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Abstract
Spontaneous emergence of institutionalized cooperation in ubiquitous social dilemmas
still is a field of highest relevance in behavioral and organizational economic research. In
contrast to the theoretical prediction of defective behavior, manifold forms and degrees of
cooperation exist in reality.We explain the emergence of general cooperation, even in one-
shot interactions with strangers, from local interactions in a network through what we call
a social-leverage mechanism. By this, more agents than just the two interaction partners
get involved in an interaction, particularly common acquaintances. We analyze the social-
leverage mechanism and conditions of cooperation under locality, common acquaintance-
ship, related assortativity, as well as “weak” and “strong ties” in the social network. We
trace the co-evolution of the network, its structural dynamics, and stable cooperative
equilibria. Our model relates to the tradition of emergent coordination in decentralized,
non-Walrasian search, coordination and exchange systems (e.g., Diamond 1984; Axtell
2005) and in purely local interactions on, e.g., ring networks (e.g., Albin and Foley J Econ
Behav Organ 18(1), 27–51, 1992). We conclude that, under social leverage, just local
interaction may generate and stabilize general cooperation. We consider this the emer-
gence of an exchange and trade system (a market) and relate this to empirical cases of the
emergence of exchange cultures in the early Silk Road (seventh–ninth century) and in
contemporary African countries, when formal enforcement through states and courts are
largely lacking. We conclude applications and policy implications for cutting-edge tech-
no-organizational areas of AI and platform economies.
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1 Introduction

The emergence of cooperation has usually been based on the well-known Folk
Theorem for repeated Prisoners’ Dilemmas (PD) (e.g., Rubinstein 1979; Mailath and
Samuelson 2006). Particularly, if interaction can be assumed to be infinitely or indef-
initely repeated (a PD-supergame), any trigger strategy (such as the famous tit-for-tat,
TFT, or GRIM trigger) will raise its discounted and capitalized future payoffs above
those of permanent mutual defection. In this way, some cooperation may be generally
adopted in a population, as first illustrated in an evolutionary game-theoretic frame by
the simulations of Axelrod (Axelrod 2006, 1984). Recurrence with a sufficiently high
discount factor (a strong “futurity”) has also been considered equivalent with
some “preferential” or local interaction. Equivalently, frequency dependence
among cooperative and defective strategies in a population has served as a
condition for cooperation, and a minimum critical mass of cooperators and related
expectations may facilitate the invasion of cooperators into a population of defectors and
their taking over, as has been demonstrated in a rich literature (e.g., Bergstrom and Stark
1993; Lindgren 1997; Eshel et al. 1998; Young 1998; Kendall et al. 2007; Boyer and
Jonard 2014; Cui and Wang 2016).

But the Folk Theorem and its related conditions in those models per se cannot
provide an explanation of cooperation, when agents know they have only one-shot
interactions with strangers. In this paper therefore, we will develop a social-leverage
mechanism, where agents may practice cooperation with strangers through the help of
acquaintances. In the absence of the usual conditions of the Folk Theorem as men-
tioned (trigger strategies, supergames, evolutionary invadability), a social-leverage
mechanism may become a sufficient condition. The present paper will show that
cooperation may emerge in a population if agents, even neighbors, are strangers but
if a social-leverage mechanism is working. This will extend the Folk Theorem into
another dimension.

As said, “preferential” or local interaction has been a favorable condition of the
institutionalization of cooperation in a great number of models (e.g., Albin and Foley
1992; Barabási and Albert 1999; Masuda 2003; Jun and Sethi 2007; Bilancini and
Boncinelli 2009). Repeated interaction and the probability (expectation), in any inter-
action, to meet the same again next interaction, are closely related to the conceptions of
local proximity/locality, neighborhood, clustering, and small group or network size,
through which cooperation is facilitated (e.g., Elsner 2010). In this paper, we also use a
network topology with neighbors recurrently interacting, but one, in which a neighbor
of an agent’s neighbor is still a stranger to that agent. As said, agents randomly
encounter one-shot interactions with such strangers. General cooperation will not be
a theoretical prediction then, considering that “incumbent” agent and “stranger” may
not meet again.

The empirical relevance of repeated and local interactions has also been widely
recognized for historical cases of market emergence and development (e.g., Bauer
1954; Hopkins 1973; Aoki 1988; North 1990; Commons 1990 [1934]; Milgrom et al.
1991; Greif 1993). In those early stages of general exchange systems and related
behavioral rules, trade contracts were rarely concluded in written form or enforced by
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courts or other state institutions, as, e.g., in countries of contemporary Africa (e.g.,
Fafchamps et al. 1993; Fafchamps 1996; Fafchamps and Minten 2001) or as known
from historical records of the ancient Silk-Road (e.g., Zhang and Elsner 2017). A
general market, then, may emerge only as one-shot interactions with less acquainted
agents (strangers) are facilitated through some general, institutionalized and habituated
cooperative behavior. An empirical motivation of this paper thus stems from research
on spontaneous market emergence. The common feature here has been that agents start
trade through establishing social-leverage mechanisms, and then trade developed
successfully even in the absence of laws, state regulations, or courts.

The particular contribution of this paper over the previous literature is to enrich local
interaction through social leverage, which will allow us to generalize cooperation with
strangers into a general exchange (market) culture. With this, our approach differs from
most “evolution-of-cooperation” literature, but also from previous approaches to co-
operation with strangers (e.g., Shapiro and Stiglitz 1984; Ghosh and Ray 1996) that, for
instance, introduced “patience” and “warm-glow” vis-à-vis strangers. Social-leverage,
in contrast, will change individual risk calculations by “socializing” and reducing risk
for cooperators and multiplying it for potential defectors.

A comparable idea was put forward by Granovetter (1973) in his well-known
“strong ties/weak ties” approach, i.e., involving acquaintances from one’s social
network (more recently, e.g., Munshi 2011), which also deploys a social-leverage
mechanism for cooperation and enhanced performance. Our approach will also make
use of the strength of ties, “strong” or “weak”, among acquaintances.

