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Abstract There are two ways for taxpayers to avoid paying taxes: legal tax opti-
mization and illegal tax evasion. The government reacts by altering the law, and by
conducting audits, respectively. These phenomena are modeled as a strategic interac-
tion between all taxpayers: the more taxpayers optimize, the lower the optimization
result as a consequence of the government tightening the tax law. The more taxpay-
ers evade, the higher the risk of detection because of the tax agencies increasing the
audit probability. It emerges that, in equilibrium, the population shares of optimizers
and evaders are not interdependent; rather, they both increase to the detriment of the
share of non-optimizing taxpayers. If the government reacts to changed optimization
behavior with too large a delay, an equilibrium tax law cannot be reached. Tax codes
should be updated rapidly in order to avoid a permanent change of the tax law, which
is costly both for the legislator and the taxpayers facing legal uncertainty.
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1 Introduction

In the tax game, the main forces at play are taxpayers’ efforts to avoid paying taxes
and the tax authority’s effort to enforce tax compliance. These forces act via two
channels: first, the government needs to establish a tax code that regulates the details
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of liability for taxation and ensures horizontal and vertical equity. To reach this goal,
tax codes have to consider many real-world eventualities and grant tax exemptions
where appropriate. Such tax shelters are used (and misused) by taxpayers. Also, since
tax codes typically are complicated and to some extent inconsistent, taxpayers are
able legally to avoid tax payments by searching for “loopholes”. Second, taxpayers
can illegally avoid taxes by simply not reporting their income to the tax authority or
by reporting nonexistent expenses. The tax authority, in turn, conducts audits in order
to detect and punish tax evaders.

This second channel has featured heavily in economic theory, starting with the
seminal work of Allingham and Sandmo (1972), who regard tax evasion as a port-
folio optimization approach, with the amount of evaded tax being the risky asset.
Given that taxpayers feature decreasing absolute risk aversion, increasing the tax rate
affects the taxpayers’ reporting decisions in two ways: an income effect by trend
reduces the amount of tax evasion (because higher tax payments make taxpayers less
wealthy and, thus, more risk-averse), while a substitution effect makes tax evasion
more lucrative. Yitzhaki (1974) shows that, if the penalty is levied upon the evaded
tax rather than upon the evaded tax base, the substitution effect vanishes, leaving us
with the rather counterintuitive result that tax compliance increases with higher tax
rates.

Their work was extended to cover the tax authority’s reaction and public goods
provision by Cowell and Gordon (1988) who, amongst others, find that tax com-
pliance may increase with increasing tax rates if public goods are over-provided.
Reinganum and Wilde (1986) develop a game theoretical tax compliance model that
assumes taxpayers with heterogenous income to play against the tax authority. The
authors construct a separating equilibrium in which all taxpayers reduce their true
income by a certain amount and the tax authority audits taxpayers with a certain
probability, which decreases with reported income. As a main result they find that
individuals with higher income evade by less.1 Erard and Feinstein (1994) extend
the model by introducing a budget constraint for the tax authority and by assuming
a certain fraction of taxpayers to be inherently honest. The complexity of the solu-
tion increases considerably. In equilibrium, both the taxpayers’ income reports and
the audit schedule depend on the taxpayers’ income distribution. Since the model
is not analytically solvable, the authors perform simulations. They find that the tax
authority’s net tax and penalty revenue rises rather slowly with an increasing share of
honest taxpayers. Another string of literature relies on a principal-agent framework to
analyze tax compliance issues. Assuming lump-sum taxes and penalties, Reinganum
and Wilde (1985) find that random audit schedules where the audit probability is
unconditional upon reported income are dominated by an audit policy in which the
tax authority (the principal) sets a cutoff level, with lower reports always audited

1This resembles the similar finding of Allingham and Sandmo (1972) and Yitzhaki (1974). In the
Allingham-Sandmo-Yitzhaki-model, the effect is driven by risk-aversion, whereas Reinganum and Wilde
(1986) study the case of risk-neutral taxpayers; in their model, the effect comes solely from strategic
interaction.
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and higher reports never audited. They assume that the tax authority can commit to a
certain schedule.2

With regard to the first channel mentioned above – legal tax optimization – the
literature is less extensive, however. Mayshar (1991) generalizes the Allingham-
Sandmo model by introducing the notion of a “tax technology”, formally, a function
which takes as arguments the tax base, the taxpayer’s tax-shielding effort and a vector
of tax instruments adopted by the tax authority and gives as output the tax pay-
ment. The function is kept general, the tax technology is thus a “black box”, and the
tax-shielding effort can be interpreted as any kind of legal or illegal measure the tax-
payer might take in order to reduce their tax burden. Taxpayers choose labor effort
and tax-shielding effort whereas the tax authority chooses (costly) tax instruments.
The model aims at providing a framework capable of giving a cost-benefit analysis
of administrative tax instruments. Slemrod (2001) specifies the tax technology by
assuming a linear tariff. Tax avoidance is modeled as a reduction of the tax base by
a certain amount at costs that depend on the true income and the extent of avoid-
ance. The model’s main focus lies on explaining behavioral responses to taxation,
namely, the taxpayer’s choice of labor supply and tax avoidance effort, and the inter-
dependence between both. Cowell (1990) distinguishes between (illegal) tax evasion
and (legal) tax sheltering. He argues that taxpayers will either evade or shelter parts
of their income: since the tax sheltering function is publicly known, tax sheltering
implicitly causes taxpayers to reveal information about their true income to the fiscal
authority. It follows that there can be a complete polarization between shelterers and
evaders, with the “rich” sheltering and the “poor” evading.3

The models mentioned above focus on individual taxpayer characteristics: the
authors investigate how taxpayers choose labor effort, tax avoidance effort, and, in
the case of tax evasion, the amount of tax evaded. As with tax evasion, the fiscal
authority’s reaction (i. e., audit probability) is based on the taxpayer’s income report.
As with tax avoidance, the government may choose certain tax instruments. However,
the economic damage of both legal and illegal tax avoidance is heavily determined
by the number of taxpayers applying such strategies, and so may be the tax author-
ity’s reaction. Formally, the tax agency’s audit function (concerning tax evasion) and
the “tax technology” function (concerning tax avoidance) may take as arguments the
number of taxpayers applying either strategy. If so, an individual taxpayer’s benefit
from tax optimization or tax evasion is determined by the behavior of their fellow tax-
payers rather than by the tax agency’s reaction to an individual tax report: the game
is no longer played between an individual taxpayer and the tax agency, but rather
between all taxpayers.

