferrer and Weidenholzer 2007; Peski 2010; Opolot 2018, 2020). Except for
Peski (2010) and Opolot (2018, 2020), these papers focus on identifying the stochas-
tically stable states (i.e. states that are played with a positive probability at the limit of
noise) by considering specific network structures, such as a ring and 2-dimensional
grid networks. Peski (2010) considers a model of evolution with best response and

6There is a related literature on diffusion in the presence of coordination effects, for example López-
Pintado et al. (2008), Jackson and Yariv (2007), Sundararajan (2007), Galeotti et al. (2010) and Galeotti
and Goyal (2009). However, these papers study binary choice diffusion processes on random networks.
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mutations and shows that a p-dominant strategy is uniquely stochastically stable in
networks with the smallest odd degree k0 (i.e. the size of the smallest odd first-order
neighbourhood) satisfying the condition p ≤ 1

2 (1−1/k0). Following the same frame-
work, Opolot (2018) shows that a p-best response set (i.e. a subset of strategies of
a coordination game that are best responses when adopted by at least proportion p

of an agent’s neighbours) is uniquely stochastically stable in any strongly connected
network with the contagion threshold greater or equal to p; and Opolot (2020) gen-
eralizes these results by establishing the conditions under which the smallest iterated
p-best response set is uniquely stochastically stable. In contrast, we establish the con-
ditions under which a p-dominant strategy is not only stochastically stable, but also
played with the highest probability in evolutionary models with high noise levels. We
then use this result as a justification for targeted contagion in diffusion environments
where agents’ decisions are not strictly optimal.

The remainder of the paper is organized as follows. In Section 2, we introduce
Model 1 and Model 2. Section 3 derives our main results on contagion. In Section 4
we derive the main results of Model 2 and discuss their implications for targeted
contagion. Sections 5 and Appendix A offer concluding remarks and the implications
of our results for the speed of learning respectively. All lengthy proofs are contained
in the Appendix.

2 Themodel

2.1 Network, actions and payoffs

We model the diffusion of strategies (representing actions or products) of a coordi-
nation game in social networks using an evolutionary game theory framework. We
consider a finite set of players, N = {1, · · · , i, · · · , n}, connected through a social
network represented by a graph G(N, E), where E is the set of edges connecting
players in N . Let G be an n × n interaction matrix representing all connections in
G(N, E), where Gik = 1 if a link exists from i to k, and zero otherwise. We place
the following restrictions on G:

(i) G is undirected and unweighted, that is, eitherGik = Gki = 1, orGik = Gki =
0.

(ii) G is strongly connected, that is, for every pair of agents i, k ∈ N , there exists a
path of (undirected) links from i to k.

Both restrictions are simplifications that ensure that the evolutionary process
(described below) converges. Directed and/or non-strongly connected networks can
lead to cyclic interactions and/or isolated nodes, which inhibits convergence. Let Ni

be the set of direct neighbours of i, that is, Ni = {k | Gik = 1}; and let ni be the car-
dinality of Ni , also commonly referred in the social networks literature as the degree
of i.

Every player plays a coordination game with each neighbor. A coordination game
consists of a set of strategies, A = {a1, · · · , aj , · · · , am}, which we assume to be
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identical for all players, and an m × m payoff matrix, U . Let u(aj , al) be the payoff
of playing strategy aj against an opponent playing strategy al . The double, (A, U),
is a coordination game if for each aj ∈ A, u(aj , aj ) ≥ u(al, aj ) for all al �= aj . We
focus on strict symmetric coordination games where u(aj , al), for all aj , al ∈ A, is
identical for all players, and for each aj ∈ A, u(aj , aj ) > u(al, aj ) for all al �= aj .

Let Σ be the set of all mixed strategies over A so that, for any σ ∈ Σ , σ(aj ) is
the mass that σ places on aj . For player i, we write σi = (σi(a1), · · · , σi(am)) for
the distribution over A representing the proportion of i’s neighbours playing each
pure strategy. We consider linear payoffs where the total payoff that i receives from
playing strategy aj against σi is

Ui(aj | σi) =
∑

al∈A

σi(al)u(aj , al). (1)

We refer to the quadruple (A, U, N, G) as a local interaction symmetric coordination
game.

2.2 Behaviour and dynamics

Given the local interaction symmetric coordination game (A, U, N, G), we consider
an evolutionary process where players simultaneously and independently revise their
strategies at discrete times t = 1, 2, · · · . This evolutionary process suitably mod-
els the diffusion of products where agents can replace the old, spoilt or no longer
preferred products with new ones of the same type/brand, or with different com-
peting products. We consider two related evolutionary models that capture realistic
behavioural assumptions about how people react to observed behaviour:

(i) Model 1: evolution with best response, where players choose strategies that are
best responses to the strategy profile of their direct neighbours.

(ii) Model 2: evolution with best response and mutations (BRM), where, in addi-
tion to the best response behaviour of Model 1, players make mistakes with a
positive probability and choose strategies that are not best responses. Individual
mistakes can be thought of as deliberate experimentation with new strategies
(i.e. trying-out new strategies possibly due to lack of complete information
about the game), or random errors in strategy implementation leading a player
to choose an unintended strategy.

As customary in the literature of evolutionary game theory, we assume that players
are myopic best responders. That is, at every period, t , each player chooses a strategy
that is a best response to the distribution of strategies in her neighbourhood at period
t−1. The assumption of myopia captures the notion that, in the real world, individuals
have short memories and are incapable of keeping track of the entire history of play,
and that they do not worry about the long run consequences of their strategy choices
(Egidi et al. 1992).

To formalize these ideas, let lowercase bold letters (e.g. x, y, z, · · · ) denote vectors
representing profiles (configurations) of strategies. Let xi (i.e. the ith element of
configuration x) be the strategy that player i ∈ N plays in configuration x. Given
the local interaction symmetric coordination game (A, U, N, G), we write X for the
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set of all possible strategy configurations. The cardinality of X is mn, where m is
the number of strategies. Let σi(al; x) be the proportion of i’s neighbours playing
al in configuration x, and let σi(x) = (σi(a1; x), · · · , σi(am; x)) be the distribution
over A representing the proportion of i’s neighbours playing each strategy under
configuration x. Let xt be the strategy configuration at period t . Then, following (1),
the payoff to i for playing strategy aj against distribution σi(xt ) is Ui(aj , xt ) =∑

al∈A σi(al; xt )u(aj , al). The set of strategies that are best responses to σi(xt ) is
defined as

BRi(xt ) = {
aj : Ui(aj , xt ) ≥ Ui(al, xt ),∀al �= aj

}

Associated with each BRi(xt ) is BRi(aj ; xt ), which is the probability that i

chooses aj through best response given configuration xt . The following assumption
places structure on these probabilities.

Assumption 1 For any x ∈ X, if the cardinality of BRi(x) is greater than one for
some i ∈ N , then there exists some tie-breaking rule where BRi(aj ; x) = 1 for some
aj ∈ BRi(x) and BRi(al; x) = 0 for all other al ∈ BRi(x) and al �= aj .

Assumption 1 implies that whenever a player is indifferent between two or more
strategies, some tie-breaking rule ensures that only one of the strategies is played
with probability one. This assumption is a simplification that, although not necessary
for Model 1, is used to derive the equilibrium conditions for Model 2.7

A tie-breaking rule in the context of Assumption 1 means that, when indifferent
between a set of strategies, a player chooses one strategy among this set based on
some strategy characteristics. There are several examples of tie-breaking rules that
satisfy the conditions in Assumption 1. First, we could let players choose a strategy
within BRi(x) that is also contained in configuration x and is played by the highest
proportion of neighbours: that is, given configuration x and the respective distribution
σi(x), player i plays a strategy aj ∈ BRi(x) for which σi(aj ; x) > σi(al; x) for all
al ∈ BRi(x)\aj .

Second, we can let players choose some strategy in BRi(x) that dominates other
strategies within BRi(x) under some criteria. For example, we can choose pairwise
domination where aj ∈ BRi(x) is chosen over al ∈ BRi(x) if its average payoff is
higher than for al whenever it is played by at least half of neighbours and the rest play
al : that is, aj ∈ BRi(x) is chosen over al ∈ BRi(x) if Ui(aj , σ ) > Ui(al, σ ) for all
σ with σ(aj ) ≥ 1

2 and σ(al) = 1 − σ(aj ). Such a relationship between any pair of
strategies is called pairwise risk-dominance (i.e. aj is pairwise risk-dominant relative
to al). Thus, a player chooses aj from BRi(x) if it is pairwise risk-dominant relative
to all other strategies in BRi(x). Overall, to generate the conditions in Assumption 1,
we can apply one or a combination of tie-breaking rules.

7An alternative consideration is to assume that each strategy inBRi(x) is played with a uniform probability
1

|BRi (x)| , where |BRi(x)| is the cardinality of BRi(x). This probability structure would still generate the
same results for Model 1, but would lead to less precise analytical results for Model 2.
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Model 1: Given the above definitions and assumptions, the probability that con-
figuration x is followed by configuration y at period t + 1, denoted by
P(x, y), is given by

P(x, y) =
n∏

i=1

BRi

(
yi; xt = x

)
(2)

where the product on the right hand side of Eq. 2 follows because players
revise strategies simultaneously and independently.

Model 2: The probability, Pi (aj ; xt ), that player i chooses aj (in period t + 1)
given configuration xt , is

Pi (aj ; xt ) = 1

m
exp(−β) + (1 − exp(−β))BRi(aj ; xt ) (3)

The first term on the right hand side of Eq. 3, 1
m
exp(−β), captures indi-

vidual choices due to mistakes/mutations, and the second term captures
best response dynamics. Specifically, a player follows a best response
behaviour with probability (1−exp(−β)), and with probability exp(−β),
a player mutates and randomly picks any strategy (i.e. with a uniform
probability 1

m
).