Finally, our approach also relates to models of assortative matching1 (e.g., Bergstrom
2003, 2013; Alger and Weibull 2010; Wang et al. 2012; Bilancini et al. 2018). We will
develop an evolutionary dynamic through social leverage to explain assortative matching
and related evolutionarily stable equilibria. Social-leverage interactions, we will argue,
closely relate to assortative mechanisms. They will increase the probability that cooper-
ative agents will encounter cooperators. They render interactions non-random. The studies
on assortativity explain how interactions foster the emergence and evolution of cooper-
ation. Bergstrom (2003, 2013), for instance, considers culture a basis for assortativity.
Alger (2010) and Alger and Weibull (2010) characterize assortative matching as “type-
assortative”, by which agents have preferences for encountering according to their cultural
types. Bilancini and Boncinelli (2009) and Bilancini et al. (2018) consider assortativity
raising from the fact that people refuse to interact with those who defected in the past. This
is also used byWang et al. (2012) in their experimental evidence. In the present paper, we
focus on a local interaction structure to achieve assortativity.

The rest of the paper is organized as follows: Section 2 introduces the model.
Section 3 provides applied variants, where agents interact in one-shot, repeated,
assortative, and social-leverage versions, and where cooperation coevolves with the
network structure. Section 4 will investigate stability conditions of general cooperation
throughout the network, which includes some punishment and the threat of a conta-
gious process of defection. Section 5 concludes.

1 We owe this to one of the reviewers and elaborated it in a particular section below.
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2 The basic model

2.1 The conventional benchmark

As said, the traditional approach to an emergent cooperation has been based on a PD:

C D
C R;R S; T
D T ; S P;P

where T > R > P > S.
The solution may be obtained here under recurrence, when agents develop a

sufficiently large expectation (in any interaction) to meet the same interaction partner
again in the next interaction, i.e., sufficiently consider a common future (as reflected in
the discount factor δ in a PD supergame), reflected in the related “single-shot”
calculation (the current-capital value of future payoff streams). Cooperation, logically
feasible only as a learned and habituated behavioral rule endowed with an endogenous
sanction mechanism (i.e., a social institution), will then be advantageous over defec-
tion, when discounting and comparing the payoff streams of different strategy combi-
nations. This must be based on a trigger strategy as mentioned. The usual argument for
comparing the All-D strategy with TFT has been that, with two one-state automata
(All-C vs. All-D), cooperation cannot emerge. So in order to gain cooperation, at least
the cooperative strategy must be a two-state automaton, i.e., it must have a minimum
memory of one period and must be responsive. TFT (as w ell as GRIM) has mostly
been used as a most simple trigger strategy. Suppose a common discount factor δ ∈ (0,
1). Choosing cooperation against cooperation and defection against cooperation, the
capitalized infinite payoffs are

πc ¼ Rþ δRþ δ2Rþ… ¼ R
1−δ

and

πd ¼ T þ δP þ δ2P þ… ¼ P
1−δ

þ T–P:

Cooperation (invadability) then is sustained in any individual interaction if

πc > πd→δ >
T−R
T−P

: ð1Þ

The higher agents discount their future payoffs (the larger δ), the more likely this
inequality condition for the superiority of cooperation over defection in a repeated
interaction will hold.

This, however, does not by itself tell us much about the mechanism and process of
emergence of cooperation. An evolutionarymodel will have to include amechanism and
process that demonstrate how the cooperative structure emerges and evolves. In evolu-
tionary game theory, rather, as is shown in a great number of studies, if interactions are
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just random, defectors my easily obtain higher payoffs on average than cooperators. But
if encounters are assortative, and then cooperators are more likely to meet cooperators
than defectors, cooperators will on average obtain higher expected payoffs, and coop-
eration will be an evolutionarily stable equilibrium.

Note that we do not refer to agents as the two automata (a one-state and a two-state
automaton) as usual. We will simply assume utility maximizers and in this way will
extend the Folk Theorem.

We assume that agents are typically linked by some social ties in some preexisting
spatial or social topology, i.e., a network. Thus, they are interacting in some preferential
way within a neighborhood, behaving assortatively. It is assumed that some institution
of cooperation in this way has emerged. We introduce a local interaction structure as a
social-leverage interaction. It will be shown how social leverage can establish cooper-
ation and then facilitate repeated interaction between two so far unknown agents, and
through this some assortative matching to support the evolution of cooperation. First,
we introduce social-leverage interaction.

2.2 Social-leverage interaction defined

Let G be an undirected graph as follows

G ¼ N ; Lð Þ;

in which N represents the set of nodes (agents) and L the set of links (relations). We
define i, j ∈ N as agents in network G, and (i, j) ∈ L a link between i and j.

A social-leverage interaction Gij
k N 0; L0ð Þ is defined as an interaction involving three

individuals i, k, j, ∈ , N', in which (i, k), (j, k) ∈ L′, and (i, j) ∉ L′. Thus, one of the agents
(k) has two ties, as illustrated below (Fig. 1). The links are undirected, and weighted by
frequencies of preexisting interactions.

The interaction in question is played between the two so far unrelated
players as a social-leverage interaction, which is based, as usual, on symmetric
PDs with simultaneous moves. The emergence of a cooperative equilibrium
then represents the formation of a group. A group g is defined as a set of at
least three agents with an interaction structure involving relations between
individuals i, k, j ∈ N', where (i, k), (j, k), (i, k) ∈ L′. Each agent then has
two ties.

