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Abstract
Do firms that engage in relative payoff maximizing (RPM) behavior always choose
a strategy profile that results in tougher competition compared to firms that engage
in absolute payoff maximizing (APM) behavior? We address this question by way
of a simple model of symmetric oligopoly where firms simultaneously select a two-
dimensional strategy set consisting of a price variable and a non-price (i.e., quality)
variable. Our results show that equilibrium solutions of RPM and APM are distinct.
It is further shown that the standard result of Nash equilibrium in oligopoly, namely,
that the non-price variable is used to soften price competition, survives also when
firms are concerned with relative payoff considerations.

Keywords Relative payoff maximizing (RPM) · Oligopoly · Finite population
evolutionary stable strategy (FPESS) · Quality

JEL Classification C73 · D21 · D43 · L13 · L15

1 Introduction

It is a well-known result by Schaffer (1988, 1989) that the concept of a finite popu-
lation evolutionarily stable strategy (FPESS) can be characterized by relative payoff
maximization and that this solution concept is different from Nash equilibrium and
absolute payoff maximization. As Schaffer explains, agents in economic and social
environments survive in the evolutionary process if they can perform better than
their opponents, and so, players adhere to relative payoff maximizing (RPM) rather
than absolute payoff maximizing (APM) behavior. The behavior induced by RPM
or spiteful behavior (Hamilton 1970) leads to more competition between firms in
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a Cournot oligopoly game. Vega-Redondo (1997) reveals that a Walrasian equilib-
rium turns out to be the unique stochastically stable state in a symmetric Cournot
oligopoly. Tanaka (1999), Apesteguia et al. (2010) and Leininger and Moghadam
(2018) investigate the equivalence of evolutionary equilibrium and Walrasian com-
petitive equilibrium in an asymmetric Cournot oligopoly. While Tanaka (1999) shows
that an asymmetric cost structure does not change the long-run outcome of Wal-
rasian equilibrium in a homogeneous oligopoly competition, Apesteguia et al. (2010)
prove that the above-mentioned Walrasian result of Vega-Redondo is sensitive to cost
asymmetry. They consider a setup where one firm has a small (fixed) cost advantage
over other firms in the market. As a result of this cost asymmetry, other quanti-
ties apart from Walrasian quantity are chosen in long-run outcomes of the game. In
Tanaka’s evolutionary analysis, indeed firms are only allowed to imitate each other
from the same cost group. Using an alternative analysis of the asymmetric oligopoly
game, Leininger and Moghadam (2018) show that weighted average cost pricing
arises in equilibrium when individual firm quantities do not correspond to Walrasian
quantities.

In this paper, we consider a symmetric oligopoly game where each firm has a two
dimensional strategy set consisting of a price variable and a non-price variable (the
quality). Using a non-price strategy by firms in oligopoly competition is common
since firms can become exceedingly competitive in price strategy. Therefore, firms
may also decide to compete in another dimension of non-price strategy to soften
price competition. Hereafter we refer to this non-price strategy as quality. The firm’s
cost function structure considered in this model is in line with the industrial organi-
zation literature. (See e.g. Shaked and Sutton 1987; Banker et al. 1998; Berry and
Waldfogel, 2010 and Brécard 2010.) We assume that quality improvement requires
fixed costs, but that it does not change variable costs.1 In the present paper, we
contribute to the literature that studies the evolutionary game-theoretic approach to
oligopoly theory by showing the role of cross-elasticities of demand in determining
the evolutionary equilibrium. Specifically, our analysis verifies that market power is
determined in the Nash equilibrium by the firm’s own elasticities of demand. Alter-
natively, in the FPESS equilibrium, market power is determined not only by own
elasticities of demand but also cross-elasticities of demand. The same interpretation
applies to the quality improvement intensity, i.e., the ratio of quality cost to revenue.
A Nash equilibrium analysis demonstrates that if demand is somewhat more sensitive
to changes in own quality than to changes in own price, then quality improvement
expenditure (or R&D expenditure) is a large percentage of the revenue. By con-
trast, an evolutionary equilibrium analysis demonstrates that the quality improvement
intensity is determined by both the firm’s own elasticities of demand and cross elas-
ticities of demand. Interestingly, for a model with linear demand and quadratic costs,
we prove that RPM firms bring into play one of the two dimensions of competition
to soften competition in the other dimension. This is a standard result in the Nash
equilibrium which survives also in the case of evolutionary equilibrium.