A closer examination of Eq. 3 reveals that as β increases to infinity, players choose
best responses with higher probability, and as β tends to zero, players’ choices
become more random. The exact value of β may depend on the interaction environ-
ment, and may also vary across players. For the former, our analysis examines the
effects of varying β on equilibrium behaviour. However, for simplicity, we assume
that β is identical across players.

Analogously to Eq. 2, the probability, Pβ(x, y), that configuration x is followed
by configuration y in Model 2 is given by

Pβ(x, y) =
n∏

i=1

Pi

(
yi; xt = x

)
(4)

The dynamics defined by the transition probabilities in Eqs. 2 and 4 both follow
a stationary Markov chain on the configuration space X. Let P and Pβ denote the
respective Markov transition matrices with P(x, y) and Pβ(x, y) as typical elements
of P and Pβ respectively. We refer to (A, U, N, G, P ) and (A, U, N, G, Pβ) as the
best response diffusion process and best response with mutation diffusion process
corresponding to Model 1 and Model 2 respectively. Given these two models, we
seek to:

(i) use Model 1 to establish conditions under which contagion occurs on a given
network;

(ii) establish conditions under which targeting is economically reasonable in a
framework where agents experiment with their choices.
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2.3 Equilibrium behaviour

The equilibrium behaviour of Model 1 is represented by its limit (absorbing) sets.
A subset L ⊆ X of states (strategy configurations) is an absorbing set of a Markov
chain if, once entered, is never exited. If an absorbing set is a singleton set, then
it is called an absorbing state or a convention; that is, any state x ∈ X for which
P(x, x) = 1 is an absorbing state. If an absorbing set contains more than one state,
then it is referred to as an absorbing cycle. For example, a pair of states x and y form
an absorbing cycle if P(x, y) = 1 and P(y, x) = 1.

LetL be a set of all absorbing sets (i.e. all absorbing states and absorbing cycles) of
P . The composition of L depends on the payoff and network structures. Since (A, U)

is a strict symmetric coordination game, L consists of allmonomorphic configuration
(i.e. where all players coordinate on the same strategy). But depending on the network
structure, L may also contain absorbing cycles and configurations where strategies
co-exist. For each al ∈ A, we write al for the monomorphic absorbing configuration
where all players coordinate on al . Associated with each L ⊂ L is the basin of
attraction, D(L), which is the set of all configurations from which (A, U, N, G, P )

converges to L.
For Model 1, the contagion analysis involves examining the stability of monomor-

phic absorbing configurations (i.e. examining the costs, measured in terms of the
number of mutations, of reaching and leaving monomorphic absorbing configura-
tions) to determine which configuration contains a contagious strategy. In doing so,
we also establish the conditions under which contagion is feasible.

For Model 2, the presence of mutations ensures that every strategy configuration is
visited multiple times in the long run. That is, unlike Model 1 where (A, U, N, G, P )

eventually settles in some absorbing set, in Model 2, each configuration is reached
with a positive probability at any given time. The a suitable measure of equilibrium
behaviour in Model 2 is therefore the stationary distribution, denoted by πβ . The
stationary distribution of a Markov chain, if it exists, describes the fractional amount
of time the chain spends in each configuration in the long run, or equivalently, the
probability with which each configuration is visited in the long run.

Formally, let q0 be an mn-row vector, where mn is the size of the state space X of
(A, U, N, G, Pβ), representing an initial distribution of the Markov chain of Model
2. For example, if the chain starts from configuration x, then q0 is a vector of all
zeros except a one in configuration x. Since the transition matrix Pβ is homoge-
neous (i.e. independent of time), the distribution of the Markov chain corresponding
to (A, U, N, G, Pβ) after t iterations is qt = q0P t

β . The stationary distribution
πβ is then an mn-vector defined as πβ = limt→∞ q0P t

β . This limit exists and is
unique because the Markov chain associated with (A, U, N, G, Pβ) is ergodic (i.e.
(A, U, N, G, Pβ) has a unique absorbing set since every configuration is visited with
a positive probability).

Thus, for Model 2, we use the notion of long-run equilibrium, which is the set
of strategy configurations that are visited most often in the long run by the Markov
chain associated with (A, U, N, G, Pε). Specifically, a subset L∗ ⊂ L is the long-
run equilibrium of (A, U, N, G, Pβ) if πβ(L∗) ≥ πβ(L) for all L ⊆ L\L∗. Our
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definition of long-run equilibrium is more general than the notion of stochastic sta-
bility often used in evolutionary game models. A subset L∗ ⊂ L is stochastically
stable if limβ→∞ πβ(L∗) > 0. This implies that there exists a threshold value of
β above which the long-run equilibria of (A, U, N, G, Pβ) are stochastically sta-
ble. We show that this threshold value of β also corresponds to the value above
which best response dynamics dominates noisy dynamics, so that targeting players is
economically reasonable.

3 Diffusion through contagion

We aim to generalize the notion of contagion defined by Morris (2000) for 2 × 2
coordination games played on unbounded networks to multiple-strategy coordination
games played on finite networks. For a 2 × 2 symmetric coordination game with
strategies aj and al played on an unbounded network, strategy al is contagious if:
(i) starting from a strategy profile where all players play aj , al spreads contagiously
from a finite group of initial adopters; (ii) it is uninvadable – once a conventionwhere all
players play al is established, it should not be possible to leave it with a finite group
of deviants. These concepts can be extended to multiple-strategy coordination games
and finite networks through the following series of conceptual definitions.

Definition 1 A sequence of strategy profiles {xt }t̄t=0 of (A, U, N, G, P ), for some
t̄ ≥ 2, is a best response sequence if it satisfies the following properties: (i) for all
1 ≤ t < t̄ , there exists at least one i ∈ N such that xi

t �= xi
t−1; (ii) if xi

t �= xi
t−1, then

xi
t ∈ BR(σi(xt−1)).8

Property (i) of Definition 1 requires that at least one player must switch a strategy
at each period – this follows because we consider a dynamic process with a simul-
taneous revision protocol. Property (ii) requires players to switch strategies through
best response dynamics.

Definition 2 Let (A, U, N, G, P ) start from some a ∈ L\al . Strategy al spreads
contagiously from a subset of players, N(a → al) ⊂ N , if there exists some t̄ ≥ 2
such that every best response sequence {xt }t̄t=0 with x0 = a and xi

1 = al for all
i ∈ N(a → al) satisfies xi

t̄
= al for all i ∈ N .

Let n(a → al) be the cardinality of N(a → al). According to Definition 2,
when (A, U, N, G, P ) starts from a, strategy al spreads contagiously from a subset
of players, N(a → al), if it spreads to the whole network through best response. If
N(a → al) is the smallest set from which al can spread contagiously, then we refer
to it as the set of initial adopters of al needed to trigger a network-wide adoption of
al starting from a.

8This definition is similar to Oyama and Takahashi (2015, Definition 1) but different in that we consider
simultaneous best response dynamics in finite networks.
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Definition 3 A Strategy, al , spreads contagiously on network G if for every a ∈
L\al , there exists some N(a → al) ⊂ N with n(a → al) < n

2 , and independent of
n, such that al spreads contagiously from N(a → al).

For unbounded networks considered by Morris (2000) and Oyama and Takahashi
(2015), it is sufficient to require n(a → al) to be finite. However, for finite networks,
an equivalent requirement is for n(a → al) to be relatively small (i.e. less than half
the population size) and independent of the population size. This implies that as n

grows, n(a → al) stays finite. One of the objectives of this paper is to define a
network measure that determines when a strategy can spread contagiously on a given
network. Once such a measure is defined, it is then possible to derive an upper bound
for n(a → al), for all a ∈ L\al .

Definition 4 Let r(al ) be the number of mutations required to leave convention al .
Convention al is uninvadable if, for every a ∈ L\al , there exists a subset of initial
adopters, N(a → al), such that r(al) > n(a → al), and that r(al) is an increasing
function of n.

Definition 4 ensures that once strategy al has spread contagiously to the whole
network, convention al should not be easily replaced by another convention through
a few mutations. The second condition for uninvadability in Definition 4, (i.e. r(al)

must be an increasing function of n) ensures that as n grows, it becomes harder (i.e.
many mutations are required) to leave convention al ; and in unbounded networks,
limn→∞ r(al ) = ∞, so that it is not possible to leave al with a finite number of
mutations.

Definition 5 Given a strict symmetric coordination game (A, U), strategy al is
contagious on network G(N, E) if it spreads contagiously on G(N, E) and is
uninvadable.

From Definition 5, we see that strategy al is contagious in a finite network if,
for all a ∈ L\al , n(a → al) is independent of the population size, n, and r(al)

is an increasing function of n. As the population size becomes infinitely large,
we then have an equivalent definition for contagion in unbounded networks where
limn→∞ n(a → al) < ∞ and limn→∞ r(al ) = ∞.