3 Emergence of cooperation through social-leverage interaction

We will consider three variants here for the emergence of cooperation through social-
leverage interaction. Two cases are: The pre-existing relations with the common
acquaintance may be weak or strong, depending on the relative frequencies of interac-
tions with the common acquaintance. Under “weak ties”, agents do not have frequent
interactions with the common acquaintance, while under “strong” ties they do so, with
stable cooperative relations established already. We will show how the different types
of relations work in social-leverage interactions with respect to a cooperative
equilibrium.
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We also consider assortativity in social-leverage interaction in an evolution-
ary perspective: a common acquaintance comes from a larger social network,
not from the particular interaction network (more in section 3.3 below). Social
leverage then will generate some assortative matching as the common acquain-
tance knows how the two so far unrelated agents have interacted in the past.
Agents thus will get into an assortative pool. When agents do not enter some
social-leverage interaction, they will fall into a random pool. As in reality, they
sometimes interact through social leverage and sometimes through random
interaction. In an evolutionary perspective, then, it will be interesting to know
whether and how assortativity will support the emergence of cooperation in
one-shot situations.

3.1 Social leverage in repeated interaction: the “shadow of the future”
under “weak ties”

Even if pre-existing relations are weak, i.e., the probability “to meet again” the
common acquaintance is low in the more general social network, agents may generate
cooperation, if they adapt their expectation “to meet” in the social-leverage
interaction to the weak ties. Thus, a critical factor of the social leverage in this
case still is the probability (expectation) “to meet again” for the two so far
unrelated agents i and j. There is empirical evidence that this probability is
dependent also on agents’ common acquaintances (e.g., Brown 1965, 71–90;
Bramel 1969, 9–14; Granovetter 1973, 1362).

Let ℙ(i, k) be the probability for agent i’s encounter with agent j when (i,
j) ∈ L', and respectively for ℙ(j, k) (again, see Fig. 1). ℙ[(i, j) ∉ L′| (i, k)] is a
conditional probability for agent i to meet agent j, and ℙ[(j, i) ∉ L′| (j, k)]
respectively for j to meet i. These conditional probabilities will be higher than
the unconditional probabilities, i.e.,

ℙ j; ið Þ∉L0j j; kð Þ½ � > ℙ j; ið Þ∉L0½ �

Fig. 1 A social-leverage interaction – Illustration
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and

ℙ i; jð Þ∉L0j i; kð Þ½ � > ℙ i; jð Þ∉L0½ �:

Thus, ℙ[(j, i) ∉ L′| (j, k)] and ℙ[(i, i) ∉ L′| (i, k)] are greater than zero, even if ℙ[(j, i) ∉ L′]
and [(i, j ∉ L ′ ] were zero. And as they are less than ℙ(i, k) and ℙ(j, k), we may define:

ℙ i; jð Þ∉L0j i; kð Þ½ � ¼ ℙij for agent i;with 0 < ℙij≤ℙ i; kð Þ

and

ℙ j; ið Þ∉L0j j; kð Þ½ � ¼ ℙji for agent j;with 0 < ℙji≤ℙ j; kð Þ:

This tells us that agents i and j avail themselves of the fact that they both have positive
probabilities (expectations) to meet the common acquaintance k with ℙ(i, k) and ℙ(j, k),
resp., which are larger than the probability to meet each other, and that they use these
probabilities and expectations to enable an interaction between each other, with some
positive probability. Therefore, ℙ(i, j) and ℙ(j, i) (and thus the conditional probabilities
ℙij and ℙji) will become larger than zero, even though they will remain smaller than ℙ(i,
k) and ℙ(j, k). In this case, two agents i and j possess some “shadow of the future”
(equivalent to the discount factor in the conventional baseline model) contingent on the
“leverage agent” k, and the expectation to meet each other is assumed to be adapted to
the probability of either of them to encounter k, given that ℙij > 0 and ℙji > 0.

With mutually cooperative strategies, capitalized expected supergame payoffs will
be for agent i

πc ¼ Rþ δℙijRþ δ2ℙijRþ… ¼ ℙijR
1−δ

þ R–ℙijR;

and for a defective strategy against a cooperative one, capitalized expected supergame
payoffs will be for agent i

πd ¼ T þ δℙijP þ δ2ℙijP þ… ¼ ℙijP
1−δ

þ T–ℙijP:

We obtain the condition for supporting cooperation for agent i as

πc > πd→δ >
T–R

T–Rþ R−Pð Þℙij

� �
¼ β1:

Similarly, for agent j:

πc > πd→δ >
T–R

T–Rþ R−Pð Þℙji

� �
¼ β2:

Let δ∗ be max{β1, β2}. Then cooperation is an equilibrium of a social-leverage
interaction if
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δ > δ*;

where

δ* ¼ T–R
T–Rþ R−Pð Þmin ℙij;ℙji

� �
& ’

ð2Þ

So even if ℙij and ℙji were very small [“weak ties” between agents i and k (and j and k
respectively), and properly adapted, i.e., sufficiently low expectations to meet each
other], defection would not occur, when agents i and j do not discount the future too
much and consider the game sufficiently recurrent, similar to the baseline model. This

suggests that, in Gij
k , the two agents may be willing to cooperate even if their

relationships with the common acquaintance in the general social network are weak.
To be sure, if two agents i and j interact anonymously, with no social leverage, it will

be impossible to yield cooperation, as the probabilities to meet, ℙij and ℙji, are 0 and the
right hand side of inequality (2) will be 1, and with a smaller δ ∈ (0, 1), inequality (2)
would not hold.

This yields Theorem 3.1:

Theorem 3.1 Under social-leverage interaction, weak ties of agents with a common

acquaintance may generate a cooperative equilibrium in Gij
k , if agents assume the

probabilities (adapt their expectations) to meet each other according to the weak ties.
In other words, if two unrelated agents’ expectations to meet are sufficiently small in

a social-leverage interaction, there will exist a cooperative equilibrium, as even weak
relations with the common acquaintance may provide sufficient incentive to cooperate.