1We obtain a similar result for a model of variable cost of quality improvement, see the working paper
version Moghadam (2015).
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In general, the notion of the FPESS equilibrium and Nash equilibrium are not
related. Ania (2008) and Hehenkamp et al. (2010) study this relationship in different
classes of games and particularly in the framework of the Bertrand oligopoly with
homogeneous product. The papers by Tanaka (2000), Hehenkamp and Wambach
(2010), and Khan and Peeters (2015) are related to our paper. Tanaka (2000) stud-
ies evolutionary game-theoretic models for a price-setting and for a quantity-setting
differentiated oligopoly with a linear demand function. Hehenkamp and Wambach
(2010) investigate an evolutionary model of horizontal product differentiation in a
duopoly setup and show that minimum differentiation along all product characteris-
tics, i.e., repositioning a product to the center of the product space, establishes the
unique evolutionary equilibrium. Khan and Peeters (2015) show that Nash equilib-
rium outcomes in a Salop-circle model with firms simultaneously choosing price
and quantity coincide with outcomes in the stochastically stable state. They obtain
this result by allowing for a capacity constraint in their model that justifies the Nash
equilibrium (i.e., the price above marginal cost) as the long run outcome of the
evolutionary game.

The paper is organized as follows. The next section presents the model and its
assumptions. Section 3 analyzes differences between the FPESS equilibrium and the
Nash equilibrium in a model of quality improvement with fixed costs and further
examines the link between these equilibrium concepts. Section 4 concludes.

2 Themodel

In this section, we describe our oligopoly setup and further define two different
types of equilibrium concepts: the standard Nash equilibrium and the evolutionary
equilibrium.

2.1 Nash equilibrium

We assume an industry of i = 1, ..., n firms, each offering a quantity xi of a product
that may vary in its quality qi and its price pi . It is also assumed that the non-price
variable ( i.e., quality) is a measurable attribute with values in the interval [0, ∞).
The quality level has a lower bound that is known as the zero quality or the minimum
technologically feasible quality level.

Following Dixit (1979), demand functions for goods are given by

xi = Di(p,q) i = 1, ..., n, (1)

where p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn).
Di(p,q) are continuous, twice-differentiable, and concave functions. An increase

in any pj and qj raises or lowers each xi depending on whether the product pair (i, j)

consists of complements
(

∂Dj

∂pi
< 0,

∂Dj

∂qi
> 0

)
or substitutes

(
∂Dj

∂pi
> 0,

∂Dj

∂qi
< 0

)
.

Moreover, we assume that the demand function Di for each firm i is more affected
by changes in its own price and quality than by those of its competitors (see Tirole
1988).

509



H.M. Moghadam

Concerning the cost function, we assume that the quality level selected by a firm
influences its cost only through fixed cost2 f (.). Therefore, firm i faces a cost func-
tion C(xi, qi) = f (qi)+c(xi). The functions f (.) and c(.) are increasing and convex
with respect to each of their arguments and, without loss of generality, all fixed costs
that are not related to the quality are normalized to zero. Therefore, the firm i’s profit
function is

πi(p,q) = piDi(p,q) − C(Di(p,q), qi) i = 1, 2, ..., n. (2)

The strategic variables are price and quality. Since the interaction between
the price and quality strategies of the firms only occurs through the common
demand function, the price vector p = (p1, p2, ..., pn) and the quality vector
q = (q1, q2, ..., qn) are denoted by (pi,p−i ) and (qi,q−i ), respectively.

Let the number of firms n be fixed. Consider a simultaneous-move game where
each firm chooses a pair of quality and price (pi, qi). Assuming that all firms produce
a strictly positive quantity in equilibrium, we have the following definition of the
standard Nash equilibrium.

Definition 1 The Nash equilibrium in an oligopoly competition is given by a price
vector pN and a quality vector qN such that each firm maximizes its profit, i.e.,(

pN
i , qN

i

)
= arg max

pi,qi

πi(pi, qi,pN−i ,q
N−i ) ∀i = 1, ..., n. (3)

2.2 Evolutionary stability

In symmetric infinite population games, it has been widely verified that the concept
of an evolutionarily stable strategy is a refinement of the Nash equilibrium. However,
in the finite-population framework, the behavior implied by evolutionary stability
may have distinctive features from strategic Nash equilibrium behavior. The reason
for this is as follows: when one player deviates from the incumbent strategy to a new
strategy in a population with a small number of players, both the incumbent and the
mutant players do not encounter the same population profile. In fact, mutant player
confronts with a homogeneous profile of n − 1 incumbent players and incumbent
players face a profile of one single mutant and n − 2 other incumbent players.