Given a network G and any subset of players S ⊂ N , let Ni(S) = Ni ∩ S be
the set of i’s direct neighbours within G that belong to subgroup S. Let ni(S) be
the corresponding cardinality of Ni(S) and αi(S) = ni(S)

ni
be the proportion of i’s

neighbours in S.
Now, let (A, U, N, G, P ) start from some a ∈ L\al . Then from Definitions 1 and

2, strategy al spreads contagiously from subgroup N(a → al) if the following two
conditions hold. First, al must be a p-dominant strategy, where, following Morris
et al. (1995), a strategy is p-dominant if it is a best response to all distributions that
place on it a mass of at least p. That is, for a strict symmetric coordination game
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Fig. 1 A 2×2 strict coordination
game where a2 is a p-dominant
strategy, for p > 1

1+β
. That is,

a2 is a best response when
played by more than proportion
1

1+β
of neighbours

(A, U), strategy al is (strictly) p-dominant if for all ak ∈ A, and all σ ∈ Σ with
σ(al) ≥ p,

∑

ak∈A

{σ(ak)u(al, ak) >
∑

ak∈A

σ(ak)u(aj , ak) for all aj �= al

In the context of the local interaction symmetric coordination game, a strategy is p-
dominant if it is a best response whenever it is played by at least proportion p, or a
total of at least pni�, of a player’s neighbours, where x� is the least integer greater
than or equal to x.

Second, there must exist a sequence of sets of players, S1, S2, · · · , SJ , with S1 =
N(a → al) and

⋃J
j=1 Sj = N , whereby for each i ∈ Sj , and all j = 2, 3, · · · , J ,

αi(Sj−1) ≥ p. That is, for each player i ∈ Sj , the proportion of i’s neighbours
that belong to Sj−1 is greater than p. This inequality ensures that once all players in
S1 = N(a → al) play strategy al from period t = 1 onward, then at t = 2, al is a
best response to all i ∈ S2, so that all players in S1 ∪ S2 play al ; at t = 3, al is a
best response to all i ∈ S3, so that all players in S1 ∪ S2 ∪ S3 play al ; and so on, until
t = J at which all players play strategy al .

Example 1 Consider the 2 × 2 coordination game in Fig. 1 with strategy a2 as a p-
dominant strategy, for p > 1

1+β
. First consider a scenario where β = 1.01, so that a2

is a 1
2 -dominant strategy. When this game is played on networkG2 of Fig. 2a, strategy

a2 is a best response whenever it is played by at least  1
2 × 2� = 1 neighbour. If

(A, U, N, G, P ) starts from a monomorphic configuration a1, strategy a2 will spread
contagiously from any pair of two adjacently placed players. This is because, for any
pair of adjacently placed players, say N(a1 → a2) = {1, 2}, there exists a sequence
of sets of players, S1 = {1, 2}, S2 = {3, 12}, S3 = {4, 11} · · · , S6 = {7, 8}, whereby
for each i ∈ Sj , αi(Sj−1) = 1

2 = p. That is, if all players in S1 play a2 from period
t = 1 onward, then at t = 2, all players in S1 ∪ S2 play a2; at t = 3, all players in
S1 ∪ S2 ∪ S3 play a2; and so on, until t = 6 at which all players play a2.

However, for network G3 of Fig. 2b, when β = 1.01, strategy a2 is a best response
only when played by at least  1

2 × 3� = 2 neighbours. This implies that for any
sequence, S1, S2, · · · , SJ , of players in G3 where the size of S1 is less than n

2 , there
exists at least one i in some Sj with αi(Sj−1) = 1

3 < p = 1
2 .
9 Thus, n(a1 → a2) ≥ n

2

9For example, if S1 = {1, 2, 3, 4}, so that S2 = {5, 12}, S3 = {6, 11}, S4 = {7, 10} and S5 = {8, 9}, then
for players 5 and 12, α5(S1) = α12(S1) = 1

3 . Thus, even if all players in S1 mutate to a2 at t = 1, a2 will
not be a best response to players 5 and 12 since a2 is a best response only when it is adopted by at least
half of the neighbours.
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and increases with the population size, and according to Definitions 2 and 3, strategy
a2 does not spread contagiously on G3. Strategy a2 spreads contagiously on G3 only
when β ≥ 2.01 so that a2 is 1

3 -dominant.

We define a new network measure – the contagion threshold – for finite networks
that captures the second condition above. This measure not only determines when
a p-dominant strategy can spread contagiously, but also when it is uninvadable. For
each i ∈ N , let Bir be the rth neighbourhood of i, the set of all players within
distance r (i.e. r steps) from i, with i included, and Nir be the rth-order neighbours
of i (i.e. all players at distance r from i). We write bir and nir for the respective
cardinalities of Bir and Nir . We then define and compute the contagion threshold of
a finite network as follows.

Definition 6 Given G(N, E):

(i) pick any i ∈ N and the corresponding Bi1 ;
(ii) for each r ≥ 2 and j ∈ Nir , compute αj (Bir−1) and α∗

ir
= min

j∈Nir

αj (Bir−1);

(iii) given i ∈ N , compute α∗
i = min

r≥2
α∗

ir
.

The contagion threshold of G(N, E), η(G), is given by η(G) = min
i∈N

α∗
i .

The definition of the contagion threshold builds on the notion of sequences of
sets of players discussed above. For each i with a corresponding first neighbour-
hood Bi1 , Definition 6 requires that along a sequence of the r-order neighbours of
i, Ni2 , Ni3 , · · · , Nidi

, where di is the shortest distance from i to the furthest player,
αj (Bir−1) ≥ η(G) for every j ∈ Nir and all r = 2, 3, · · · , di . For the two networks
in Fig. 2, the contagion thresholds are η(G2) = 1

2 and η(G3) = 1
3 .

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 2 Examples of undirected regular cyclic networks, regular in that each player has the same number
of neighbours: (a) A regular cyclic network of degree two (i.e., each player has two neighbours), denoted
by G2; (b) A regular cyclic network of degree three, denoted by G3
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Following the above discussion and Example 1, when p ≤ η(G), a p-dominant
strategy can spread contagiously from the set Bi2 of any i. Consider the game of
Fig. 1, and let β = 1.01 so that a2 is a 1

2 -dominant strategy. Consider an evolutionary
process (A, U, N, G, P ) on a strongly connected network G with η(G) = p = 1

2 .
Then, starting from a1, strategy a2 will spread contagiously from N(a1 → a2) = Bi2

of any i ∈ N . This is because along the sequence Ni3 , Ni4 , · · · , Nidi
, αj (Bir−1) ≥

η(G) = 1
2 = p for every j ∈ Nir and all r = 3, 4, · · · , di , so that once all players

in Bi2 play a2 at some period t , all players in Ni3 will switch to a2 at t + 1 (because
each has at least proportion p of neighbours play a2 at t); followed by all players in
Ni4 at t + 2; and so on, until the entire network eventually switches to a2.

Our definition of the contagion threshold for finite networks is closely related
to the definition of the contagion threshold for unbounded networks according to
Morris (2000). For a 2×2 symmetric coordination game with strategies a1 and a2, let
strategy a2 be a p-dominant strategy. Morris (2000) defines the contagion threshold
of an unbounded network as the maximum p such that a2 can spread contagiously in
that network. This definition ensures that the contagious spread of a2 can be triggered
from some finite group of players. The similarity with Definition 6 is that η(G) is the
maximum p above which a p-dominant strategy of an m×m symmetric coordination
game can spread contagiously on a finite G.

However, the definition of the contagion threshold for unbounded networks in
Morris (2000) does not directly carry-on to finite networks. This is because unlike
unbounded networks where it is sufficient to know that contagion can be trig-
gered from some finite group of players, for finite networks, it is necessary to have
knowledge of the size and the identity of the smallest group of players from which
contagion can be triggered. From Definition 6 and the discussion that follows, the
contagious spread of a p-dominant strategy can be triggered from within the small-
est second-neighbourhood of the network. We further discuss the bounds for the size
of the smallest group that triggers the contagious spread of a p-dominant strategy
below. But first, the following theorem establishes the conditions for a p-dominant
strategy to be contagious on a given network.

Theorem 1 Given the diffusion process (A, U, N, G, P ) on a strongly connected
network G, if a∗ ∈ A is a p-dominant strategy of (A, U), then it is contagious on G

if p ≤ η(G) and b∗
2 ≤ n

3
5 , where b∗

2 = mini∈N bi2 . For all a ∈ L\a∗, n(a → a∗) ≤
b∗
2 ≤ n

3
5 .

Proof See Appendix B

The proof of Theorem 1 follows in two steps. Let a∗ be a monomorphic absorbing
state where all players coordinate on strategy a∗. We first show that if a∗ is a p-
dominant strategy of (A, U), and p ≤ η(G), then starting from any state a ∈ L\a∗,
the size of the subgroup from which a∗ spreads contagiously in G is bounded from
above by b∗

2.
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Let (A, U, N, G, P ) start from some a ∈ L\a∗, and pick any i ∈ N . If all players
in Bi2 mutate to a∗ at t = 1, then from t = 2 onward, a∗ is a best response to all
players in Bi2 ∪ Ni3 = Bi3 since αj (Bi2) ≥ η(G) ≥ p for each j ∈ Bi3 . That
is, since each j ∈ Bi3 has at least proportion p of their interactions with players in
Bi2 , all of whom play a∗ at t = 1, and a∗ is a best response whenever it is played
by at least proportion p of neighbours, it follows that a∗ is a best response for each
j ∈ Bi3 . From t = 3 onward, a∗ is a best response to all Bi3 ∪ Ni4 = Bi4 since
αj (Bi3) ≥ η(G) ≥ p for each j ∈ Bi4 ; and so on, until t = di − 1 when the entire
network eventually plays a∗.