Theorem 3.1 also relates to network formation. Weak pre-existing relations with a
common acquaintance may work as leverage for cooperation, as long as the unrelated
agents adapt their expectations to the weak ties. They may begin to consider the game
as sufficiently recurrent and form a new longer-run relation, in this way using the
social-leverage mechanism to form a group (network).

3.2 Social leverage in repeated interaction: Threat of second-order punishment
under “strong ties”

Agent k’s exchanges with i and j now are considered frequently repeated (strong ties).
As i encounters j in a one-shot, and if both basically were still willing to choose the
dominant strategy, the outcome nevertheless may be different, as k, upon i’s or j’s
defection, might switch from cooperation to defection with i or j as well (and express
some credible threat to do so), as some second-order punishment. This would generate
a particular incentive for i and j to avoid defection and adopt cooperation.

For i, capitalized expected payoffs from cooperation and defection respectively are

πc ¼ Rþ δ ℙij þ ℙ i; kð Þ� �
Rþ δ2 ℙij þ ℙ i; kð Þ� �

Rþ…

¼ ℙij þ ℙ i; kð Þ� �
R

1−δ
þ R– ℙij þ ℙ i; kð Þ� �

R
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and

πd ¼ T þ δ ℙij þ ℙ i; kð Þ� �
P þ δ2 ℙij þ ℙ i; kð Þ� �

P þ…

¼ ℙij þ ℙ i; kð Þ� �
P

1−δ
þ T– ℙij þ ℙ i; kð Þ� 	

P:

Cooperation will be sustained for agent i in a one-shot, if

πc > πd→δ >
T–R

T–Rþ R−Pð Þ ℙij þ ℙ i; kð Þ� 	
& ’

¼ β3 ð3Þ

Similarly for j:

δ >
T–R

T–Rþ R−Pð Þ ℙji þ ℙ j; kð Þ� 	
& ’

¼ β4 ð4Þ

Let δ ≥ max {β3, β4}, then we get

δ >
T–R

T–Rþ R−Pð Þmin


ℙij þ ℙ i; kð Þ

h �
; ℙji þ ℙ j; kð Þ� 	i

2
666

3
777

where cooperation is always the best choice for the agents. This condition will be
satisfied if δ, ℙ(i, k), and ℙ(j, k) are sufficiently large. Then ℙij and ℙji will increase
simultaneously as, e.g., ℙij is conditional on ℙ(i, k). This suggests that if there are strong
ties (implying ℙ(i, k) and ℙ(j, k) are sufficiently large), generating the opportunity of a
threat of a second-order punishment, cooperation will become an equilibrium due to
the increase of (ℙij + ℙ(i, k)) and (ℙji + ℙ(j, k), so as to make the right equation smaller.
This leads to Theorem 3.2.

Theorem 3.2 Under social-leverage, strong ties enable a cooperative equilibrium in

Gij
k ; if the agents face the credible threat of a second-order punishment by the common

acquaintance not to interact with the defecting agent anymore in the future.
Note that, if (ℙij + ℙ(i, k)) and (ℙji + ℙ(j, k) are increased to become equal to 1, the

equation above will reflect the traditional condition of the Folk Theorem (Eq. (1)). In
this case, due to 0 < ℙij ≤ ℙ(i, k) and 0 < ℙji ≤ ℙ(j, k), (ℙij + ℙ(i, k)) or ((ℙji + ℙ(j, k))
would become equal to 1, when ℙ(i, k) or ℙ(j, k) is at least greater than 0.5. This
implies that the Folk Theorem is included in a social-leverage equilibrium under strong
ties, in fact, as the boundary, when strong ties become stronger. With (푖,푘) and ℙ(j, k)
increasing above 0.5, the condition for cooperation for the two strangers will be
achievable even easier than in the Folk Theorem.

Example 3.1 Building trade in the remote areas of the ancient Silk Road (Zhang and
Elsner 2017).

Social leverage, a core mechanism of cooperation. Locality,... 875



Consider the case of merchants on the ancient Silk-Road in the remote desert areas
of central Asia, between Persia and China, in the seventh to ninth centuries, where there
was no common culture, no common money, long distances among the market places,
and no possibility for private agents to appeal to courts under the legal system of the
Chinese Tang dynasty. With three merchants, a Chinese, i, and two Sogdian (Persian)
traders, j and k, one of the Sogdians, k, is the common acquaintance. Since it was a
barter trade, the goods exchanged were of different qualities and their qualities were
hard to be determined immediately, such as silk, there was mutually asymmetric
information. So the interaction between i and j was a PD. This phenomenon was
widely known in the barter trade of the early Silk-Road. The solution of the dilemma
was supported by social-leverage contracts through common acquaintances, usually
even two to three “witnesses” and two to three “guarantors” present at contracting. This
multiplied the probability “to meet again” as well as potential punishment. Thus,
institutionalized cooperation could emerge, the ancient Silk Road could come into
being, and trade flourished that way for centuries.

Social leverage, more generally, serves as a mechanism of risk reduction and
informal contract enforcement, wherever a formal/legal contract enforcement is
absent. (On related dimensions such as emerging (informal) trust and social
control, vs. formal contracting, e.g., Elsner and Schwardt 2014; McCannon
et al. 2018; Graebner et al. 2018).

3.3 Evolutionary dynamics

The common acquaintance, as mentioned, is considered relatively independent of the
interaction of the two (so far unrelated) agents; he belongs just to the larger social
network. Agents detect a business partner’s behavioral type through information
provided by an acquaintance, who does not belong to the specific interaction, where
the potential particular exchange between i and j may take place (say, a barter, an
exchange of services or symbols, joint contributions to all kinds of commons, physical
or cultural, etc.). In social-leverage interactions, accordingly, there do exist two
interacting layers of networks. One we call the interaction network, where
agents, through social-leverage interaction, do play pairwise dilemma games,
while randomly paired. The other one we call the larger social network, where
the two interacting agents take advantage of social ties, generally either weak
or strong, with the common acquaintance, and the social leverage generates
some assortativity. This, in turn, generates an evolutionary dynamic towards a
cooperative equilibrium, the existence of which has neither been proved by the Folk
Theorem nor recognized by recent studies about assortativity in the emergence and
evolution of cooperation.