Recall that the firm’s strategy choices are two-dimensional: price level and qual-
ity level. Then consider a state of the system where all firms’ strategy sets are the
same and suppose that one firm experiments with a new different strategy. We say
that a state is evolutionarily stable if no mutant firm that chooses a different strat-
egy can realize higher profits than the firms that employ the incumbent strategy. In
other words, no mutant strategy can invade a population of incumbent strategists
successfully.

Formally, consider a state where all firms choose the same strategies (p∗, q∗). This
state (p∗, q∗) is a finite population evolutionarily stable strategy (FPESS) when one

2The analysis here leads to the same results when the cost of quality improvement requires only an increase
in variable costs; see the discussion paper version Moghadam (2015).
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mutant firm (an experimenter) chooses a different strategy (pm, qm) �= (p∗, q∗) its
profit must be smaller than the profits of the incumbent firms (i.e., the rest of firms).
Formally speaking, we have

Definition 2 (p∗, q∗) is FPESS if πi(p,q) < πj (p,q) ∀j �= i, ∀(pm, qm) �=
(p∗, q∗), and i = 1, ..., n, where p = [p∗, ..., p∗, pi = pm, p∗, ..., p∗], q =
[q∗, ..., q∗, qi = qm, q∗, ..., q∗], and firm i is the mutant firm.3

2.3 Evolutionary stable strategies and relative payoffs

In the classical economics literature, firms are assumed to be entities aiming to maxi-
mize their payoffs. Yet, despite this standard behavior of absolute payoff maximizing,
firms may engage in a competitive behavior of relative payoff maximizing. A firm
may pursue a different behavior being ahead of its opponents making higher payoff
than the others. According to Schaffer (1989), in a so-called playing the field game,
we can also find a FPESS by solving a relative payoff function of firm i.

Definition 3 In a symmetric oligopoly, FPESS is obtained as the solution of the
following relative payoff optimization problem:

(p∗, q∗) = argmax
pm,qm

ϕi = πi(p,q) − πj (p,q). (4)

The interpretation of this definition is as follows: the equilibrium condition of the
finite population evolutionarily stable strategy in Definition 2 is equivalent to saying
that, when (pm, qm) = (p∗, q∗), then πi(p,q) − πj (p,q) as a function of (pm, qm)

approaches its maximum value of zero. In fact, FPESS can be characterized as a
relative payoff maximization and this solution concept is different from the Nash
equilibrium and absolute payoff maximization. However, note that this also implies
that the FPESS equilibrium is a Nash equilibrium for relative payoff maximizing
(RPM) firms.

3 Analysis

In addition to the strategic variable price p, firms often bring into play non-price
strategic variables with the intention of softening market competition. Firms may
decide, for instance, how much revenue to allocate to improve the quality of their
product or to research and develop new features to add to the basic product. In this
section, we focus on the quality improvement decision of the firm. In particular, we
are interested in analyzing the outcomes of both the Nash equilibrium and the evo-
lutionary equilibrium of this game. Then we compare the two equilibrium concepts
and discuss the results.

3Clearly, this definition includes any one-dimensional deviation (such as (pm, q∗) or (p∗, qm)) by a
mutant.
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We begin by analyzing the game through the lens of the classical approach, i.e.,
maximization of absolute payoffs. By Definition 1 and the profit function of firm i

as specified in the previous section, we obtain

πi(p,q) = piDi(p,q) − f (qi) − c(Di(p,q)) i = 1, 2, ..., n.

We derive the first order conditions for the Nash equilibrium with respect to pi

and qi as follows:

∂πi

∂pi

= xi + ∂Di

∂pi

pi − c′(xi)
∂Di

∂pi

= 0, (5)

and
∂πi

∂qi

= ∂Di

∂qi

pi − f ′(qi) − c′(xi)
∂Di

∂qi

= 0. (6)

Equation 5 is the familiar equality between marginal revenue and marginal cost.
Equation 6 states that the marginal revenue associated with a one-unit increase in the
quality level is equal to the marginal cost of achieving this quality. We express the
above conditions in terms of elasticities and then, combining the price decision and
the quality decision in one rule yields4

pi − c′(xi)

pi

= 1

εDi,pi

= εf,qi

εDi,qi

f (qi)

pixi

, (7)

where εDi,pi
= − ∂Di

∂pi

pi

xi
and εDi,qi

= ∂Di

∂qi

qi

xi
are own price elasticity of demand

and own quality elasticity of demand, respectively, and εf,qi
= f ′(qi)

qi

f (qi )
denotes

elasticity of fixed costs with respect to quality.
Furthermore, by substituting the profit function in the optimization problem of