Now, let B∗
2 be the second-neighbourhood of player i for whom bi2 = b∗

2 (i.e.
the cardinality of B∗

2 is b∗
2), and let d∗ be the shortest distance from the player for

whom bi2 = b∗
2 to any other player (i.e. d

∗ = di∗ , where i∗ is some player for whom
bi∗2 = b∗

2). Then the above iterative process implies that, for every a ∈ L\a∗, there
exists a best response sequence {xt }d∗−1

t=0 with x0 = a and x
j

1 = a∗ for all j ∈ B∗
2

satisfying x
j

d∗−1 = a∗ for all j ∈ N . Thus, a∗ spreads contagiously on any strongly
connected network G whenever p ≤ η(G). The size of the subgroup from which a∗
spreads contagiously is bounded from above by b∗

2.
Note that b∗

2 is an upper bound for the minimum number of mutations needed for
a∗ to spread contagiously on a given network because the exact number of mutations
can be much smaller than b∗

2. The exact number of initial adopters of a∗ needed to
trigger its contagious spread can be computed in two steps:

(i) identify B∗
2 by computing Bi2 for each i ∈ N and then picking the one with the

smallest cardinality;
(ii) within B∗

2 , identify the smallest set of players that should play a∗ so that
all players in B∗

2 eventually switch to play a∗ through best response. The
cardinality of this subset of B∗

2 is then the number of initial adopters.

The second step of the proof of Theorem 1 shows that if a∗ is the p-dominant
strategy, and p ≤ η(G), then the number of mutations needed to leave (the basin of

attraction of) convention a∗ is greater than n
3
5 . The intuition behind this result is that

since each j ∈ Nir has αj (Bir−1) ≥ η(G) ≥ p for all r ≥ 2, and that p ≤ 1
2 , players

within a given Bi2 will switch to a strategy different from a∗ if each has more than
proportion (1 − p) > 1

2 of neighbours playing a strategy different from a∗. Thus,
to leave convention a∗, the set of mutants, R(a∗), must be selected in such a way
that, for each i ∈ N , each j ∈ Bi2 has more than half of their neighbours in R(a∗).
This implies that the identification of R(a∗) is equivalent to the graph theory problem
of identifying monopolies (i.e. sets of vertices of a graph containing at least half of
the direct and/or indirect interactions of every player). Using the well established
results in graph theory (e.g. Bermond et al. (1996, Proposition 4)), it follows that the

cardinality of R(a∗) is greater than n
3
5 .

Since the number of mutations needed to leave convention a∗ is a function of n, it
follows that a∗ is uninvadable whenever b∗

2 ≤ n
3
5 . Thus, a p-dominant strategy, a∗,

is contagious on a strongly connected network G whenever p ≤ η(G) and b∗
2 ≤ n

3
5 .
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Fig. 3 (a) An example of a network, denoted by Ga , with a contagion threshold of η(Ga) = 2/7; (b) An
example of a network, denoted by Gb , with a contagion threshold of η(Gb) = 1/6

The following example illustrates a direct application of Theorem 1 to two networks
with different contagion thresholds.

Example 2 Consider the network structures in Fig. 3. Network Ga of Fig. 3a has a
contagion threshold of η(Ga) = 2

7 .
10 According to Theorem 1, a p-dominant strat-

egy a∗ spreads contagiously in Ga if p ≤ 2
7 . To identify the minimum number of

mutations needed to trigger the contagious spread of a∗ in this network, we follow the
two steps outlined above. First, we identify the B∗

2 sets. There are six B∗
2 sets in Ga

and we pick the one centred around player 1, B∗
2 = B12 = {1, 2, 7, 8, 15, 16, 17, 18}.

Second, we identify the subset of players of B∗
2 that must mutate to a∗ so that

all players in B∗
2 eventually play a∗ through best response. Consider the case where

p = 2
7 so that, for players {1, 2}, a∗ is a best response (BR) when played by at

least  2
7 × 2� = 1 neighbour; for player 7, a∗ is a BR when played by at least

 2
7 × 5� = 3 neighbours; and for players {8, 15, 16, 17, 18}, a∗ is a BR when played

by at least  2
7 × 6� = 2 neighbours. For this scenario, if players {1, 2, 7, 8} simul-

taneously mutate to a∗, then all players in B12 will eventually switch to a∗ through
best response. Any other combinations of less than four mutations by players within
B12 may lead to an absorbing cycle containing a∗ and other strategies but not con-
vention a∗. Thus, the number of initial adopters that trigger the contagious spread of
a∗ is four, a small number that is independent of the population size.

10That is, for each i and corresponding Bi1 , each j ∈ Nir for all r ≥ 2 has αj (Bir−1 ) ≥ 2
7 . For example,

if we pick player 1 and corresponding B11 = {7, 8}, we see that each j ∈ N12 = {2, 15, 16, 17, 18} has
αj (B11 ) ≥ 1

3 ; each j ∈ N13 = {9, 10, 23, 24} has αj (B12 ) ≥ 1
2 ; each j ∈ N14 = {3, 27, 28, 29, 30}

has αj (B13 ) ≥ 2
7 ; each j ∈ N15 = {25, 26} has αj (B14 ) = 1

2 ; each j ∈ N16 = {19, 29, 21, 22} has

αj (B15 ) ≥ 1
3 ; each j ∈ N17 = {11, 12, 13, 14} has αj (B16 ) ≥ 2

3 ; and each j ∈ N18 = {4, 5, 6, 7} has
αj (B17 ) = 1.
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For network Gb of Fig. 3b, the contagion threshold is η(Gb) = 1
6 . Pick B∗

2 =
B12 = {1, 7, 13, 14}. For each j ∈ B12 , a∗ is a BR when played by at least one
neighbour. Thus, all players in B12 will switch to a∗ within three steps of iteration
once one player, player {7}, switches to a∗. The corresponding number of initial
adopters is thus one, which is a very small number compared to the population size.

For both networks, a∗ is uninvadable since the cardinality of B∗
2 is less

than r(a∗). Specifically, for p ≤ 1
2 , R(a∗) must at the least consist of

R(a∗) = {7, 8, 9, 10, 11, 12, 13, 14, 23, 24, 25, 26} for network Ga , and R(a∗) =
{13, 14, 15, 16, 17, 18, 19, 20, 29, 30, 31, 32} for network Gb. Thus, r(a∗) ≥ 12 for
both networks.

The above example helps to highlight two interactive aspects of our results which
a firm/planner aiming to diffuse a product/behaviour must consider: the contagion
threshold versus the number of initial adopters needed to trigger the contagious
spread of a strategy. Consider a new firm contemplating to enter a market (or an exist-
ing firm aiming to introduce a new product) where two or more products (exhibiting
coordination effects) already exist. To diffuse her product through contagion, the firm
would first determine the contagion threshold of the network of consumers. The con-
tagion threshold in turn determines the value of p (i.e. the extent to which a new
product should dominate the existing alternative products) that ensures that the prod-
uct can spread contagiously. If the contagion threshold of the network is much smaller
than 1

2 , then the firm must incur large initial costs to ensure that p is sufficiently
smaller (i.e. the new product must be highly beneficial compared to existing prod-
ucts) than the contagion threshold. The upside is that the smaller p, the smaller the
number of initial adopters needed to trigger the contagious spread of a p-dominant
strategy, and hence, a firm need not incur large costs on targeting. Conversely, if the
contagion threshold is close to 1

2 , then p can also be close to 1
2 so that the new product

only needs to be slightly better than the existing product for it to spread contagiously.
The downside is that the firm may have to invest more resources on targeting initial
adopters. A firm’s objective is thus to evaluate these two types of costs.

Overall, low-density networks (i.e. networks with sparse connection) have lower
contagion thresholds. This is because the smallest possible value for the contagion
threshold of any strongly connected network G is 1

n̄(G)
, where n̄(G) is the size of the

smallest first-order neighbourhood in G. Moreover, low-density networks also have
smaller b∗

2, and hence, a small number of initial adopters needed to trigger contagion.
This implies that it is relatively less costly to diffuse new products and behaviour
to low-density networks. One possible evidence of this implication of our results is
in the observed discrepancy between the dynamics in the market for messaging and
chat apps (e.g. AOL Instant Messenger, Google talk, VOIP, skype, Kik., whatsapp,
snapchat, HipChat and slack), where there is a high turnover and entry rate, versus
social networking apps (e.g. Friendster, Myspace and Facebook), where turnover and
entry rate is relatively low. Specifically, messaging and chat apps consist of low-
density networks where individual interact with (speak, chat or message to) a few
others (family and close friends). Social network apps on the other hand consist of
large number of connections where some individuals may have as many as tens of
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thousands of friends. Thus, to invade a network of messaging and chat apps, a new
product need not be much more beneficial than those existing in the market. Invading
a Facebook-type network, however, requires a new product to be far better, or simply
to offer a different but related services.

Like Oyama and Takahashi (2015), our results extend Morris (2000) who exam-
ines contagion for 2×2 coordination games to multiple strategy coordination games.
However, in Oyama and Takahashi (2015), a strategy is contagious if it is contagious
in some unbounded network. As such, it is sufficient to check whether a strategy
spreads contagiously in any of two types of networks, linear and non-linear networks.
Our analysis is richer in that we establish conditions under which a strategy (i.e. a
p-dominant strategy) is contagious on any given network. In doing so, we also pro-
vide steps for computing the smallest number of initial adopters needed to trigger
contagion.

A more fundamental difference between our analysis and Morris (2000) and
Oyama and Takahashi (2015) is that we study contagion in finite networks. In par-
ticular, Morris (2000) provides bounds for the contagion threshold in unbounded
networks but computing the exact contagion threshold of an unbounded network is
not a straightforward matter. Ideally, one would select some finite group of players in
some region of the network and then iterate over the entire network following similar
steps in Definition 6 above. The problem with using this method when the network is
unbounded is that there is no obvious means of knowing how many iterations are suf-
ficient for computing the contagion threshold. One would have to assume some form
of uniformity across the unbounded network, and hence, the contagion threshold can
feasibly be determined for only unbounded regular or close to regular networks (i.e.
networks where all players have the same neighbourhood size).