This paper presents three main contributions: (1) while previous literature either
ignored strategic interaction (e. g., Allingham and Sandmo 1972), or required a very
high level of taxpayer rationality (e. g., Reinganum and Wilde 1986) the evolution-
ary approach adopted here not only captures the effect of an individual’s behavior
onto the society, but also allows for assuming myopic taxpayers who simply need to

2See Andreoni et al. (1998) for an overview.
3See Slemrod and Yitzhaki (2002) for an overview.
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compare their own payoff to another person’s payoff; (2) next, the model allows for
both tax avoidance and tax evasion as alternative (mutually exclusive) strategies; (3)
finally, the model takes into account the reaction time of the participating institutions.

Below, I will argue that the individual taxpayer’s benefit from tax avoidance or tax
evasion declines in the number of taxpayers who avoid or evade taxes, respectively. I
will refer to this phenomenon as “crowding effect”.

Concerning tax evasion, this crowding effect can be motivated as follows: tax
agencies, while auditing a set of tax reports, should be able to estimate the share of
tax evaders based on the detection rate rather easily. It seems reasonable to assume
that auditing activities are broadened if it turns out that there are many tax evaders,
while auditing is cut down if the taxpayers turn out to be predominantly honest. The
relationship is kept general in this paper, however, for lack of empirical evidence on
its shape.

As with tax avoidance, there are several potential reasons for a crowding effect.
First, the government is unaware of the necessity to close loopholes until they are
exploited by a sufficiently large number of taxpayers. Also, if loopholes are used
by a small fraction of taxpayers only, closing them is simply not profitable because
tax leakages are small compared to the (political) costs of altering the law. How-
ever, governments have to intervene if too many taxpayers save on taxes in a way
that is legal though not the intention of the legislator. They do so by altering the tax
law, or by adding additional legal norms. For example, most tax codes contain thin-
capitalization rules which limit the companies’ possibilities of exploiting interest tax
shields. Currently, the OECD “base erosion and profit shifting” (BEPS) project aims
at prohibiting prominent structures such as the “Double Irish with a Dutch Sand-
wich”. Moreover, many tax authorities impose general anti-tax-avoidance doctrines,
which are not necessarily part of the tax law. They restrict tax avoidance directly
by limiting the resulting tax savings.4 Examples are the business purpose doctrine
or the economic substance doctrine. Basically, such doctrines state that transactions
will not be regarded by the tax law if their only purpose is a reduction of the tax lia-
bility. The presence of anti-tax-avoidance doctrines and legal norms that prohibit the
usage of certain tax avoidance schemes reduces the taxpayers’ profit from engaging
in legal tax optimization. However, a tight tax law is also costly. Both the government
and the taxpayers suffer bureaucracy costs from a high level of tax complexity. Also,
multinational companies might refrain from investing in countries with tight tax laws.
Hence, in part, countries could compete over the laxness of the tax law rather than
over tax rates. Indeed, countries such as the United States, Spain and Ireland recently
weakened or abolished their thin capitalization rules (Haufler and Runkel 2012). This
shows that governments basically have incentives to laxen their tax laws, if possible.
In other words, if no one would optimize, governments would desire a tax law that
is both uncomplicated and allows for generous tax savings. If such a lenient tax law
is then heavily exploited by taxpayers, however, governments would need to tighten

4Weisbach (2002) discusses the efficiency of anti-tax-avoidance doctrines.

584



Population dynamics of tax avoidance with crowding effects

it again.5 Another explanation for a crowding effect could be the government’s aim
to reach a certain budget target. For example, consider a government’s budget target
of $ 90. Legal tax avoidance / tax optimization is interpreted as taxpayers applying
for tax refunds. If ten taxpayers each pay taxes of $ 10, the total tax revenue exceeds
the budget by $ 10. The excess amount is divided among the optimizing taxpayers. If
only one taxpayer optimizes they receive the whole amount of $ 10. However, if five
taxpayers optimize, each get a tax refund of $ 2. Again, for lack of knowledge on the
shape of the relation between the number of tax avoiders and the “profit” from tax
avoidance, apart from being negative, it is kept general.

I develop the model in two steps: first, taxpayers can choose between regular tax
payment and (legal) avoidance, only. In part, this is done for expositional reasons.
However, the two-strategy model can also be seen as displaying situations where tax
evasion is not a viable strategy (e. g., for large companies that have internal controls
in place) or where tax evasion is simply not possible (e. g., in the case of withholding
taxes). In a second step, the model is modified to allow for tax evasion as a third
possible strategy. The extended model applies to all taxpayer clienteles who are prone
to both tax avoidance and tax evasion (e. g., small companies that have a high number
of cash transfers).