Definition 3, we obtain

ϕi = Di(p,q)pi − f (qi) − c(Di(p,q)) − Dj(p,q)pj + f (qj ) + c(Dj (p,q)),

where pi = pm and qi = qm and ∀j �= i pj = p∗ and qj = q∗.
Thus, the first order conditions for the maximization of ϕ with respect to pi and

qi are as follows:

∂ϕi

∂pi

= xi + ∂Di

∂pi

pi − c′(xi)
∂Di

∂pi

− ∂Dj

∂pi

pj + c′(xj )
∂Dj

∂pi

= 0, (8)

and
∂ϕi

∂qi

= ∂Di

∂qi

pi − f ′(qi) − c′(xi)
∂Di

∂qi

− ∂Dj

∂qi

pj + c′(xj )
∂Dj

∂qi

= 0. (9)

4Rephrasing both FOCs of Eqs. 5 and 6 for the Nash equilibrium, we obtain

pi − c′(xi )

pi

= − xi

pi
∂Di

∂pi

= 1

εDi ,pi

,

and
pi − c′(xi )

pi

= f ′(qi )

pi
∂Di

∂qi

= xi

qi
∂Di

∂qi

f ′(qi )qi

f (qi )

f (qi )

pixi

= εf,qi

εDi ,qi

f (qi )

pixi

.
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Then combining Eqs. 8 and 9 for FPESS, we obtain:5

pi − c′(xi)

pi

= 1

(εDi,pi
− xj

xi
εDj ,pi

)
= εf,qi

(εDi,qi
− xj

xi
εDj ,qi

)

f (qi)

pixi

, (10)

where εDj ,pi
= − ∂Dj

∂pi

pi

xj
and εDj ,qi

= ∂Dj

∂qi

qi

xj
are the cross-price elasticity of demand

and the cross-quality elasticity of demand, respectively.
The above conditions indicate that the FPESS equilibrium does not conform

to competitive behavior where price is equal to marginal cost (pi = c′(xi)). By
comparing the outcomes of the FPESS equilibrium (expression (10)) and the Nash
equilibrium (expression (7)), we see obviously that the solutions for Nash and FPESS
equilibrium are different.

Our analysis is extended to study market power as well. Market power can be
defined as the ability of a firm to raise its prices higher than the perfectly competitive
level. As we know, market power can be measured by the Lerner index, where L =
pi−c′(xi )

pi
. Expression (7) is familiar, which implies that market power is determined

by the firm’s own elasticities of demand. But expression (10) implies that market
power, measured by the Lerner index, is influenced in an evolutionary equilibrium
not only by the firm’s own elasticities of demand but also by cross-elasticities of
demand.

Furthermore, the ratio of quality cost f (qi) to revenue Ri = pixi is termed the
quality improvement intensity. This ratio determines how much a firm is willing to
invest in quality improvement plans. In a Nash equilibrium, rephrasing expression
(7), we obtain the following interesting equality f (qi )

pixi
= εDi ,qi

εDi ,pi

1
εf,qi

, which states

that the quality improvement intensity, i.e., f (qi )
pixi

is equal to the ratio of the quality
elasticity of demand (εDi,qi

) to the price elasticity of demand (εDi,pi
) multiplied by

the inverse of the quality elasticity of fixed costs (εf,qi
). Our theoretical model sug-

gests that, if we want to measure the quality improvement intensity, we must estimate
the demand and cost functions. Therefore, if demand is somewhat more sensitive to

5In symmetric situations, by imposing pi = pj , qi = qj and c′(xi ) = c′(xj ), the FOCs of Eqs. 8 and 9,
can be rewritten as

pi − c′(xi ) = − xi(
∂Di

∂pi
− ∂Dj

∂pi

) ,

and

pi − c′(xi ) = f ′(qi )(
∂Di

∂qi
− ∂Dj

∂qi

) .

After some algebraic manipulation, these FOCs can be rewritten as

pi − c′(xi )

pi

= 1(
− ∂Di

∂pi

pi

xi
+ ∂Dj

∂pi

pi

xj

xj

xi

) = 1(
εDi ,pi

− xj

xi
εDj ,pi

) ,

and
pi − c′(xi )

pi

= 1(
∂Di

∂qi

qi

xi
− ∂Dj

∂qi

qi

xj

xj

xi

) f ′(qi )qi

f (qi )

f (qi )

pixi

= εf,qi(
εDi ,qi

− xj

xi
εDj ,qi

) f (qi)

pixi

.
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changes in quality than to changes in price, then quality improvement spending (or
R&D expenditure) is a large percentage of the revenue. The quality improvement
intensity is also affected by the inverse of the quality elasticity of the fixed costs.
In the case of evolutionary equilibrium, using expression (10), we obtain a different

equality for the quality improvement intensity, i.e., f (qi )
pixi

=
(
εDi ,qi

− xj
xi

εDj ,qi

)
(
εDi ,pi

− xj
xi

εDj ,pi

) 1
εf,qi

.