Finally, Alós-Ferrer and Weidenholzer (2008) examine contagion in both bounded
and unbounded network but focuses on establishing conditions under which a Pareto-
dominant strategy spreads under imitation dynamics – where players play strategies
that earned the highest payoff in their neighbourhood in the previous period. Imita-
tion dynamics does not, in most cases, generate intermediate absorbing states where
strategies co-exist as best response dynamics does. Thus, the network structure does
not affect contagion under imitation dynamics in the same way it does under best
response dynamics. Consequently, the network measures that affect contagion under
best response dynamics, such as contagion thresholds, are not necessarily relevant
for contagion under imitation dynamics.

4 Contagion and best response dynamics withmutations

In Section 3, we established the conditions for contagion in a framework where play-
ers strictly follow best response dynamics. The question we ask in this section is the
following: is contagion relevant in a framework of noisy best response dynamics?
There is plenty of empirical evidence showing that individual decision processes are
best described by probabilistic models (McKelvey and Palfrey 1995; Anderson et al.
2001; Ellison 2006).
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Naturally, the level of noise in individual decisions may vary across settings and
it is possible that, in some settings, the amount of noise affects the relevance of the
process of contagion. That is, if players frequently make mistakes and play strategies
that are not best responses, then the evolutionary process will frequently deviate from
paths corresponding to contagion dynamics (i.e. the evolutionary process frequently
deviates from best response sequences defined in Definition 1). This may in turn
imply that contagious strategies are not played with the highest probability in the
long run. In such a scenario, it will not be economically reasonable to target specific
players to aid network-wide diffusion.

To examine the above question, we establish conditions under which a conven-
tion corresponding to a contagious strategy is a long-run equilibrium in Model 2.
We show that, indeed, under Model 2, there exists a threshold value, β∗ > 0, of
the noise parameter β, above which the convention corresponding to the p-dominant
strategy is the long-run equilibrium. Above β∗, best response dynamics, and hence,
contagion, dominates experimentation and targeting is economically reasonable; con-
versely, below β∗, players’ choices are too noisy and targeting is not economically
reasonable. The following definition and notations are used to state the main results
of this section.

Definition 7 Let g ⊂ X × X be any oriented graph defined within the configuration
space X. Then for a subset W ⊂ X and its complement W̄ , we denote by Γ (W) a
set of all oriented graphs satisfying two conditions: (i) no arrows start from W and
exactly one arrow starts from each configuration outside of W , (ii) each g ∈ Γ (W)

has no loops.

From Definition 7, if W is a singleton set, say W = {x}, then Γ ({x}) is a
set of all spanning trees of x (i.e. x-trees). Consider an example where X =
{a, b, c,d, e, f, g, h}; Fig. 4 presents two examples of g-trees.

From the definition of Γ (x) graphs, every g ∈ Γ (x) spans the entire state space,
except for x. Each y ∈ X has only one arrow emanating from it so that each g ∈ Γ (x)
has a total of mn − 1 directed edges, where mn is the cardinality of X. Thus, if we
let γ (x) = #Γ (x) be the cardinality of Γ (x), then γ (x) is identical for any pair of
configurations x, y ∈ X; that is, γ (x) = γ (y) = γ .

The cardinality of Γ (x), γ , is a multiple of, and not an exponential function of the
cardinality of the state space, mn. For example, when the size of the state space is 2,
γ = 1; when it is 3, γ = 3; when it is 4, γ = 15;11 and when it is 5, γ = 51. Thus,
the natural logarithm of γ , ln(γ ), is a linear function of n.

11That is, if the state space is X = {a,b, c, d}, then the list of Γ (d) graphs is: {c → b → a → d}, {a →
c → b → d}, {a → b → c → d}, {b → a → c → d}, {b → c → a → d}, {c → a → d,b → d}, {a →
c → d,b → d}, {c → b → d, a → d}, {b → c → d, a → d}, {a → b → d, c → d}, {a → b →
d, c → d}, {a → c, b → c, c → d}, {c → a,b → a, a → d}, {a → b, c → b,b → d}, {c → d, a →
d,b → d}
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Fig. 4 Examples of g-trees, that is Γ ({g}) graphs and in which the configuration space X =
{a,b, c, d, e, f, g,h}

Proposition 1 For a diffusion model (A, U, N, G, Pβ), let Assumption 1 hold. If a∗

is contagious on network G, then there exists some β∗ ∈
(
0, ln γ /(n

3
5 − b∗

2)
]
such

that for all β ≥ β∗, πβ(a∗) > πβ(a) for all a ∈ L\a∗.

Proof See Appendix C

The proof of Proposition 1 follows in two steps. First, we characterise the structure
of stationary distributions using a graph theoretic method of Freidlin and Wentzell
(1984). This method represents the stationary distribution of any configuration x in
terms of the probabilities of Γ (x) graphs. Let c(y, z) be the number of mutations
involved in the direct transition from y to z. The total cost φ(x; g) of some g ∈ Γ (x)
is the sum of costs of all transitions in g. That is, φ(x; g) = ∑

(y,z)∈g c(y, z). This
quantity captures the total cost of reaching x from every other configuration through
paths of graph g.

These costs are directly related to the transition probabilities. The probability that
c(y, z) players simultaneously mutate to play strategies that are not best responses

to y is
(
e−β/m

)c(y,z)
. Thus, if the probability of mistakes is relatively small, then

the larger c(y, z) the smaller the probability of the transition from y to z. The same
argument extends to any g ∈ Γ (x): if the probability of mistakes is small, then the
higher the cost φ(x; g) associated with g, the smaller the probability of reaching x
through paths in g. Using the relationship between stationary distributions and the
probabilities of Γ (x) graphs provided by Freidlin and Wentzell (1984, Lemma 3.1)
we derive bounds for stationary distributions as functions of costs of Γ (x) graphs
and model parameters.
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Second, we show that under Assumption 1, there exists some β∗ ∈(
0, ln γ /(n

3
5 − b∗

2)
]
such that for all β ≥ β∗, the long-run equilibrium is the strat-

egy configuration with the minimal cost Γ (x) graph: that is, for all β ≥ β∗,
x ∈ argminx∈X,g∈Γ (x) φ(x; g) is the long-run equilibrium; and that convention a∗,
corresponding to a contagious strategy a∗, has the minimal cost graph.

As discussed above, the intuition behind Proposition 1 is that when the level of
experimentation is very high (i.e. β is small and between 0 and β∗), the evolution-
ary process frequently deviates from the contagion paths (i.e. paths of best response
sequences) so that the convention containing only the contagious strategy need not
be the long-run equilibrium. For example, when β = 0, every strategy configuration

is visited with equal probability. The upper bound for β∗, ln γ /(n
3
5 − b∗

2), increases

with n. Specifically, ln γ /(n
3
5 − b∗

2) is of order (O)(n2/5) because ln γ is a linear
function of n.

The findings of Proposition 1 suggest that targeting is indeed economically reason-
able even in settings where players make mistakes and play strategies that are not best
responses. More broadly, Proposition 1 suggests that the predictions in evolutionary
game theory that employ stochastic stability as a solution concept are admissible for
relatively high levels of experimentation. Recall that a configuration x is stochas-
tically stable if limβ→∞ πβ(x) > 0 (Foster and Young 1990; Kandori et al. 1993;
Young 1993). Proposition 1 states that the level of experimentation need not be very
small (i.e. β need not be asymptotically large); it is sufficient that β ≥ β∗. And
in evolutionary models with a finite and small population size, the level of experi-
mentation can be admissibly large because the upper bound for β∗, which is a linear
function of the population size, is small.

5 Concluding remarks

We examined the diffusion of products and practices with coordination effects
through contagion using evolutionary game theory framework. Evolutionary game
theory captures many realistic aspects of individual decision making and interactions,
most notably, myopia (i.e. the inability to remember the entire history of play in com-
plex social interactions); the tendency to experiment or make mistakes on optimal
choices; and the locality of social interactions. We consider two related models that
capture these structural and behavioural properties of social interactions: evolution
with best response, and evolution with best response and mutations.

Using these two models, we show that a p-dominant strategy of a symmetric
coordination game, if it exists, is contagious in networks with the contagion thresh-
old equal or greater than p. We defined a measure of the contagion threshold for
finite networks that is easily computable. We then examined the effects of noise on
contagion, showing that there exists a threshold level of noise below which conta-
gious choices are long-run equilibrium of an evolutionary process where agents make
mistakes.

Our results have broader implications for targeted contagion. First, we provide
steps for identifying the smallest set of agents that sufficiently trigger the contagious
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spread of a p-dominant action. We find that this set can be as small as three agents,
and is independent of the population size. Second, our results imply that targeted
contagion is economically reasonable even in settings where agents experiment with
their choices.

Finally, our results have implications for convergence rates of evolutionary dynam-
ics in networks. One of the common criticisms of the evolutionary game models is
that the convergence rates to equilibrium tend to increase with the population size, so
that in very large populations, equilibrium is not reached in timescales of economic
relevance. In the analysis that we have relegated to Appendix A, we show that if a
contagious strategy exist, then equilibrium is reached fast.

Appendix A: Expected waiting time

This section focuses on Model 2 to examine how the process of contagion affects
the expected waiting time from any state to the state with the highest long-run prob-
ability. The problem of slow diffusion does not arise in situations where the level of
experimentation is sufficiently high. Kreindler and Young (2013) and Kreindler and
Young (2014) show that when β is sufficiently small, convergence is fast. Here, we
examine the case where β is very large (i.e. β → ∞).