Strategic interactions where an individual plays against a whole society rather
than a limited number of other individuals are referred to as population games (Hof-
bauer and Sigmund 1998). Then, a Nash equilibrium is given not by a strategy choice
of single individuals, but by population shares that each play pure strategies. In the
basic model developed in this paper, taxpayers decide between two strategies, “opti-
mization” and “non-optimization”. “Optimization” involves tax planning costs that
depend on the amount of pre-tax income. Tax planning then leads to a certain tax
refund. The size of the tax refund depends negatively on the share of optimizing tax-
payers, as motivated above. There exists only one Nash equilibrium that involves a
certain share of taxpayers who optimize while the remainder do not optimize. It turns
out that the share of optimizing taxpayers increases with increasing tax rates, decreas-
ing optimization costs and a generally higher optimization result. A dynamic version
of the game is implemented by applying a pairwise proportional revision protocol.
That is, when receiving an opportunity to update their strategy, a taxpayer meets
another taxpayer at random and adopts their strategy with probability proportional to
the payoff difference if the latter is positive. The evolution of the whole population’s
behavior can then be approximated by the replicator dynamic (Schlag 1998), which
was originally developed by Taylor and Jonker (1978) to capture the evolution of

5This situation was modeled by Diller et al. (2013) as a single-shot two-player game between a taxpayer
who can choose to exert a certain tax planning effort and a government that chooses a certain degree of
tax complexity. Higher planning effort is associated with bigger tax savings but increasing planning costs.
Higher complexity is associated with smaller tax savings and increasing complexity costs. Inter alia, the
authors find that both planning effort and tax complexity increase with an increasing tax base. With regard
to the results of the present article, it should be pointed out that Diller et al. (2013) find that an existing
level of tax complexity and tax planning effort changes over time only if the costs of either tax complexity
or tax planning change.
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species by survival and reproduction of the fittest. Applying the replicator dynamic,
it is shown that the Nash equilibrium is the only stable rest point and thus a good pre-
diction for the outcome of the game. Since in reality the legislative process is rather
slow, next a delay is introduced to the tax law reaction function, which causes the
population share of optimizing and non-optimizing taxpayers to oscillate over time.
If the delay is small, the oscillation is dampened and over time the system approaches
the Nash equilibrium. If the delay exceeds a certain threshold, however, the popula-
tion state continues to oscillate. This result is especially interesting because of two
points: first, it shows that the structure of the tax law can change “endogenously”
without a change in institutional parameters such as the cost of tax complexity or cost
of tax optimization. Second, looking only at the Nash equilibrium but neglecting the
dynamic adaption process, the very result of an oscillating population state would not
be found, giving a fundamentally different prediction for the outcome of the game.
In reality, the process of legislative amendments is costly. Moreover, a permanently
changing tax law creates legal uncertainty.6 One potential policy implication is that
the legislative process should be accelerated in order to reach an equilibrium and
avoid having to amend the law incessantly.

In the next step, the taxpayers are allowed to choose to evade taxes illegally as
a third possible strategy. As explained above, in contrast to other tax evasion mod-
els, the audit probability is assumed to depend not on the tax return but on the share
of evading taxpayers within a population. Because of that, tax evasion is an all-
or-none decision: taxpayers always report an income of zero once they choose the
“evasion” strategy. Depending on parameter relations, two possible Nash equilibria
can be identified. The first equilibrium requires that all three strategies are played by
positive population shares. Then, the population share of optimizers is the same as
in the two-strategy case, and the share of evaders increases to the detriment of the
share of non-optimizing taxpayers if the penalty rate decreases or if the audit func-
tion generally decreases. As to the dynamic case, the Nash equilibrium again is the
only stable rest point. If the parameters are chosen such that the payoff from non-
optimization is lower than both the payoffs form tax optimization and tax evasion,
the “non-optimization” strategy becomes extinct. Then, both increasing the tax rate
and the penalty rate causes the share of optimizers to increase to the detriment of the
share of tax evaders.7 Introducing a delay into the tax law reaction function causes the
population state to oscillate over time, as in the two-strategy case. Again, if the delay
is below a certain threshold, the Nash equilibrium is reached over time, whereas if
the delay is too large, the system keeps oscillating.

The remainder of this paper is structured as follows. In the next section, a basic
model with the two strategies, “optimization” and “non-optimization”, is presented;
the game’s equilibrium is characterized and a dynamic approach including a delayed
government’s reaction is outlined. Section 3 extends the model to allow for (tax)

6There is empirical evidence that tax law uncertainty has a negative impact on investment (Edmiston 2004).
7Interestingly, several models with different basic assumptions and modeling techniques (Allingham and
Sandmo (1972) and Reinganum and Wilde (1986), and the present one) all give the counterintuitive result
that increasing the tax rate reduces tax evasion under certain circumstances.
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“evasion” as a third strategy. Again, the game is analyzed as a static and dynamic
model. The paper closes with a brief summary.

2 Basic model

2.1 Framework with two strategies

Consider a population of risk-neutral taxpayers as defined by the set P = {1, . . . , N}.
Every period, each taxpayer plays against the whole population of taxpayers. The set
of strategies available to the taxpayers is denoted by S = {o, n}, where o denotes
legal tax optimization and non-optimization is denoted by n. Let xs denote the share
of the population that chooses strategy s ∈ S. The population state is given by X =
{x ∈ R

2+ : ∑
s∈S xs = 1}. The reaction of the government is not considered explicitly.

Instead its actions are reflected by the payoff functions, that is, it is assumed that the
state of the tax law is a function of the number of agents who try to reduce their tax
burden in a legal manner: the more agents optimize, the less can be gained through
optimization by an individual taxpayer.

Formally, tax savings as a fraction of the tax rate are denoted by a continuous,
strictly decreasing function o(xo) with o(1) = 0 and o(0) = 1.8 If all taxpayers
optimize (xo = 1), the tax code takes a state that allows for no more tax savings.
By contrast, if no one optimizes (xo = 0), the first taxpayer to optimize can reduce
their tax rate to zero.9 The payoff vector field F : X → R

2 consists of the following
continuous payoff functions.