Approaching the evolutionary dynamic, we consider agents interacting pairwise
with some particular probability in a social-leverage interaction and with some different
probability interacting randomly. Assume that with probability a ∈ (0, 1) agents,
through social-leverage interaction, encounter agents who choose the same
strategy, and with probability 1 – a, they encounter agents randomly, with no
social leverage. At a = 1, cooperators only encounter cooperators and defectors
only defectors, a perfect assortativity.
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We also suppose that agents are connected in the larger social network. So ties are
strong and assortativity through social leverage may be perfectly achieved, because the
common acquaintance will know about the two agents and match agents correctly.

Given x the fraction of cooperators and (1 – x) the fraction of defectors, the
different probabilities of the different possible matchings among the two types
of agents are as follows:

ℙ CjCð Þ ¼ aþ 1−að Þx
ℙ DjCð Þ ¼ 1−að Þ 1−xð Þ
ℙ DjDð Þ ¼ aþ 1−að Þ 1−xð Þ
ℙ CjDð Þ ¼ 1−að Þx;

where ℙ(D| C) a probability for a cooperator to play against a defector, ℙ(C| C)
is a probability for a cooperator to play against a cooperator, etc.

Thus, the expected payoff of a cooperator is

ℙ CjCð ÞRþ ℙ DjCð ÞS:

Similarly, the expected payoff of a defector:

ℙ DjDð ÞP þ ℙ CjDð ÞT :

We apply a payoff-monotonic dynamic (Weibull 1995), in which it is assumed that the
growth rate of the population share of cooperators anytime depends on a comparison of
the expected payoffs of cooperators and defectors. Let π(x) be the difference of their
expected payoffs:

π xð Þ ¼ ℙ CjCð ÞRþ ℙ DjCð ÞS−ℙ DjDð ÞP−ℙ CjDð ÞT
¼ Rþ S þ R−Sð Þaþ aT þ aS−aR−aP−T þ P−Sð Þx:

If π(x) > 0 for all x, the evolutionary equilibrium must be stable and unique. However, it
can be seen in the equation that π(x) is negatively linear in x. Then the payoff-
monotonic dynamic will be determined by the signs of

π 0ð Þ ¼ Rþ S−P þ R−Sð Þa
π 1ð Þ ¼ Rþ S−P þ R−Sð Þaþ aT þ aS−aR−aP−T þ P−Sð Þ;

which leads us to Proposition 3.1.

Proposition 3.1 x = 1 is an evolutionarily stable state if and only if a > (T – R)/(T – P).
π(0) is always larger than 0. So the sign of π(1) determines the evolutionary

equilibrium. π(1) > 0 will occur when a > (T – R)/(T – P). In this case, π(x) >
0, for all x between 0 and 1. So cooperators always obtain higher expected
payoffs than defectors and, thus, there will be a unique stable equilibrium with
x = 1. This implies that ever more agents will encounter through social-leverage
interaction, and assortativity will increase, which will support cooperation in the
population.

Social leverage, a core mechanism of cooperation. Locality,... 877



This leads us to Proposition 3.2.

Proposition 3.2 Mixed populations (with some cooperators and some defectors) are an
evolutionarily stable state if and only if a < (T – R)/(T – P).

The cases π(0) > 0 and π(1) < 0 occur when a < (T – R)/(T – P). Under this
condition, cooperators will obtain higher expected payoffs than defectors when
they are few. Likewise, defectors will get a higher expected payoff than
cooperators when they are few. When x reaches a certain point in which
cooperators and defectors equally share the population, they will get equal
expected payoffs and, there will be a unique mixed equilibrium. This means
that if agents rarely use social-leverage interaction, an evolutionarily stable
equilibrium would be a mixed state, roughly reflecting reality, where coopera-
tors and defectors coexist. Figure 2 illustrates this case.

Example 3.2 The case of credit networks in Ghana and Kenya (Fafchamps 1996).
As there is a wide gap between an abstract formal model and the real world,

we can only take our example as indicative, for methodological reasons.
Empirical cases may nevertheless be re-constructed by a model with some
insight.

For instance, the manifold forms of association-, cloud-, and network-based
savings and credit provisions illustrate that credit usually will be provided
based on personal recommendations by common acquaintances. Also, credit
provision in informal so-called rotating savings and credit associations
(ROSCAs) do have aspects of a PD, as each recipient may immediately stop
to further contribute his savings or to pay interest or acquittance, or even
disappear with the credit.

In order to reduce such risk, a simple device of credit suppliers in Ghana has
been to ask the applicant (potentially a stranger) to provide names of people
who are willing to recommend (and perhaps guarantee for) the applicant and
who have been credit recipients in the past themselves and are of a good
standing. The practice of such assortative matching has been established in
Ghana for credit recipients who are acquainted with certain recommenders, who
in turn are acquainted with the credit supplier. This mechanism of letting
cooperators encounter cooperators through social leverage may make coopera-
tion invade even through one-shot interactions.

A similar survey for Kenya showed that “half of the recipient firms meet
their suppliers personally either occasionally or frequently, on average every
five months” (Fafchamps et al. 1993: 61). This indicates, too, that good

Fig. 2 A unique mixed equilibrium
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acquaintance is critical for both credit recipients and credit suppliers, achieving
assortativity through “strong ties”.

Cooperators will only match with cooperators, when social leverage is applied and
ties are very strong, so that a becomes equal to one. Cooperation then will be an
evolutionarily stable sttrategy, as Proposition 3.1 states.