We show that when β is large, the expected waiting time to the monomorphic
convention corresponding to the contagious strategy is independent of the population
size. The direct implication of this result is that even in large networks and with
low levels of experimentation, the diffusion process converges fast to the long-run
equilibrium. The expected waiting time is formally defined as follows.

Definition 8 Let W ⊂ X be a subset of the configuration space and W̄ its com-
plement. Define T (W) = inf{t ≥ 0 |xt ∈ W } to be the first time W is reached.
The expected waiting time from some configuration x ∈ W̄ to W is then defined as
E [T (W) |x0 = x].

Let a∗ be a p-dominant strategy of (A, U), and assume that p ≤ η(G) so that
a∗ is contagious on G. We aim to show that (A, U, N, G, Pε) converges to a∗ fast
(i.e. the expected waiting time to a∗ is independently of the population size). To do
so, we show that if a∗ is contagious on G, then there exists a function F(β) that
is independent of n so that E

[
T (a∗) |x0 = x

] ≤ F(β) for all initial configurations
x0 �= a∗.

Proposition 2 Let a∗ be a p-dominant strategy of (A, U) and assume that a∗ is
contagious on a strongly connected network G so that a∗ is the long-run equilibrium
of the diffusion process (A, U, N, G, Pβ). Then there exists some b∗ ∈ (0, b∗

2) such
that

lim
β→∞

lnE[T (a∗)]
β

= b∗ (5)
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Proof See Appendix A

Proposition 2 shows that the expected waiting time to the equilibrium configura-
tion of the evolutionary process with mutations from any other configuration takes
the form

E[T (a∗)] ≤ exp
[
βb∗ + g(β)

] = F(β) (6)

where g(β) is a decreasing function of noise parameter β. As the level of experimen-
tation tends to zero (i.e. β → ∞), g(β) → 0 and the expected waiting time increases
at an exponential rate of b∗, which is independent of the population size.

Compared to existing results on convergence rates of evolutionary processes such
as Ellison (1993), Young (2011), Kreindler and Young (2013) and Kreindler and
Young (2014), the result in Proposition 2 is driven more by contagion and less by
noise. Kreindler and Young (2014) also find that learning is fast in networks, but they
consider a 2 × 2 coordination game with random sampling and with deterministic
dynamics. Moreover, they define fast learning as the case in which noise is large
to the extent that only one unique equilibrium exists. On a contrary, Proposition 2
shows that contagion makes learning fast in stochastic evolutionary game dynamics
for m × m coordination games.

Appendix B: Proof of Theorem 1

The proof of Theorem 1 follows in two steps. The first step, which is already dis-
cussed in detail in Section 3, demonstrates that if a∗ ∈ A is a p-dominant strategy of
(A, U) and p ≤ η(G), then a∗ spreads contagiously on G, and that the size of the
set of initial adopters is bounded from above by b∗

2. The second step demonstrates
that if a∗ ∈ A is a p-dominant strategy and p ≤ η(G), then the number of mutations

needed to leave convention a∗ is greater than n
3
5 .

Strategy a∗ spreads contagiously on G Given the diffusion process (A, U, N, G, P )

on a strongly connected networkG, and a p-dominant strategy a∗ ∈ A, let p ≤ η(G).
Let also A1 = A\a∗. Since a∗ is p-dominant, it is a best response when played by
at least proportion p of a player’s neighbours and the rest play strategies in A1. This
implies that if all players in a given subgroup Z ⊂ N play a∗, then a∗ is a unique
best response to any i ∈ N for whom αi(Z) ≥ p.

Let the evolutionary process start from any state a ∈ L\a∗, where a can consist
of only strategies in A1 or both a∗ and strategies in A1. Pick any i ∈ N and the
respective Bi2 , and at period t = 1, let all players in Bi2 mutate to play a∗. The
evolutionary process will evolve through best response from t = 1 onward as fol-
lows, where we write B̄ir = N\Bir for the complement of Bir , i → Al to mean
that i plays a strategy in Al , Z → Al to mean that each j ∈ Z plays a strategy
in Al :
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t = 1 Bi2 → a∗; and B̄i2 → A1 ∪ a∗.
t = 2 Bi2 → a∗ since each j ∈ Bi2 has αj (Bi2 ) ≥ α∗

i ≥ p; Ni3 → a∗ since each j ∈ Ni3 has
αj (Bi2 ) ≥ α∗

i ≥ p; and B̄i3 → A1 ∪ a∗.
t = 3 Bi2 ∪ Ni3 → a∗; Ni4 → a∗ since each j ∈ Ni4 has αj (Bi3 ) ≥ α∗

i ≥ p; and B̄i4 → A1 ∪ a∗.
t = 4 Bi3 ∪ Ni4 → a∗; Ni5 → a∗ since each j ∈ Ni5 has αj (Bi4 ) ≥ α∗

i ≥ p; and B̄i5 → A1 ∪ a∗.
− − − − − − − −This iterative process continues until t = di − 1 − − − −−
t = di − 1 N → a∗.

We see from the above iterative process that after t = di − 1 iterations, the evo-
lutionary process converges to convention a∗. Thus, starting from any a ∈ L\a∗,
there exists a best response sequence {xt }di−1

t=0 with x0 = a and x
j

1 = a∗ for all
j ∈ N(a → a∗) = Bi2 , for any i ∈ N , satisfying xl

di−1 = a∗ for all l ∈ N . Since
this holds for Bi2 of any i ∈ N , it follows that the size of the smallest set of initial
adopters is b∗

2 = argmini∈N bi2 .
Since b∗

2 is independent of the population size, n, we conclude that when p ≤
η(G), strategy a∗ spreads contagiously on G with n(a → a∗) ≤ b∗

2 for all a ∈ L\a∗.
Note that the upper bound for n(a → a∗) follows because although b∗

2 mutations to
a∗ guarantee that a∗ spreads contagiously, it is possible, in most networks, to find a
smaller set than B∗

2 that sufficiently triggers the contagious spread of a∗.

Uninvadability of a∗ Recall that convention a∗ is uninvadable if r(a∗) > n(a → a∗)
for all a ∈ L\a∗, and that r(a∗), which is the number of mutations required to leave
the basin of attraction of convention a∗, is a function of n. We first show that if a∗
spreads contagiously on a strongly connected network G, then r(a∗) ≥ n

3
5 .

Let R(a∗) ⊂ N be the smallest set of players that should mutate to strategies in A1
for the evolutionary process to leave the basin of attraction of a∗, where r(a∗) is the
cardinality of R(a∗). We see from the preceding analysis that if there exists a player i

inG for whom all players in Bi2 play a∗, then a∗ spreads contagiously, and hence, the
evolutionary process converges to a∗ regardless of the strategy configuration of other
players not in Bi2 . Thus, to leave a∗, no such player must exist, and that each player
must be at most two steps away from R(a∗); that is, for each i, a sufficiently large
proportion of players in Bi2 are in R(a∗). Since a∗ is p-dominant, where p ≤ 1

2 ,
strategies in A1 are best responses only when more than proportion (1 − p) > 1

2 of
neighbours play strategies in A1. For strategies in A1 to become best responses to
players within Bi2 , more than 1

2 of the interactions of players in Bi2 must be in R(a∗);
and R(a∗) must be chosen to satisfy this condition for each i ∈ N .

The identification of the smallest R(a∗) is then equivalent to the problem of iden-
tifying the smallest 2-monopolies in graph theory, defined as follows. A player i in
network G is said to be 2-controlled by the set Z ⊂ N of players if at least half of
the players in Bi2 are in Z. The set Z is called a 2-monopoly if it 2-controls every
player in the network. Bermond et al (1996, Proposition 4) show that the minimum
size of a 2-monopoly on any undirected and strongly connected network of size n is

n
3
5 (see Peleg (2002) for a review of the literature on monopolies and local majorities

in networks), and hence, r(a∗) > n
3
5 . Note that the inequality follows because we
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require R(a∗) to contain more than half of interactions of Bi2 for all i ∈ N while the
definition of a 2-monopoly requires R(a∗) to contain at least half of the interactions
of Bi2 .

Since r(a∗) > n
3
5 is an increasing function of n, it follows that convention a∗ is

uninvadable whenever n
3
5 ≥ n(a → al) for all a ∈ L\a∗. And since n(a → al) ≤ b∗

2
for all a ∈ L\a∗, convention a∗ is uninvadable, and hence, also contagious, whenever
b∗
2 ≤ n

3
5 .

Appendix C: Proof of Proposition 1

To prove Proposition 1, we first characterize the structure of stationary distribu-
tions, and in particular, the ratio, πβ(x)

πβ(y) , of stationary distributions of any pair of
configurations x, y ∈ X. We use the following results from Freidlin and Wentzell
(1984).

Lemma 1 (Lemma 3.1 ; Freidlin and Wentzell 1984). Given a diffusion process Pβ ,
the stationary distribution πβ(x) of some configuration x ∈ X is given by

πβ(x) =
⎛

⎝
∑

g∈Γ ({x})
Pβ(g)

⎞

⎠

⎛

⎝
∑

y∈X

∑

g∈Γ ({y})
Pβ(g)

⎞

⎠
−1

(7)

where the total probability Pβ(g) associated with each graph g is Pβ(g) =∏

(z,y)∈g

Pβ(z, y) and Γ (x) graphs are defined in Definition 7.