The payoff from tax optimization is given as

Fo(x) = y − τ(1 − o(xo))y − c(y), (1)

where y is a taxpayer’s income before tax, τ is the tax rate and c(y) denotes the
cost of tax optimization as a function of income. It seems reasonable to assume that
c′(y) > 0 and c′′(y) ≤ 0: it is more expensive to “hide” higher income from the tax
authority, the marginal tax planning costs decrease, however, because of economies
of scale.10 This can also be interpreted in the way that taxpayers with higher income
are well-educated and thus find it easier to optimize taxes at the margin. Moreover,

8A somehow comparable approach is presented by Weisbach (2002). He denotes the strength of anti-
avoidance doctrines by a parameter α ∈ [0, 1], where α = 0 describes the absence of anti-avoidance
doctrines and α = 1 means that taxation cannot be avoided. α = 0 does not necessarily imply that no
taxes have to be paid, however, as does the corresponding case o = 1 in the present article.
9A systems-theoretical notion of tax compexity would suggest that d/dxo (1 − o(xo)) > 0 and
d2/dx2

o (1 − o(xo)) < 0, that is, tightening the tax law increases the government’s tax revenue; however,
the marginal tax revenue decreases because the most obvious loopholes are already closed. Referring to
the tax savings function used in the present article, this would imply that o′(xo) < 0 and o′′(xo) > 0.
However, the results are valid without assuming that o′′(xo) > 0.
10Marginal tax planning costs are allowed to be constant in order to enable a simple linear cost structure.
De facto, it is not necessary to make any assumptions on c(y).
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marginal optimization costs can also be constant with lower costs representing greater
knowledge of the tax law, or higher capability. An optimizer can expect to receive the
fraction o(xo) of their tax liability as a tax refund. As described above, the success
of their optimization activities depends on the total number of optimizing agents. If a
large number of taxpayers reduce their tax liabilities using loopholes in the law, the
government will close these loopholes by adopting additional laws, thus complicating
the tax code. Optimization activities will then be less successful.

Non-optimization delivers the payoff

Fn = y(1 − τ), (2)

which is certain and does not depend on the actions of other taxpayers. Note that
optimizing may be never a beneficial strategy, even if only one taxpayer chooses
“optimization” and hence o(xo) → 1. Still, it is possible that y − c(y) < y(1 − τ),
i. e., the cost of tax optimization is higher than its benefit. Given the concave cost
structure introduced above, this could happen for low values of y. A strategy that is
never beneficial will become extinct in equilibrium. Since a trivial solution involving
all taxpayers paying their taxes without optimization is of little interest, it is assumed
that c(y) < τy below; i. e., optimization costs are lower than the tax payment and
thus tax optimization can (though need not always) be beneficial.

F is a potential game (Monderer and Shapley 1996) since there exists a potential
function f : X → R that satisfies ∇f (x) = F(x)∀x ∈ X:

f (x) = xny(1 − τ) + xo(y(1 − τ) − c(y)) + τy

∫ xo

0
o(z)dz.

Since f is concave,11 all Nash equilibria are maximizers of f (see Sandholm 2010,
p. 60).

2.2 Equilibrium

The only Nash equilibrium of the game is given by the population state {x�
o, x

�
n} that

satisfies the conditions

τo(x�
o) − c(y)

y
= 0, (3)

x�
o + x�

n = 1. (4)

Equation 3 is intuitive: the beneficial decrease in the tax rate due to optimization
activities has to equate the cost of optimization relating to income. Equation 4 ensures
that each taxpayer chooses either optimization or non-optimization. Note that, in
equilibrium, the payoff of the strategy “optimization” is equal to the outcome of the
strategy “non-optimization”, y(1 − τ). Hence, legal tax avoidance is not profitable.
This is not surprising but rather a requirement for a Nash equilibrium: if in some

11The hessian Hf (x) =
(

τyo′(xo) 0
0 0

)

has non-positive eigenvalues
{
τyo′(xo), 0

}
.
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population state x′ one of the strategies is profitable, other taxpayers will adopt this
strategy until there is no more excess return; the system converges to state x�.12

Proposition 1 In equilibrium, the share of optimizing taxpayers increases with

a) increasing tax rates,
b) generally decreasing optimization costs cL(y) < c(y)∀y,
c) generally higher optimization results oH (xo) > o(xo)∀xo �= 0, 1, and
d) higher income iff τo(x�

o) > c′(y).

Proof The derivative of the equilibrium share of optimizing taxpayers x�
o with respect

to the tax rate
∂x�

o

∂τ
= o(x�

o)

−τo′(x�
o)

is unambiguously positive. This result is driven by the optimization costs that depend
on income y only, but do not increase in the tax rate τ . Parts b) and c) of Proposition
1 are immediately evident from Eq. 3. Deriving (3) with respect to income y delivers

∂x�
o

∂y
= c(y) − yc′(y)

−τy2o′(x�
o)

, (5)

which is positive as long as the average costs exceed marginal costs: c(y)/y > c′(y).
Making use of Eq. 3, the condition can be rewritten as τo(x�

o) > c′(y): as long
as marginal optimization costs are smaller than the optimization effect, the share of
optimizing taxpayers will increase if income increases. If costs are assumed to be lin-
ear, the equilibrium share of optimizing taxpayers does not depend on the amount of
income. If costs decrease with increasing income (possibly because better-educated
individuals with higher income find it easier to shelter income from taxation),
increasing income increases the share of optimizers. The same is true if costs are
assumed to be constant.