This is summarized in the following two propositions 1 and 2.

Proposition 1 (Nash equilibrium) Consider a symmetric oligopoly game where
each firm has a two-dimensional strategy set consisting of a price level and a qual-
ity level. Assuming existence and uniqueness of the interior equilibrium solution, a
firm in the symmetric Nash equilibrium sets it’s quality improvement intensity on the
basis of the expression f (qi )

pixi
= εDi ,qi

εDi ,pi

1
εf,qi

.

Proposition 2 (Evolutionary equilibrium) Consider a symmetric oligopoly game
where each firm has a two-dimensional strategy set consisting of a price level
and a quality level. Assuming existence and uniqueness of the interior equilibrium
solutions, the FPESS equilibrium is different from the symmetric Nash equilibrium
and does not correspond to competitive behavior. Moreover, in the FPESS equilib-
rium, the firm’s quality improvement intensity is determined by the equality f (qi )

pixi
=(

εDi ,qi
− xj

xi
εDj ,qi

)
(
εDi ,pi

− xj
xi

εDj ,pi

) 1
εf,qi

.

As a matter of fact, when policy decisions of firms include both price and quality,
firms set its quality improvement intensity equal to the ratio of the two demand own
elasticities multiplied by the inverse of quality elasticity of fixed costs. Therefore, the
quality improvement intensity depends on three factors:

(1) The quality elasticity of demand: the greater the sensitivity of consumers to
quality level, the greater the quality improvement intensity will be.

(2) The firm market power: the greater the power of firms to raise price above
marginal cost, the greater the quality improvement intensity will be.

(3) The cost structure: the smaller the quality elasticity of fixed cost, the greater the
quality improvement intensity will be.

When the target of firms is relative profit, the first and the second factors are
influenced by cross-elasticities of demand as well.

In order to differentiate these two equilibrium concepts, we need to make two
assumptions about the structure of the demand and cost functions. First, we assume
that the fixed cost f (qi) = ψq2

i is increasing and convex in quality level qi since
improving the product’s quality level requires an initial investment by the firm. Using
a standard linear variable cost, the cost function for firm i has the following form:

C(xi, qi) = ψq2
i + νxi, (11)

where ψ > 1/4.
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Second, we assume that the demand function has the following linear form:

xi = Di(p,q) = a − pi + qi + β

n∑
j=1,j �=i

pj − γ

n∑
j=1,j �=i

qj , (12)

where |β| < 2/(n − 1), |γ | < 1 and β, γ �= 0.6 Note that, if the price effect of good
j on the demand for good i (β) and the quality effect of good j on the demand for
good i (γ ) are both positive, the goods of the firms are substitute, whereas if β and γ

are both negative, the two goods are complements.
Assuming the cost function (11) and the linear demand function (12), Eqs. 5 and 6

for Nash equilibrium can be rewritten like the following:

a − (1 − (n − 1)β)pN + (1 − (n − 1)γ )qN = pN − ν,

and
pN = ν + 2ψqN .

Rearranging above equations, they yield qN and pN as follow:

qN = a − (1 − (n − 1)β)ν

2ψ(2 − (n − 1)β) − (1 − (n − 1)γ )
, (13)

and

pN = ν + a − (1 − (n − 1)β)ν

(2 − (n − 1)β) − ((1−(n−1)γ )
2ψ

. (14)

Likewise, Eqs. 8 and 9 for FPESS can be also inscribed along these lines:

(−1 − β)(p∗ − ν) + a − (1 − (n − 1)β)p∗ + (1 − (n − 1)γ )q∗ = 0,

6The restrictions on β, γ , and ψ ensure that we have a unique symmetric Nash equilibrium. To see this,
first we assume upper bounds for price and quality so that we have a compact strategy space. Second,
given that payoff functions πi = piDi(p,q)−Ci(Di(p,q), qi ) = (pi −ν)Di(p,q)−ψq2

i are continuous,
we show that a sufficient condition for πi to be strictly concave is that the second order conditions have a
negative definite Hessian matrix. Consider the following Hessian matrix:

Hi =
⎛
⎝

∂2πi

∂p2
i

∂2πi

∂pi ∂qi

∂2πi

∂pi ∂qi

∂2πi

∂q2i

⎞
⎠ =

(
2 ∂Di

∂pi

∂Di

∂qi
∂Di

∂qi
−2ψ

)

Since Di(.) is linear, the following condition guarantees that |Hi | < 0 and hence that the solvability
condition is satisfied:

4ψ − 1 > 0.