To fully characterise the structure of πβ , we first characterise the structure of tran-
sition probabilities Pβ(x, y) between pairs of states x, y ∈ X. Recall that c(x, y) is the
number of mutations involved in the direct transition from x to y. That is, the number
of players who choose different strategies in state y than those chosen in state x, and
that their choices are a result of mutations. Employing Assumption 1, the transition
probability Pε(x, y) can directly be expressed in terms of c(x, y) as

Pβ(x, y) =
(

e−β

m

)c(x,y) (
m + (1 − m)e−β

m

)n−c(x,y)

(8)

The right hand side of Eq. 8 follows because, first, if yi (i.e. the strategy i plays
in configuration y) is not a best response to x so that BRi(y

i; x) = 0, then from
Eq. 3, the probability that i plays yi is e−β

m
. Consequently, the probability that c(x, y)

players simultaneously play strategies that are not best responses to x in configuration

y is
(

e−β

m

)c(x,y)
.
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Second, if yi is instead a best response to x, so that, from Assumption 1,
BRi(y

i; x) = 1, then i plays yi with probability

e−β

m
+ (1 − e−β) = m + (1 − m)e−β

m

Thus, the probability that the remaining n − c(x, y) players simultaneously play

strategies that are best responses to x is
(

m+(1−m)e−β

m

)n−c(x,y)
.

Next, we characterise the probabilities of Γ (x) graphs. From the definition of
Γ (x) graphs, every g ∈ Γ (x) spans the entire state space except x, which is the
root of the graph. Each y ∈ X\x has only one arrow emanating from it. Thus, each
g ∈ Γ (x) contains a total of mn − 1 directed edges, where mn is the cardinality of X.
Similarly, if we let d(Lj ) be the cardinality of D(Lj ) (the basin of attraction of Lj ),
then there are d(Lj ) directed edges that originate from states in D(Lj ).

Now, let g(D(L)) be a subgraph of g consisting of all d(Lj ) directed edges that
originate from states in D(Lj ). Since D(Lj ) for all Lj ⊂ L are non-overlapping
sets, we can rewrite Pβ(g) as

Pβ(g) =
∏

Lj ∈L

∏

(y,z)∈g(D(Lj ))

Pβ(y, z) (9)

We can further subdivide the set of edges of g(D(Lj )) into those that involve at
least one mutation, denoted by g(D(Lj );β), and those whose dynamics are gov-
erned solely by best response, denoted by g(D(Lj );β). That is, for each x ∈ D(Lj )

and some y �= x, a directed edge (x, y) ∈ g(D(Lj );β) if c(x, y) > 0, and
(x, y) ∈ g(D(Lj );β) if c(x, y) = 0. Using these definitions and notation, Pβ(g) can
be rewritten as

Pβ(g) =
∏

Lj ∈L

∏

(y,z)∈g(D(Lj ))

Pβ(y, z)

=
∏

Lj ∈L

∏

(y,z)∈g(D(Lj ))

(
e−β

m

)c(y,z) n−c(y,z)∏

i=1

(
m + (1 − m)e−β

m

)

=
∏

Lj ∈L

⎡

⎣
∏

(y,z)∈g(D(Lj );β)

(
e−β

m

)c(y,z) (
m + (1 − m)e−β

m

)n−c(y,z)

×
∏

(y,z)∈g(D(Lj );β)

(
m + (1 − m)e−β

m

)n

⎤

⎥⎦ (10)
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Let n(g; Lj ; β) be the cardinality of subgraph g(D(Lj );β) (i.e. the number of
directed edges in subgraph g(D(Lj );β)) so that the cardinality of g(D(Lj );β) is
d(Lj ) − n(g; Lj ; β). Then Eq. 10 can be rewritten as

Pβ(g) =
∏

Lj ∈L

[(
e−β

m

)∑
(y,z)∈g(D(Lj );β) c(y,z) (

m+(1−m)e−β

m

)∑
(y,z)∈g(D(Lj );β)(n−c(y,z))

×
(

m + (1 − m)e−β

m

)n[d(Lj )−n(g;Lj ;β)]]

=
∏

Lj ∈L

(
e−β

m

)∑
(y,z)∈g(D(Lj );β) c(y,z)

×
(

m + (1 − m)e−β

m

)n[d(Lj )−n(g;Lj ;β)]+∑
(y,z)∈g(D(Lj );β)(n−c(y,z))

(11)

The summation c(Lj ; g) = ∑
(y,z)∈g(D(Lj );β) c(y, z) on the exponent of the

expressions of Pβ(g) in Eq. 11 is the total cost of leaving the basin of attrac-
tion of each Lj under graph g ∈ Γ (x). Using this definition, we can simplify
n[d(Lj ) − n(g; Lj ; β)] + ∑

(y,z)∈g(D(Lj );β)(n − c(y, z)) as follows:

n[d(Lj ) − n(g; Lj ; β)] +
∑

(y,z)∈g(D(Lj );β)

(n − c(y, z)) = n[d(Lj ) − n(g; Lj ; β)]

+n(g; Lj ; β)n−c(Lj ; g)

= nd(Lj ) − c(Lj ; g)

Eq. 11 then simplifies to

Pβ(g) =
∏

Lj ∈L

(
e−β

m

)c(Lj ;g) (
m + (1 − m)e−β

m

)nd(Lj )−c(Lj ;g)

= exp

⎡

⎣−
∑

Lj ∈L

(
c(Lj ; g)βm + (nd(Lj ) − c(Lj ; g))β ′

m

)
⎤

⎦

= exp

⎡

⎣−
∑

Lj ∈L

(
c(Lj ; g)(βm − β ′

m) + nd(Lj )β
′
m

)
⎤

⎦ (12)

where βm = β − lnm−1 and β ′
m = − ln

[
m+(1−m)e−β

m

]
.

Recall the definition of the long-run equilibrium of (A, U, N, G, Pε) as con-
figurations that maximize the stationary distribution. So, to compute the long-run
equilibrium, we take ratios of probabilities and identify configurations for which
the ratio is less than one. Specifically, configuration a∗ is a long-run equilibrium if
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πβ(x)
πβ(a∗) ≤ 1 for all x �= a∗. From πβ(x) in Eq. 7, the expression for the ratio of

stationary distribution, πβ(x)
πβ(w)

of any pair of configurations x,w ∈ X is given by

πβ(x)
πβ(w)

=
∑

g∈Γ ({x}) Pβ(g)
∑

g∈Γ ({w}) Pβ(g)
(13)

where the quantity
(∑

y∈X
∑

g∈Γ ({y}) Pβ(g)
)−1

cancels out since it is identical for

all configurations.
Let γ (x) = #Γ (x) be the cardinality of Γ (x). Since for any x ∈ X every g ∈ Γ (x)

spans the entire state space except for one configuration (i.e. the number of edges in
any g ∈ Γ (x) is equal to mn − 1), the cardinality of Γ (x) is the same for any pair of
configurations x, y ∈ X; that is, γ (x) = γ (y) = γ . Using this notation, the following
bounds hold:

∑

g∈Γ ({x})
Pβ(g) ≤

∑

g∈Γ ({x})
max

g∈Γ ({x})
Pβ(g) = γ max

g∈Γ ({x})
Pβ(g)

∑

g∈Γ ({x})
Pβ(g) ≥ max

g∈Γ ({x})
Pβ(g)

Thus, the ratio πβ(x)
πβ(w)

is bounded from below and above by

maxg∈Γ ({x}) Pβ(g)

γ maxg∈Γ ({w}) Pβ(g)
≤ πβ(x)

πβ(w)
≤ γ maxg∈Γ ({x}) Pβ(g)

maxg∈Γ ({w}) Pβ(g)
(14)

Substituting for Pβ(g) from Eq. 12 into the ratios of stationary distributions in Eq. 14
yields the following expression.

maxg∈Γ ({x}) Pβ(g)

maxg∈Γ ({w}) Pβ(g)
=

maxg∈Γ ({x}) exp
[
−∑

Lj ∈L
(
c(Lj ; g)(βm − β ′

m) + nd(Lj )β
′
m

)]

maxg∈Γ ({w}) exp
[
− ∑

Lj ∈L
(
c(Lj ; g)(βm − β ′

m) + nd(Lj )β ′
m

)]

= exp

⎡

⎣ min
g∈Γ ({w})

∑

Lj ∈L
c(Lj ; g)(βm − β ′

m) − min
g∈Γ ({x})

∑

Lj ∈L
c(Lj ; g)(βm − β ′

m)

⎤

⎦

= exp

⎡

⎣−(βm − β ′
m)

⎛

⎝ min
g∈Γ ({x})

∑

Lj ∈L
c(Lj ; g) − min

g∈Γ ({w})
∑

Lj ∈L
c(Lj ; g)

⎞

⎠

⎤

⎦ (15)

whereby, due to the negative in the exponents, the expressions for Pβ(g) are max-
imized when the costs of exiting the basins of attractions of absorbing sets are
minimized. Substituting Eq. 15 into Eq. 14 yields the following lower and upper
bounds for πβ(x)

πβ(w)

πβ(x)
πβ(w)

= exp

⎡

⎣−(βm − β ′
m)

⎛

⎝ min
g∈Γ ({x})

∑

Lj ∈L
c(Lj ; g) − min

g∈Γ ({w})
∑

Lj ∈L
c(Lj ; g)

⎞

⎠ ± ln γ

⎤

⎦

(16)
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Now, notice that for all β ≥ 0, (βm − β ′
m) ≥ 0: that is,

(βm − β ′
m) = β − lnm−1 + ln

[
m + (1 − m)e−β

m

]

= β − lnm−1 + ln
[
m + (1 − m)e−β

] + lnm−1

= β + ln
[
m + (1 − m)e−β

]
(17)

Since m+ (1−m)e−β ≥ 1 for all β ≥ 0, it follows from the right hand side of Eq. 17
that (βm − β ′

m) ≥ 0 for all β ≥ 0. Let Φ(x,w) denote the difference between costs
of graphs (i.e. the expression in the exponent of Eq. 16). That is,

Φ(x,w) = min
g∈Γ ({x})

∑

Lj ∈L
c(Lj ; g) − min

g∈Γ ({w})
∑

Lj ∈L
c(Lj ; g)

It then follows from Eq. 16 that πβ(x)
πβ(w)

≤ 1 if Φ(x,w) ≥ 0 and that

− (βm − β ′
m)Φ(x,w) + ln γ ≤ 0 (18)

Substituting for the values of βm and β ′
m in Eq. 18 yields

β ≥ ln γ

Φ(x,w)
− ln

[
m + (1 − m)e−β

]
(19)

Let β∗ be the solution to

β = ln γ

Φ(x,w)
− ln

[
m + (1 − m)e−β

]
(20)

By comparison β∗ is smaller than ln γ
Φ(x,w)

. To see why, notice that the function

ln
[
m + (1 − m)e−β

]
increases from 0 to the upper bound lnm as β → ∞, which

implies that ln γ
Φ(x,w)

− ln
[
m + (1 − m)e−β

]
decreases from ln γ

Φ(x,w)
to ln γ

Φ(x,w)
− lnm.