In equilibrium, the tax code will allow tax savings of

o(x�
o) = c(y)

τy
(6)

generating a total tax revenue of

T =
∑

i∈P :s=n

τy +
∑

i∈P :s=o

τy(1 − o(x�
o))

= N
(
τy − x�

oc(y)
)
, (7)

where N is the number of all taxpayers. An optimizing taxpayer’s tax payment is
given by τy − c(y). The tax authority hence loses exactly the optimization cost c(y)

measured by the share of optimizing taxpayers.

12A dynamic adaption process of this kind is modeled explicitly in Section 2.3.
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2.3 Replicator dynamics

The Nash equilibrium derived in the previous section is a static concept. So far,
there is no explanation of how the equilibrium population state is actually reached.
The taxpayers’ behavior at the micro-level is modeled using the notion of a revision
protocol (Sandholm 2010, p. 121). Hereby, the evolutionary process for a number
of N taxpayers is described by a Markov process. It is assumed that individuals
receive opportunities to change their strategies at certain points in time. The time lags
between the arrivals of revision opportunities are distributed independently accord-
ing to an exponential distribution with rate λ. If a revision opportunity arrives, an
individual taxpayer switches from strategy i to strategy j with probability rij /λ,
where rij is called conditional switch rate. In this article, the revision protocol known
as proportional imitation will be applied (Schlag 1998), defining the conditional
switch rate as rij = xj

[
Fj (x) − Fi(x)

]
+. For the two-strategy game introduced

above, the conditional switch rate from non-optimization to optimization is given by
rno = xo [Fo(x) − Fn]+. Intuitively, a non-optimizing taxpayer with the opportu-
nity to switch strategies meets another taxpayer at random. With probability xo they
will meet an optimizer. If this is the case, the taxpayer will switch strategies only if
the (observed) payoff from optimization exceeds the payoff from non-optimization
(otherwise, [·]+ = 0 = rno). Given that, the conditional switch rate is defined
to increase in the payoff difference; that is, the more “optimization” outperforms
“non-optimization”, the higher the likelihood that the taxpayer switches. This way of
modeling the taxpayers’ decision making has the pleasant feature that they need not
be informed about properties such as the population state x, the population’s average
payoff or other individuals’ payoffs (except the payoff of the one taxpayer met at ran-
dom). This is especially desirable in view of the fact that tax returns are undisclosed
in most countries.

Note that, if no one optimizes, i. e., xo = 0, the probability of switching to the
optimization strategy is zero for all taxpayers, that is, strategies that are currently
not played by a positive population share will not be invented under the proportional
imitation protocol.

Given the pairwise proportional imitation revision protocol explained above, the
behavior of the Markov process can be approximated as follows: As the revision
opportunities are assumed to be distributed according to an exponential distribution
with cumulative distribution function P(“revision opportunity” ≤ t) = 1− e−λt , the
expected number of revision opportunities arriving in the short time interval [0, dt]
is given by P(“revision opportunity” ≤ dt) = 1 − e−λdt ≈ λdt (by means of
a Taylor approximation, see Sandholm (2010, p. 378). Thus, the number of revi-
sion opportunities received by non-optimizing agents in this time span is given by
Nxnλdt , and a number of Nxoλdt optimizers receive revision opportunities. By defi-
nition, individuals switch from strategy i to strategy j with probability rij /λ. Hence,
the number of agents who switch from optimization to non-optimization is given by
ron

λ
Nxoλdt = Nxorondt , while

rno

λ
Nxnλdt = Nxnrnodt agents agents switch from

non-optimization to optimization. Consequently, the expected change in the popula-
tion share (i. e., dividing by N) of non-optimizing agents is given by the difference
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between the inflow and the outflow, (xoron − xnrno)dt . Thus, denoting by ẋi = d
dt

xi

the time derivative, ẋn = xoron − xnrno. Applying the pairwise imitation protocol,
one obtains

ẋn = xoxn[Fn − Fo(x)]+ − xnxo[Fo(x) − Fn]+
= xnxo ([Fn − Fo(x)]+ − [Fo(x) − Fn]+)

= xnxo

(
1{Fn>Fo(x)}Fn − 1{Fn>Fo(x)}Fo(x) − 1{Fn<Fo(x)}Fo(x) + 1{Fn<Fo(x)}Fn

)

= xn(xoFn − xoFo(x)),

which can be rewritten as ẋn = xn(Fn −(xnFn +xoFo(x))). ẋo is derived similarly.13

This gives the dynamic

ẋo = xo

(
Fo(x) − xT F (x)

)

ẋn = xn

(
Fn − xT F (x)

)
, (8)

where xT is the transposed vector of the population state. The system (8) is the well-
known replicator dynamic. At a macro level, the relative rate of change of a strategy
is given by the difference between its own payoff and the mean payoff.

A fixed point is reached when the change over time is zero; hence ẋo = ẋn = 0 has
to be fulfilled simultaneously. The replicator dynamic (8) features three fixed points

{xn = 0, xo = 1} ,

{xn = 1, xo = 0} ,
{
xn = x�

n, xo = x�
o

}
.

The first two are corner solutions in which the whole population either optimizes or
doesn’t optimize, respectively. The third fixed point is the Nash equilibrium shown
above. It is easily shown that the Nash equilibrium is the only stable fixed point of
the system. Starting from xo = 0, ẋo = 0, if a single taxpayer, for whatever reason,
starts optimizing, the rate of change ẋo becomes positive since

∂ẋo

∂xo

∣
∣
∣
∣
xo=0

= τy − c(y) > 0

is positive by an assumption made earlier in this article. Thus, more taxpayers start
optimizing until the Nash equilibrium is reached and one has xo = x�

o, ẋo = 0. If the
whole population optimizes, that is, xo = 1, ẋo = 0 but one taxpayer decides to pay
their taxes regularly, the rate of change ẋo becomes negative since

∂ẋo

∂xo

∣
∣
∣
∣
xo=1

= c(y) > 0.