4 Stability of social-leverage networks

After the formation of the group, three agents will play a repeated two-player
stage game, and if cooperation is a subgame-perfect equilibrium of this game,
the group will be stable. We will consider this a network formation.

We investigate the subgame equilibria of the stage game among the group members,
i.e., the stability of the group and network, or its capacity of self-enforcement. We
consider such group-self-enforcement capacity under the two kinds of ties (weak or
strong). Weak or strong ties, in turn, relate to different degrees of observability of past
behaviors of the group members.

In a group with strong ties, agents are considered to be able to observe the
entire history of past actions of each agent in the group and in the larger
relevant population, i.e., the agents’ neighborhood in the larger social network.
We consider the frequent interactions under strong ties a reflection of spatial
and/or social proximity, facilitating a relatively good monitoring. Joint high
“futurity” with the interaction partner and the common acquaintance alike and
“leveraged” (second-order) punishment threats, by both interaction partners and
acquaintances, are elements of the leverage mechanism against defective
behavior.

With weak ties, agents can only monitor and memorize the personal experi-
ence of own and partner behaviors (a “private” history). Under such condition,
defecting behavior will more easily trigger the other agents (interaction partner
and common acquaintance) to defect on their part (similarly, e.g., Kandori
1992, p.67).

For these two settings, we introduce a group enforcement for the exlusion of
defectors, which we call triggering contagion. We will investigate the mechanisms of
“leveraged” punishment and triggering contagion.

4.1 Stabilization through “leveraged” punishment

First, we focus on “leveraged” punishment under the full-monitoring (strong-ties)
condition. Figure 3 below illustrates “leveraged” punishment in a group of three agents
(i, j, k). If agent j exploits agents k or i at time t, he will trigger a common retaliation and
cause his exclusion from the multiple (two) ties at time t + 1 (or longer). Punishment
may be considered a retaliation in an ongoing interaction, but here we consider it a
complete termination of the relation with the defector, so that the defector not only
loses cooperative payoffs but also defective payoffs and, thus, no payoff at all with the
two other agents.
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So, if player j defects at time t, his capitalized gain from deviating in the group is
given by

ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δ ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ…þ δt−1 ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δtT

þδtþ10þ… ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ
1−δ

þ δtT :

If he cooperates, his expected payoffs are

ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δ ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ…þ δt−1 ℙ i; jð Þ þ ℙ j; kð Þ½ �R

þδt
h
ℙ i; jð Þ þ j; kð Þ

i
Rþ δtþ1 ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ… ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R

1−δ
:

Thus, cooperation is sustained, if

ℙ i; jð Þ þ ℙ j; kð Þ½ �R
1−δ

>
ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ

1–δ
þ δtT

→δ > β≡
T− ℙ i; jð Þ þ ℙ j; kð Þ½ �R

T
∈ 0; 1ð Þ:

ð5Þ

This yields Theorem 4.1.

Theorem 4.1 In a (three-person) group with strong ties (full monitoring), where
unilateral defection entails a common exclusion (termination of two relations) as a

leveraged punishment, there exists a β < 1 such that, for δ ϵ β; 1

 �

, the group will be

stable in the stage process.
For a cooperating agent in g, the payoff will be [ℙ(i, j) + ℙ(j, k)]R, as she will receive

expected payoffs from two other agents. The right-hand side of inequality (5) will
increase when ℙ(i, j) and ℙ(j, k), either one or both, increases, due to strong ties.
Extending this condition to all agents in the group, this leads to Lemma 4.1 (for
details, see the appendix).

i       i

k     j       k     j
Fig. 3 “Leveraged” punishment (exclusion) of an exploiting player (j exploited i or k) under full monitoring in
a group
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Lemma 4.1 In a PD, there exists a δ ϵ β; 1

 �

, with

β ¼
T−min

h
∑2

x∈ i; j;kf g;y∈ i; j;kf g; x≠yℙ x; yð Þf gR
T

2
666

3
777;

such that the group is stable in a stage process with strong ties (full-monitoring) and a
social-leverage punishment.

Two factors bear upon group stability here, strong ties and leveraged punishment.
Lemma 4.1 implies that, even if defection would be superior, as long as strong ties exist
the group can still be stable through the leveraged punishment. The entire right-hand
term of the equation in Lemma 4.1 will be smaller than the payoff for cooperation, R,
and it increases with the increase of the probability to meet, rising with the strength of
the ties. This makes the inequality easily feasible, as agents discount the future
sufficiently high.

This leads to Lemma 4.2.

Lemma 4.2 With N = {1, 2, …, i, …, n} well-tied agents in a population, the entire
population’s social networkGwill be stable under strong ties and leveraged punishment, if

δ >
T− ∑2

y∈ j;kf gℙ i; yð Þ

 �

R

T

2
666

3
777;∀I :

This implies that, if any individual has two ties, then there will emerge a general
cooperation in the entire social network. It also implies the well-known effect that the
institution of cooperation will be more easily sustained in a smaller group. In a larger
group, cooperation is more difficult due to agents’ reduced ability to monitor and
memorize the history of behaviors of the entire group, and the probability “to meet
again” will be reduced. We may infer a related proposition about the well-known
criterion of pairwise stability (Jackson and Wolinsky 1996).