Finally, to ensure uniqueness as well, we check the following contraction condition (see Vives 2001):

∂2πi

∂p2
i

+
n∑

j �=i

| ∂2πi

∂pi∂pj

| < 0.

We thus obtain the following condition:

−2 + (n − 1)|β| < 0.

Note that a similar contraction condition for qi does not lead to an additional constraint. The condition
|β| < 2/(n − 1) means that the cross effect of a price change β is limited by the number of firms. The
condition becomes more restrictive as the number of firms increases.
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and

p∗ = ν + 2ψ

(1 + γ )
q∗.

After solving for q∗ and p∗, we obtain

q∗ = a − (1 − (n − 1)β)ν

2ψ
1+γ

(2 − (n − 2)β) − (1 − (n − 1)γ )
, (15)

and

p∗ = ν + a − (1 − (n − 1)β)ν

(2 − (n − 2)β) − ((1−(n−1)γ )(1+γ )
2ψ

. (16)

In the following proposition, we characterize the comparison between two equi-
librium concepts.

Proposition 3 Suppose that the cost function and the linear demand function are as
in Eqs. 11 and 12, respectively. Suppose also that the following two assumptions A1:
a ≥ (1 − (n − 1)β)ν and A2: 2ψβ < γ hold. Then the FPESS equilibrium leads to
higher quality compared to the Nash equilibrium quality, i.e.,

q∗ > qN if and only if β < β1 := 2γ

1 + (n − 1)γ
.

Moreover, the FPESS equilibrium leads to a lower price compared to the Nash
equilibrium, i.e.,

p∗ < pN if and only if β > β2 := (1 − (n − 1)γ )γ

2ψ
.

Proof First of all, to ensure a positive quality in equilibrium, we need to assume that
the numerator and the denominator of both expressions of Eqs. 13 and 15 are posi-
tive. By assumption A1, we have already that the numerators of both expressions are
positive. Therefore, it is only necessary to show that both denominators are positive.

The denominator of qN is 2ψ(2 − (n − 1)β) − (1 − (n − 1)γ ) = (4ψ − 1) +
(n − 1)(γ − 2ψβ). Using solvability condition 4ψ − 1 > 0 and assumption A2 and
the fact that n is greater equal than 2 in oligopoly game (n ≥ 2), we see easily that
(4ψ − 1) + (n − 1)(γ − 2ψβ) > 0.

Furthermore, the denominator of q∗ is 2ψ
1+γ

(2 − (n − 2)β) − (1 − (n − 1)γ ) =(
4ψ
1+γ

− 1 + γ
)
+(n−2)

(
γ − 2ψβ

1+γ

)
which its first term, i.e.,

(
4ψ
1+γ

− 1 + γ
)
is also

positive, since ψ >
1−γ 2

4 always holds (knowing that ψ > 1/4 and 0 < γ 2 < 1).
Therefore, a sufficient but not necessary condition for the denominator of q∗ to be
positive is that γ − 2ψβ

1+γ
> 0 or 2ψβ < γ (1 + γ ). Assumption A2, i.e., 2ψβ < γ

will imply that 2ψβ < γ (1 + γ ) must be satisfied (knowing that γ < γ + γ 2). So

we have
(

4ψ
1+γ

− 1 + γ
)

+ (n − 2)
(
γ − 2ψβ

1+γ

)
> 0.

Next, we verify that these assumptions A1 and A2 are not mutually exclusive. For
assumption A1 to hold we must have β ≥ (1 − a/ν)/(n − 1), where the RHS is
negative (as a > ν). Hence, we have the following inequalities 2ψ(1 − a/ν)/(n −
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1) ≤ 2ψβ < γ . Since we can always find a range for each parameter such that
2ψ(1 − a/ν)/(n − 1) ≤ 2ψβ < γ fulfills, it is verified that A1 and A2 are not
mutually exclusive.

Then, we have q∗ > qN if and only if 2ψ(2 − (n − 1)β) >
2ψ
1+γ

(2 − (n − 2)β).
Simplifying this inequality, we get the first condition of proposition 3:

β < β1 := 2γ

1 + (n − 1)γ
.