This implies that the equilibrium value of β in Eq. 20, that is, the value of β at which
the 45-degree line depicting β = β meets ln γ

Φ(x,w)
− ln

[
m + (1 − m)e−β

]
, is less than

ln γ
Φ(x,w)

, and hence,

β∗ ≤ ln γ

Φ(x,w)
(21)

It then follows that configuration a∗ is the long-run equilibrium for all β ≥ β∗ if it
hase the least cost a∗-tree, that is, Φ(x, a∗) ≥ 0 for all x �= a∗.

We now show that if a p-dominant strategy, a∗, is contagious in a given network,
then convention a∗ has the minimum cost Γ (a∗) graph. Note that configurations
with the minimum cost graph belong to some absorbing state, and hence, it suffices
to focus on examining the costs of graphs for configurations within L. Let φ(a, g)

denote the total cost of some g ∈ Γ (a) for any a ∈ L; that is,

φ(a; g) = min
g∈Γ ({a})

∑

Lj ∈L
c(Lj ; g) (22)

We can see from Eq. 22 that φ(a; g) is identical to the cost derived from a reduced
form of Γ (a), denoted by Γ ′(a), on a state space L × L (i.e. where vertices are
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absorbing sets). For any g ∈ Γ ′(a) the cost of an arrow originating from someLj ∈ L
is c(Lj ; g).

We deduce from the proof of Theorem 1 in Appendix B that for convention a∗,
the minimum cost graph in Γ ′(a∗) involves direct transitions from every a ∈ Lj ⊂
L\a∗ to a∗, and each has a cost bounded from above by c(a; g) ≤ b∗

2. Note that if
c(a; g) ≤ b∗

2 for all a ∈ Lj , then c(Lj ; g) ≤ b∗
2. Thus, if we let ζ

∗(L) be the number
of independent absorbing sets in L (i.e. all Lj ⊂ L) with a∗ excluded, then

φ(a∗) = min
g∈Γ ′(a∗)

φ(a∗; g) ≤ b∗
2ζ

∗(L) (23)

Now, consider any other a ∈ L ⊂ L\a∗. The minimum cost graph in Γ ′(a) will
consist of an arrow a∗ → a′ starting from a∗ to some a′ �= a∗. The minimum cost g ∈
Γ ′(a) can thus be constructed from the minimum cost graph in Γ ′(a∗) by deleting
a → a∗ and replacing it with a∗ → a′, so that

φ(a) = φ(a∗) − min
g∈Γ ′(a∗)

c(a; g) + min
g∈Γ ′(a)

c(a∗; g) (24)

And hence,

φ(a) − φ(a∗) = min
g∈Γ ′(a)

c(a∗; g) − min
g∈Γ ′(a∗)

c(a; g) >
(
n

3
5 − b∗

2

)
(25)

where the second inequality is because the minimum cost of leaving a∗ is greater

than n
3
5 mutations (see Appendix B) and that c(a; g) ≤ b∗

2 for all a ∈ Lj ⊂ L\a∗.
Since n

3
5 ≥ b∗

2 is a condition for strategy a∗ to be contagious, it follows that
φ(a)−φ(a∗) > 0 for all a ∈ L\a∗, and hence, a∗ has the minimum cost a∗-tree. The
inequality, φ(a) − φ(a∗) > n

3
5 − b∗

2, also implies that Φ(a, a∗) > n
3
5 − b∗

2 for all
a ∈ L\a∗. Thus,

ln γ

Φ(a, a∗)
<

ln γ

n
3
5 − b∗

2

for all a ∈ L\a∗

It then follows that there exists some β∗ ∈
(
0, ln γ /(n

3
5 − b∗

2)
]
such that for all

β ≥ β∗, convention a∗ has the least cost tree, and hence, the long-run equilibrium.

Appendix D: Proof of Proposition 2

The following definitions are used in the next steps of the proof. Given transition
probabilities Pβ(x, y) in Eq. 8, the cost function c(x, y) can be rewritten as follows

lim
β→∞

− lnPβ(x, y)
β

= c(x, y) (26)

The following definition is for Γx,y(W) graphs, which are a special form of Γ (W)

graphs defined in Definition 7.

Definition 9 For any x ∈ W̄ and y ∈ W where x �= y, Γx,y(W) is a set of all Γ (W)-
graphs which link x to y. For any two configurations x, y ∈ W̄ , Γx,y(W ∪ {y}) is the
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set of Γ (W)-graphs in which x is joined to some point y possibly itself and not to W ,
and that all other points of W̄ are joined to either the same point or to W .

Consider a configuration spaceX = {a, b, c,d, e, f, g, h}with examples of g-trees
depicted in Fig. 4. Let W = {d, e, f, g, h}, with examples of Γ (W) graphs depicted
in Fig. 5. Then examples of Γa,c (W ∪ {c}) graphs based on Γ (W) graphs in Fig. 5
are: {a → c,b → W } for the graph on the left, {c → W,b → W } for the middle
graph, and {a → b, c → W } for the graph on the right.

Recall the definition of φ(W ; g) for some W ⊂ X and g ∈ Γ (W) from
Appendix C as φ(W ; g) = ∑

(x,y)∈g c(x, y). The following result is derived in Catoni
(1999, Proposition 4.2).

Lemma 2 For any W ⊂ X, W �= ∅ and W̄ = X\W , for any x, y ∈ W̄

lim
β→∞

lnE[T (W)| x0 = x]
β

= min
g∈Γ (W)

φ(W ; g) − min
y∈W̄

min
g∈Γx,y(W∪{y})φ(W ; g) (27)

We are interested in the expected waiting time for convention a∗ associated with
the contagious strategy a∗. Thus, we can substitute W = {a∗} into Eq. 27. That is,

lim
β→∞

lnE[T (a∗)| x0 = x]
β

= min
g∈Γ (a∗)

φ(a∗; g) − min
y∈L\a∗ min

g∈Γx,y(a∗∪{y})φ(a∗; g) (28)

Recall from the analysis in Appendices B and C for the minimum cost graph
g ∈ Γ (a∗), the costs are bounded from above as c(a; g) ≤ b∗

2 for all a ∈ L\a∗,
and from Eq. 23, φ(a∗) = ming∈Γ (a∗) φ(a∗; g) ≤ b∗

2ζ
∗(L). Focusing on reduced

form graphs, Γ ′(a∗), it follows from the definition of Γ ′
a,a′(a∗ ∪ {a′}) graphs that

Fig. 5 Examples of Γ (W) graphs, where W̄ = {a,b, c}
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mina′∈L\a∗ ming∈Γ ′
a,a′ (a

∗∪{a′}) φ(a∗; g) ≤ b∗
2(ζ

∗(L) − 1). Thus, there exists some

b∗ ∈ (0, b∗
2) such that

lim
β→∞

lnE[T (a∗)| x0 = a]
β

= min
g∈Γ (a∗)

φ(a∗; g) − min
a′∈L\a∗ min

g∈Γ ′
a,a′ (a

∗∪{a′})
φ(a∗; g) = b∗

(29)
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Appliquée (BETA), University of Strasbourg. We also thank the anonymous referee and the editor, whose
comments led to significant improvements. The usual disclaimer applies.

Funding This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

Alós-Ferrer C, Weidenholzer S (2007) Partial bandwagon effects and local interactions. Games Econ
Behav 61(2):179–197

Alós-Ferrer C, Weidenholzer S (2008) Contagion and efficiency. J Econ Theory 143(1):251–274
Anderson SP, Goeree JK, Holt CA (2001) Minimum-effort coordination games: Stochastic potential and

logit equilibrium. Games Econ Behav 34(2):177–199
Bass FM (1969) A new product growth for model consumer durables. Manag Sci 15(5):215–227
Beaman L, BenYishay A, Magruder J, Mobarak AM (2018) Can network theory-based targeting increase

technology adoption? Tech. rep., National Bureau of Economic Research
Bermond JC, Bond J, Peleg D, Perennes S (1996) Tight bounds on the size of 2-monopolies. In: SIROCCO,

pp 170–179
Berninghaus SK, Schwalbe U (1996) Conventions, local interaction, and automata networks. J Evol Econ

6(3):297–312
Blume LE (1995) The statistical mechanics of best-response strategy revision. Games Econ Behav

11(2):111–145
Campbell A (2013) Word-of-mouth communication and percolation in social networks. Am Econ Rev

103(6):2466–98
Catoni O (1999) Simulated annealing algorithms and markov chains with rare transitions. In: Azéma J,
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