Proposition 4.1 In a PD, played in a group, where i, j, k are connected with full
monitoring and leveraged punishment, there exists a pairwise stability as

δ ϵ β; 1

 �

and δ ¼
T−min ∑2

x∈ i; j;kf g;y∈ i; j;kf g; x≠yℙ x; yð Þ

 �

R

T

2
666

3
777:

According to the definition of Jackson/Wolinsky, the group g is pairwise stable, given
an allocation rule f and a value function v, if, for all i, j ∈ g,

f i g; vð Þ≥ f i g– i; jð Þ; vð Þ and f j g; vð Þ≥ f j g− i; jð Þ; vð Þ:

This implies that there is no agent in g who is willing to delete a tie in which he is
involved, because, if any agent unilaterally terminates a cooperative relation through
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defection, he will lose more than one link. Referring to this inequality, if agent j remains
cooperative, his capitalized payoff will be

f j g; vð Þ ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R
1−δ

;

if he defects,

f j g– j; kð Þ– j; ið Þ; vð Þ ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ
1−δ

þ δtT :

Accordingly, for agent i,

f i g; vð Þ ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R
1–δ

and

f i g– i; kð Þ– i; jð Þ; vð Þ ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ
1−δ

þ δtT :

A link ij then is a pairwise stable, if

f j g; vð Þ≥ f j g– j; kð Þ– j; ið Þ; vð Þ

and

f i g; vð Þ≥ f i g– i; kð Þ– i; jð Þ; vð Þ:

Then we obtain the inequality above:

δ > δ≡
T− ℙ i; jð Þ þ ℙ j; kð Þ½ �R

T
∈ 0; 1ð Þ:

Applying Lemma 4.1 for i then yields

δ ¼ T− ℙ i; jð Þ þ ℙ i; kð Þð ÞR
T

� �
¼ β1

and for j

δ ¼ T− ℙ i; jð Þ þ ℙ j; kð Þð ÞR
T

� �
¼ β2:
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If δ > max {β1, β2}, then link ij is pairwise stable. Similarly for links jk and ik, if

δ >
T−min ∑2

x∈ i; j;kf g;y∈ i; j;kf g; x≠yℙ x; yð Þ

 �

R

T

2
666

3
777:

Thus, g will be pairwise stable, given full monitoring and a leveraged punishment.

4.2 Stabilization through triggering contagion

However, agents often can only observe (and memorize) their private interaction
history, due to the cognitive conditions of a large, more anonymous group, i.e., weak
ties. When a defection occurs, agents (with no leveraged punishment available) will
retaliate in a short-run horizon and narrow perspective, resulting in a quick collapse of
favorable expectations, trust and commitment in the entire group. Thus, basically,
defection will diffuse like an epidemic across the weak ties. During that process, there
may be some probability for the defector of encountering interaction partners who still
cooperate, as the contagious process needs some time and its speed, in fact, depends on
the particular network structure.

In the following, however, we explore a contagious equilibrium in a network as a
condition of cooperation. To provide sequential equilibrium conditions we introduce a
triggering contagion, as illustrated in Fig. 4.

If agent j defects against i at time t, i will terminate the link ij at t + 1. Agent k might
immediately “imitate” i’s defection (also at t + 1), but this depends on the probability
“to meet again” agent j. So j either still may interact with k who still cooperates (at t +
1), or k immediately defects as well (at t + 1).

We consider stable network equilibria under such private knowledge (about just
bilateral interactions), i.e., relatively unfavorable expectations, when defection of a
player will basically diffuse through the weak ties.

Let u
0
be the expected payoffs after defection. If player j defects at t, his payoffs are

ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δ ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ…

þδt−1 ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δtT þ δtþ1 u
0
¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ

1−δ

þδtT þ δtþ1 u
ËC
:

i i i

or:
k        j   k         j     k        j

t              t+1 t+1

Fig. 4 Triggering contagion under private monitoring only (Player j defects against the player i)
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The upper bound of defective payoffs is

ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ
1−δ

þ δtT þ δtþ1T :

If the players cooperate, their payoffs are

ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δ ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ…

þδt−1 ℙ i; jð Þ þ ℙ j; kð Þ½ �Rþ δt
h
ℙ i; jð Þ þ ℙ j; kð Þ

i
Rþ δtþ1 ℙ i; jð Þ þ ℙ j; kð Þ½ �R

þ… ¼ ℙ i; jð Þ þ ℙ j; kð Þ½ �R
1−δ

Hence, g is stable if and only if

ℙ i; jð Þ þ ℙ j; kð Þ½ �R
1–δ

>
ℙ i; jð Þ þ ℙ j; kð Þ½ �R 1−δtð Þ

1–δ
þ δtT þ δtþ1T→δ >

δ≡
T− ℙ i; jð Þ þ ℙ j; kð Þ½ �R

T

� 
1
2

∈ 0; 1ð Þ:
ð6Þ

We conclude Theorem 4.2.

Theorem 4.2 In a three-person group with weak ties (i.e., purely “private” monitoring,
knowledge, and expectations about own interactions) that triggers contagion, there
exists a β < 1 so that, for δ ϵ (β, 1), g is stable in a stage process.

So if agent j cooperates in the group, his payoff will be [ℙ(i, j) + ℙ(i, k)]R. If i defects
against j at t, his payoff will be T at t. At t + 1, there will be some probability for his to
interact with agent k who either still cooperates or defects, due to some triggering
through agent j’s behavior. Thus, there are two possible outcomes, when imeets k at t +
1, and i’s expected payoff u

0
will be ℙ(j, k)P + [1 − − ℙ(j, k)]T, which is less than T.

According to Theorem 5.2, we can obtain β and get Lemma 4.3.

Lemma 4.3 In a PD, there exists a δ ϵ (β, 1) and a

β ¼
T−min ∑2

x∈ i; j;kf g;y∈ i; j;kf g; x≠yℙ m; yð Þ

 �

R

T

0
@

1
A 1

2
;

such that g is stable in cooperation in a stage process with triggering contagion.
Compared to Lemma 4.1, this tells us that, as an agent defects, even if ties are weak,

the right-hand term of the equation in Lemma 4.3 will be smaller than the one in
Lemma 4.1 (due to the square root), implying that weak ties with triggering
contagion can sustain the stability of cooperation in the group. Thus, if for any
agent i his relationships are weak, cooperation may nevertheless be sustained as
an equilibrium in g.
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This further leads to Lemma 4.4.