To see that 2ψ(1 − a/ν)/(n − 1) ≤ 2ψβ < γ do not exclude the condition β <
2γ

1+(n−1)γ , this condition can be rewritten as β < 2γ + γβ(1 − n). Moreover, the
inequality 2ψβ < γ can be rephrased as β < γ/2ψ . Since we have also ψ > 1/4,
that means that we must have β < 2γ . Therefore, it does not exclude our condition

β < 2γ + +
γβ

−
(1 − n), since the term γβ(1 − n) is negative. Note that β and γ have

the same sign: they are both positive in the case of substitute goods and both negative
in the case of complement goods.

We have p∗ < pN if and only if (2 − (n − 2)β) − ((1−(n−1)γ )(1+γ )
2ψ > (2 − (n −

1)β) − ((1−(n−1)γ )
2ψ , and this inequality leads to the following condition

β > β2 := (1 − (n − 1)γ )γ

2ψ
.

Note that, in this case, this inequality can be also rephrased as 2ψβ > γ − (n− 1)γ 2

and it is obvious that γ > γ − (n− 1)γ 2. Therefore, our assumptions do not exclude
this condition. But clearly under our assumptions the region of relevant parameters
becomes very small for γ .

Assumptions A1 and A2 guarantee that we have strictly positive quality both in
Nash equilibrium and FPESS. Note that a − (1 − (n − 1)β)ν is the derivative of
absolute profit and relative profit functions with respect to pi when all firms choose
p1 = ... = pn = ν and q1 = ... = qn = 0. This explains why prices will raise
above marginal costs in both equilibria when quality is not provided. Moreover, when
qi = 0 and prices are above marginal cost, the derivative of absolute profit and
relative profit functions with respect to qi is strictly positive. Thus, in that case firms
will start providing positive quality.7

Proposition 3 demonstrates that an RPM firm engages in more price (quality)
competition if the price effect of other competitors on the demand for good i, i.e.,
β, is greater (smaller) than the threshold β2(β1). The two conditions, derived in this
proposition, determine the circumstances under which FPESS equilibrium induces
more competition or less competition w.r.t. the price or non-price variable. Note that
the threshold values of β1 and β2 are smaller for larger n. Therefore, the higher
the market size, the lower are β1 and β2. For a larger (smaller) range of β, the
FPESS equilibrium leads to more competition in price (quality), compared to the
Nash equilibrium.

7An anonymous referee made this point.
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It can be seen that the comparison between the two equilibrium concepts is influ-
enced by the parameters of demand and costs. To see the dissimilarities between
strategic behavior and evolutionary behavior in greater detail, consider now the
following four cases:

a) p∗ > pN and q∗ > qN ;
b) p∗ < pN and q∗ < qN ;
c) p∗ > pN and q∗ < qN ; and
d) p∗ < pN and q∗ > qN .

The following Corollary 1 shows that, if goods are substitutes, then less price
competition (higher price) and less quality competition (lower quality), i.e., the case
c) p∗ > pN and q∗ < qN is not feasible under FPESS equilibrium. Moreover,
Corollary 2 proves that if goods are complements, then more price competition and
more quality competition, i.e., the case d) p∗ < pN and q∗ > qN , is not feasible
under FPESS equilibrium.

Corollary 1 If goods of firms are substitutes, the FPESS equilibrium cannot lead
to less price competition and less quality competition, compared to the Nash
equilibrium.

Proof To prove so, first we provide one example of parameters values that are feasi-
ble for each of the cases a), b) and d). Let ψ = 1/2, γ = 0.1, and n = 2. We then
have β1 = 2/11 and β2 = 0.09. Therefore, β = 0.01, β = 0.2, and β = 0.1 give us
feasible examples for each of the cases a), b), and d), respectively. Second, to prove
that the case c) is excluded. we employ a proof by contradiction. Suppose that the
case c) p∗ > pN and q∗ < qN is included when goods of firms are substitutes, i.e.,
β and γ are both positive. p∗ > pN and q∗ < qN require β1 < β < β2. So, we have

2γ
1+(n−1)γ <

(1−(n−1)γ )γ
2ψ which can be rewritten as 4γψ < (1 − (n − 1)2γ 2)γ . As

γ is positive, then we obtain ψ <
1−(n−1)2γ 2

4 . Knowing that (n − 1)2γ 2 > 0, this
yields a contradiction to solvability condition ψ > 1/4.

Corollary 2 If goods of firms are complements, the FPESS equilibrium cannot lead
to more price competition and more quality competition, compared to the Nash
equilibrium.

Proof First, the following parameters values give us one feasible example for each
of the cases a), b), and c):

a) ψ = 1/2, n = 2, γ = −0.1, and β = −0.3;
b) ψ = 1/2, n = 2, γ = −0.1, and β = −0.1; and
c) ψ = 1/2, n = 2, γ = −0.1, and β = −0.2.