Thus, more taxpayers refrain from optimizing and xo decreases until the Nash
equilibrium is reached again. The same kind of reasoning applies for the share of
non-optimizing taxpayers since xn = 1 − xo. Figure 1 illustrates the situation. Over

13The derivation of the mean dynamic for a higher number of strategies is analogous (Sandholm 2010, pp.
123, 126).
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Fig. 1 Rate of change of the “optimization” strategy, ẋo, depending on the population share of optimizing
taxpayers xo

time the system converges to the Nash equilibrium from (almost) all initial population
states. Only if all taxpayers optimize (all taxpayers don’t optimize) will the respective
alternative strategy never be “invented”. As described above, however, these states
are not robust to small perturbations. Figure 2 shows the evolution of the population
state for different initial conditions. All illustrations below are plotted choosing the
reaction functions and parameters stated in Appendix A.1.

2.4 Delayed amendments

In the previous section, the sequence of the game could be thought of as follows:
first, all taxpayers simultaneously choose their respective strategies. The tax authority
then observes the population state and chooses the state of the tax law. Third, taxes
are collected and tax refunds are granted according to o(xo). It is, however, a strong
assumption to demand that tax law be adjusted immediately depending on the number
of optimizing taxpayers. It would be more realistic to assume that the tax authority
amends the legislation in the subsequent period. In reality, however, amendments can
take even longer. This phenomenon is captured by a delay parameter δ, where δ is a
positive real number that is interpreted as the time the tax authority needs to amend
the tax code. Suppose that at time t ′ the tax code is in a lax state, and, consequently,

Fig. 2 Evolution of the share of optimizing taxpayers xo over time for initial conditions varying from
(almost) zero to (almost) one in steps of 0.125
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there is a high number of taxpayers optimizing. The government realizes that the tax
code needs to be tightened. Yet, the new code is not in place until t ′ + δ. Hence, any
taxpayer who is optimizing at time t ′ + δ is confronted with the tax code that was
adapted to the number of optimizers at time t ′ + δ − δ = t ′. The other way round,
from the perspective of any point in time t , a taxpayer deciding to optimize receives
a tax refund according to the tax code that was optimal for the taxpayer behavior at
time t − δ. Denoting the population state as a function of time, the modified payoff
vector field can be written as

F̂ (x(t)) =
(

F̂o(x(t))

Fn

)

=
(

y − τ(1 − o(xo(t − δ)))y − c(y)

y(1 − τ)

)

(9)

and the modified replicator dynamic is then given by the system

ẋo(t) = xo(t)
(
F̂o(x(t)) − x(t)T F̂ (x(t))

)

ẋn(t) = xn(t)
(
Fn − x(t)T F̂ (x(t))

)
. (10)

Introducing a delay causes the population state to oscillate over time. It can be shown
that the system over time converges to the Nash equilibrium if the delay is not too
large:

Proposition 2 If the strategy “optimization” is delayed by δ, the system (10) is
asymptotically stable for all 0 ≤ δ < δ, where

δ = π

2x�
o(1 − x�

o)τy(−o′(x�
o))

.

Otherwise, the system doesn’t converge and continues to oscillate.

Proof See Appendix A.2.

In an economic context, this means that if it takes too long to amend the tax code to
reflect changed taxpayer behavior, an equilibrium tax law and equilibrium population
shares of optimizers and non-optimizers cannot be reached. Figure 3 illustrates the
population’s evolution for different values of delay. If there is no delay, the share of
optimizers approaches the Nash equilibrium and remains there. If the delay is small,
the oscillation around the equilibrium is dampened after some time. In both cases,
the tax code is not amended any more once the equilibrium is reached. For delay
values that are greater than the critical delay δ the population share of optimizers
continues to oscillate. Accordingly, the tax code keeps changing, too. In reality, tax
codes are updated on a regular basis. In the context of this model, this phenomenon
can be explained by real-world governments reacting too slowly to changed taxpayer
behavior, implying that a stable equilibrium tax law cannot be reached.14

14Of course, there are many additional exogenous reasons why the tax code needs to be amended that are
not covered in this model: technological advancements, financial globalization, and so forth. The essential
insight in this model is, however, that the tax code can change even without such external “shocks”.
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Fig. 3 Evolution of the share of optimizing taxpayers xo(t) for different values of delay; the initial
population share of optimizers is 0.35

3 Extended model with tax evasion

3.1 Framework with three strategies

Taxpayers may also attempt to reduce their tax burden in an illegal manner. The eco-
nomic difference between (illegal) tax evasion and (legal) tax optimization is that
the latter involves paying optimization costs in advance, which can be either costs
for engaging a professional tax consultant, opportunity costs for having to cope with
the tax code, or a disutility from doing so, or a mixture of all three. By contrast, tax
evasion does not require an ex ante payment. The taxpayer just reports less income
and thus generates tax savings immediately. Afterwards, they are confronted with a
certain probability of being audited and having to pay a penalty fee. Many other ana-
lytical models of tax evasion assume that the audit probability is exogenous.15 or
conditional on reported income16 However, I do not assume that the detection proba-
bility depends on the amount evaded / reported by an individual but on the proportion
of the population that evades taxes. This assumption is taken in order to fade out the
effects of the reported amount in favor of shedding light on the population effects
which are of interest in this article. In addition, the tax authority can estimate the
population rate of evaders since the latter should be almost identical – but at least
highly correlated – with the detection rate. It seems plausible for the tax authority to
increase its audit effort when it realizes that tax evasion behavior is starting to spread
within society.