Lemma 4.4 With N = {1, 2 … i … n} tied agents in a population, the entire social
network G may be stable under weak ties and triggering contagion if

δ >
T− ∑2

y∈ j;kf gℙ i; yð Þ

 �

R

T

2
666

3
777

1
2

;∀i:

5 Conclusion: Some applications and policy implications

The present paper referred, first, on repeated dilemma-based localized interac-
tions as a baseline, the emergence of institutionalized cooperation stemming
from combined recurrence and proximity, and the corresponding relatively high
probabilities and expectations “to meet again”. Second, however, we combined
locality (social or spatial) with some tripartite social-leverage interaction,
reflecting some “preferential attachment” (establishing a new relation with a
neighbor to one of my neighbors, who was a stranger to me), as a mechanism
to facilitate cooperation. The core model and solution, and the net value-added
of the present paper is a social-leverage mechanism, i.e., the agents’ abilities
and inclinations, to use preexisting relations with common acquaintances in
order to “leverage”, i.e. increase or multiply, the probability “to meet” between
initial strangers, even if only one-shot interactions were aspired. This mecha-
nism implies, or achieves, some assortativity.

We thus showed the effect of preexisting (cooperative) relations in a larger social
network on the further emergence of cooperation between initial strangers, when the
strangers can avail themselves of the fact that they share a common acquaintance. The
higher probability “to meet” between so far unrelated agents, arising from preexisting
relations with common acquaintances, will make future payoffs increase and
cooperation feasible.

We applied our model to given social network conditions of weak vs. strong ties,
recalling similar observations made by Granovetter (1973) on the role of common
acquaintances and social closeness. We derived particular conditions of proper emer-
gence under strong and weak social ties.

We then investigated the endogenous network evolution implied and its stable
equilibria. By means of a comparative-static analysis, two results were found: we
derived conditions of the stability of the network under the two kinds of closeness of
relations and corresponding different observability of behaviors. A subgame-perfect
equilibrium of the related stage game may be cooperation, even if there are weak ties
only, as agents may adapt to the weakness of their relations. Under strong ties,
leveraged retaliation/punishment and the threat of a contagious process of defection
may come to work likewise.

Theoretical research, deploying social leverage, based on locality and imply-
ing assortativity, will be in the frame of decentralized, non-Walrasian interaction
and exchange systems, which achieve cooperation and exchange by multiple
pairwise interactions beyond the Walrasian auctioneer. This will reflect the
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complexity of real-world exchange processes (e.g., Axtell 2005). Social lever-
age thus may contribute to decentralized evolutionary network approaches as
simulated, e.g., in a local search-and-match algorithm on a ring structure in
Albin and Foley (1992) and the great bulk of complex systems research since
(e.g., Pacheco et al. 2006). Generally, the social-leverage mechanism may help
qualifying theoretical self-organization mechanisms in research on complex
adapting economic systems.

We illustrated the empirical relevance of social leverage with the cases of
credit networks in Ghana and Kenya and the historical records of emergence of
a general exchange culture as received from the case of the ancient Silk Road.
We showed that social leverage may help to reconstruct rationally those cases,
in which any formal (state, legal, police) framework, i.e., any formal enforce-
ment of contracts were lacking. We have argued that in this way early stages of
general exchange and trading systems (markets) can be properly
conceptualized.

The integrated social-leverage and localized/preferential-attachment mecha-
nisms may be generalized to explain dynamically stable cooperative interaction
systems. For instance, in new areas emerging from cutting-edge techno-
organizational developments, such as in IT (Big Data/Machine Learning algo-
rithms/AI) or platform economies (crowd funding, P2P transportation or accom-
modation), where the state and legal regulation typically do not fully exist
(yet), or are systematically lagging behind, this private mechanism may provide
handy solutions. It may spontaneously emerge or be deliberately designed and
implemented by the privates themselves, or be deliberately “nudged” by the
public agent in the absence of a full-fledged legal regulation and court rulings.
Agents of such change may be the involved private agents themselves, as an
informed group, or some kind of informed private network coordinator, or some
specialized public agency, who all may design and implement social-leverage
processes.

Appendix Proof of Lemma 4.1

If player i chooses defection, his expected payoffs are

Rþ δ ℙ i; jð Þ þ ℙ i; kð Þ þ θikð ÞRþ…þ δt−1 ℙ i; jð Þ þ ℙ i; kð Þð ÞRþ δtT þ δtþ10

þ… ¼


ℙ i; jð Þ þ ℙ i; kð ÞR 1−δtð Þ

1−δ
þ Rþ δtT :

If player i chooses cooperation, his expected payoffs are

Rþ δ ℙ i; jð Þ þ ℙ i; kð Þð ÞRþ…þ δt−1 ℙ i; jð Þ þ ℙ i; kð Þð ÞRþ δtþ1 ℙ i; jð Þ þ ℙ i; kð Þð ÞR

þ… ¼ ℙ i; jð Þ þ ℙ i; kð Þð ÞR
1−δ

þ R:
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Thus, cooperation is sustained, if

ℙ i; jð Þ þ ℙ i; kð Þð ÞR
1−δ

þ R >
ℙ i; jð Þ þ ℙ i; kð Þð ÞR 1−δtð Þ

1−δ
þ Rþ δtT→δ >

δ1≡
T− ℙ i; jð Þ þ ℙ i; kð Þð ÞR

T
∈ 0; 1ð Þ:

Similarly for agents j, k:

δ > δ2≡
T− ℙ k; jð Þ þ ℙ k; ið Þð ÞR

T
∈ 0; 1ð Þ→δ > δ3≡

T− ℙ j; ið Þ þ ℙ j; kð Þð ÞR
T

∈ 0; 1ð Þ:

Cooperation is an equilibrium in the group if

δ > max δ1; δ2; δ3
� �

;

δ >
T−min

h
ℙ i; jð Þ þ ℙ i; kð Þð Þ; ℙ i; jð Þ þ ℙ j; kð Þð Þ; ℙ i; kð Þ þ ℙ j; kð Þð �R

T
:
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