Note that, in these examples, we have β1 = −2/9 and β2 = −0.11. Next, a similar
proof by contradiction as in Corollary 1 is employed to show that the case d) is
excluded. Let’s assume that the case d) p∗ < pN and q∗ > qN is included when
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goods of firms are complements, i.e., β and γ are both negative. p∗ < pN and
q∗ > qN require β2 < β < β1. So, we have β2 = (1−(n−1)γ )γ

2ψ <
2γ

1+(n−1)γ = β1,

which can be rewritten as 4γψ > (1−(n−1)2γ 2)γ . As γ is negative, then we obtain

ψ <
1−(n−1)2γ 2

4 . Knowing that (n − 1)2γ 2 > 0, this is obviously a contradiction to
solvability condition ψ > 1/4.

Since the FPESS equilibrium is a Nash equilibrium for relative payoff maximizing
(RPM) firms, one interpretation of these results is that, if goods are substitutes, less
price competition (higher price) and less quality competition (lower quality) are not
feasible for a RPM firm. If, however, goods are complements, more price competition
and more quality competition are not feasible for a RPM firm.

Note that, in our model with the existence of non-price strategy, when goods are
substitutes (β, γ > 0) a RPM firm may choose less price competition, i.e., p∗ > pN ;
in fact, it uses a non-price strategy to soften price competition. When goods are com-
plements (β, γ < 0), a RPM firm may possibly decide on more price competition,
i.e., p∗ < pN .

Our evolutionary analysis can be directly applied to a different setup such as an
oligopoly-technology model of price competition with technology choice rather than
quality choice (see e.g. Vives 2008 and Acemoglu and Jensen 2013). In this type of
game, firms decide about technology choice besides setting output or price. In fact,
firm i incurs a similar cost of C(xi, ai) = f (ai) + c(ai, xi) by choosing technology
ai together with the quantity xi , but the demand is not affected by the technology
choice ai .

4 Conclusion

The evolutionary oligopoly literature was initiated by Alchian (1950), who were the
first to argue bounded rationality in economic behavior. In Alchian’s own words:

“Profit maximization” is meaningless as a guide to specifiable action. ...
Observable patterns of behavior and organization are predictable in terms of
their relative probabilities of success or viability if they are tried.” (Alchian
(1950, pp. 211-220))

In the present paper, a concept of finite population evolutionarily stable strategy
(FPESS) by Schaffer (1989), in which agents in economic and social environments
adhere to relative payoff maximizing rather than absolute payoff maximizing behav-
ior, has been applied in an oligopoly framework. The solution concept FPESS can be
considered as a minimal check for a stochastically stable state in learning dynamic
models with imitation and mutation. Imitation of the most successful behavior results
in some limit state where all firms choose the same strategy. The imitation dynamic
will continue as long as one firm experiments with a new strategy and attains a higher
payoff than others. The relative performance considerations are the core of these
dynamic models.
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We have focused on explaining the behavior of a RPM firm and compared it
with a rational APM firm in a symmetric oligopoly setup, nevertheless extending
their strategic choice in an additional dimension, i.e., a price variable and a non-
price variable. We pose the question, whether a standard result of Nash equilibrium
in oligopoly, namely, that the non-price variable is strategically used to soften price
competition, survives in an evolutionary set up under FPESS solution concept. Since
an FPESS under absolute profit maximization is equivalent to a Nash equilibrium
under relative profit maximization, we show that this is equivalent to the question as
to whether it also holds for RPM firms in the Nash equilibrium. A comparison of both
equilibria with respect to price and quality is difficult. We see that, for Nash equilib-
rium, own demand elasticities matter, whereas for FPESS, own and cross elasticities
of demand matter. While APM captures the behavior of self-interested rational play-
ers, RPM perceives the spiteful behavior of players that involve in a relative game. As
a result, we show that market power, measured by the Lerner index, is influenced in
an evolutionary equilibrium not only by the firm’s own elasticities of demand but also
cross-elasticities of demand. Above all, it plays an important role whether the quali-
tatively differentiated goods are substitutes or complements. A complete solution for
linear demand and quadratic cost functions can be worked out. We identify param-
eters ranges for which relative profit maximizers engage in even less competition
w.r.t the price or non-price variable than absolute profit maximizers. Interestingly,
we show that an evolutionary equilibrium may entail less competition than the Nash
equilibrium in one dimension, but not in both. Our findings, therefore, indicate that
less competition in both dimensions of price and non-price together, for firms that
engage in RPM behavior, is not viable.
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