The extended set of strategies is denoted by S̄ = {e, o, n}, where e denotes the
“tax evasion” strategy.17 The population state is now given by X̄ = {x ∈ R

3+ :

15See, e. g., Allingham and Sandmo (1972) and Yitzhaki (1974).
16See, e. g., Reinganum and Wilde (1986) and Erard and Feinstein (1994).
17Note that taxpayers are not allowed to use tax avoidance and tax evasion at the same time. In the cur-
rent model, this is not possible since tax evasion involves hiding the total income, leaving no room for
additional tax avoidance. While this can be seen as a simplification (i. e., a consequence of assuming risk-
neutral agents and / or assuming the audit probability to be independent of reported income), there is also
literature suggesting that tax avoidance can preclude tax evasion, for (legal) sheltering activity may reveal
information about the taxpayer’s true income to the tax authority (Cowell 1990).

594



Population dynamics of tax avoidance with crowding effects

∑
s∈S xs = 1}. As with tax optimization, the tax authority’s reaction to tax evasion is

reflected by the payoff function. Audit probability is denoted by the function p(xe),
which strictly increases in the share of evading taxpayers xe. Further, it is assumed
that p(1) = 1 and p(0) = 0: if the whole population evades, it is reasonable for
the tax authority to always audit. By contrast, if no one evades, it is rational to never
audit. Since the audit probability does not depend on the amount that is evaded, a
risk-neutral taxpayer will report “all or nothing”. Thus, choosing the evasion-strategy
implies that a taxpayer will report an income of zero. An evading taxpayer receives
their pre-tax income y if no audit takes place; if audited, they receive their pre-tax
income y minus tax payment minus penalty payment. Evading taxes illegally delivers
an expected payoff of

Fe(x) = p (xe) (y − τy − θτy) + (1 − p(xe))y, (11)

where θ > 0 is the penalty rate. Note that the penalty is imposed on the amount of
taxes evaded, τy, as proposed by Yitzhaki (1974). If the whole population evades, the
“tax evasion” strategy is always dominated by non-optimization since τ(1+ θ) > τ .
If no one evades, the “evasion” strategy dominates non-optimization: y > y(1 −
τ). The payoff functions of the “optimization” and “non-optimization” strategies are
given by Eqs. (1) and (2), respectively, giving the new payoff vector field F̄ (x) =
(
Fe(x), Fo(x), Fn

)T . The potential function of the extended game is given by

f̄ (x) = (xe + xo + xn)y − (xo + xn)τy − xoc(y) + τy

∫ xo

0
o(z)dz

− yτ(1 + θ)

∫ xe

0
p(z)dz.

Again, f̄ (x) is concave,18 implying that all Nash equilibria are maximizers of f̄ .

3.2 Equilibrium

3.2.1 Survival of three strategies

Consider first the case where all strategies are played by positive population shares
in equilibrium. The only Nash equilibrium is denoted by the population state{
x∗
e , x∗

o , x∗
n

}
satisfying the conditions

p(x∗
e ) − 1

1 + θ
= 0, (12)

τo(x∗
o ) − c(y)

y
= 0, (13)

x∗
e + x∗

o + x∗
n = 1, (14)

18The hessian Hf̄ (x) =
⎛

⎝
−y(1 + θ)τp′(xe) 0 0

0 yτo′(xo) 0
0 0 0

⎞

⎠ has non-positive eigenvalues

{
0, τyo′(xo),−y(1 + θ)τp′(xe)

}
.
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where Eq. 13 is similar to Eq. 3. The comparative statics with respect to x∗
o derived

from the two strategy game (Proposition 1) are therefore still valid.

Proposition 3 In the three-strategy game, where all strategies are played by positive
population shares, the share of tax evaders increases to the detriment of the share of
non-optimizers with

a) a decreasing penalty rate, and
b) generally lower audit rates pL(xe) < p(xe)∀xe �= 0, 1.

Proof Deriving (12) with respect to θ delivers

∂x∗
e

∂θ
= − 1

(1 + θ)2p′(x∗
e )

< 0.

Part b) of Proposition 3 can be seen immediately from Eq. 12. The share of optimizers
is not affected since x∗

o depends neither on θ nor on p(), while x∗
n = 1−x∗

e −x∗
o .

Interestingly – in contrast to most other analytical tax compliance models – the
share of evading taxpayers does not depend on the tax rate. Instead, the only parame-
ter that affects tax evasion behavior is the penalty rate θ . Increasing the penalty causes
taxpayers to switch from tax evasion to non-optimization, ignoring the possibility of
legal optimization.

In summary, increasing optimization costs cause the share of optimizers to shrink
while the share of non-optimizers increases. By contrast, a higher tax rate causes
taxpayers to switch from non-optimization to legal optimization behavior. If income
y changes, the shift takes place between the share of non-optimizing and optimizing
taxpayers; the direction is, however, not distinct. Increasing y may cause optimization
activities to increase to the detriment of non-optimization (part d) of Proposition 1).
Still, this would not yet be a theoretical explanation for anecdotical evidence that the
“rich” are more involved in legal tax optimization than the “poor”, since in this model
all taxpayers are identical. If income rises, then it rises by the same amount for all
taxpayers. Instead, the reason for this effect would be the concave optimization cost
structure.

In equilibrium, the tax code allows for tax savings according to Eq. (6) and audits
will happen with probability

p(x∗
e ) = 1

1 + θ
.

The tax authority’s total tax revenue

T̄ =
∑

i∈P :s=n

τy +
∑

i∈P :s=o

τy(1 − o(x∗
o )) +

∑

i∈P :s=e

p(x∗
e )τy(1 + θ)

= N(τy − x∗
o c(y))
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is identical to Eq. 7 since the share of optimizing taxpayers is not altered by introduc-
ing the possibility to evade taxes. Further, the tax authority loses nothing through tax
evasion: in equilibrium, tax evasion is not beneficial to taxpayers (again, by defini-
tion of the Nash equilibrium) because expected tax savings equate expected penalty
payments. This result of course no longer holds if one assumes audits to be costly to
the tax authority, or if penalty payments are not part of tax revenue.

3.2.2 Extinction of non-optmization

Depending on the choice of parameters, the “non-optimization” strategy may become
extinct over time. This is the case if the payoff of either “evasion” or “optimiza-
tion” in equilibrium exceeds the payoff of “non-optimization”. The section above
demonstrates that an increase in the shares of both evaders (possibly caused by a
decrease in the penalty rate) and optimizers (possibly caused by an increase in the
tax rate) goes entirely to the detriment of the share of non-optimizing taxpayers. If xn

reaches zero, it cannot decrease any further. Hence, if the share of evaders (optimiz-
ers) were to increase to a greater degree, then the share of optimizers (evaders) would
decrease, respectively. This would cause the payoff of the “optimization” (“evasion”)
strategy to increase. In equilibrium, these two payoffs have to balance again, that is,

Fe(x) = Fo(x) > Fn. This equilibrium is denoted by the population state
{
x
†
e , x

†
o , 0

}

that fulfills the conditions

τy(1 + θ)p(x†
e ) = τy

(
1 − o(x†

o)
)

+ c(y), (15)

x†
e + x†

o = 1. (16)

This is the Nash equilibrium if only “evasion” and “optimization” are chosen by
positive population shares.19 The condition for non-optimization to become extinct
can be derived from either one of the equivalent conditions

Fe(x
†
e ) ≥ Fn ⇐⇒ θ ≤ 1 − p(x

†
e )

p(x
†
e )

, (17)

Fo(x
†
o) ≥ Fn ⇐⇒ c(y) ≤ τyo(x†

o). (18)

Proposition 4 In the three-strategy game, where only “optimization” and “evasion”
are played by positive population shares, the share of optimizers increases with

a) increasing tax rates,
b) increasing penalty rates, and,
c) increasing income iff average costs exceed marginal costs.

19Of course, it would also be the Nash equilibrium of a model that requires taxpayers to choose between
optimization and evasion only.
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Proof Deriving (15) with respect to τ , making use of the fact that ∂x
†
e /∂τ +

∂x
†
o/∂τ = 0, and introducing o(x

†
o) as obtained from Eq. 15 delivers

−∂x
†
e

∂τ
= ∂x

†
o

∂τ
= c(y)

τ 2y
(
−o′

(
x
†
o

)
+ (1 + θ)p′

(
x
†
e

)) ,

which is positive. The derivative with respect to θ ,

−∂x
†
e

∂θ
= ∂x

†
o

∂θ
=

p
(
x
†
e

)

−o′
(
x
†
o

)
+ (1 + θ)p′

(
x
†
e

) ,

is positive as well. Finally, deriving (15) with respect to y and rearranging gives

−∂x
†
e

∂y
= ∂x

†
o

∂y
= c(y) − yc′(y)

τy2
(
−o′

(
x
†
o

)
+ (1 + θ)p′

(
x
†
e

)) ,

which is positive if average costs exceed marginal costs, if costs decrease with
income, or if costs are constant.

Increasing the tax rate causes the population share of optimizers to increase. This
effect can be explained as follows: since this model employs the penalty structure of
Yitzhaki (1974) there is no substitution effect in the “evasion” strategy. As taxpayers
are assumed to be risk-neutral, neither is an income effect. Since the optimization
cost does not depend on the tax rate, however, optimization becomes more beneficial
with increasing tax rates.

It is not possible to give a closed-form solution for both p(x
†
e ) and o(x

†
o). Hence,

the government’s total tax revenue cannot be stated explicitly either. However, since
the taxpayers’ equilibrium payoffs increase, the government’s total tax revenue has
to be smaller than above. Formally,

T̄ =
∑

i∈P :s=o

τy(1 − o(x†
o)) +

∑

i∈P :s=e

p(x†
e )τy(1 + θ)

= n
(
τy − x†

oc(y) + c(y) − τyo
(
x†
o

))
. (19)

Equations 15 and 16 are used. Comparing (19) with (7) one finds that the former is
smaller than the latter if

c(y)
(
1 − x†

o + x∗
o

)
< τyo

(
x†
o

)
.

Comparing (15) and (13) one ascertains that o
(
x
†
o

)
< o

(
x∗
o

)
if Eq. 17 holds strictly,

hence x
†
o > x∗

o . Thus, (1 − x
†
o + x∗

o ) < 1. If Condition (18) holds strictly, then the
inequality is fulfilled, that is, tax revenue decreases if the “non-optimization” strategy
is not played.
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3.3 Replicator dynamics with three strategies

The model of individual taxpayer’s behavior described in Section 2.3 is applied to the
three strategy-case: upon receiving an opportunity to update their strategy, a taxpayer
meets another taxpayer at random and compares payoffs. As with tax evasion, how-
ever, recall that Eq. 11 is an expected payoff. At the micro-level, in contrast, there are
two distinct types of tax evaders: those who were audited, incurred a punishment and
thus “lost”, receiving a payoff of FL

e = y(1−τ(1+θ)), and those who “won”, receiv-
ing FW

e = y. Applying the proportional imitation protocol having regard to these
additional instances, weighting each with the probabilities p(xe) and (1 − p(xe)),
respectively, the new replicator dynamic with three strategies is given by the system

ẋe = xe

(
Fe(x) − xT F̄ (x)

)

ẋo = xo

(
Fo(x) − xT F̄ (x)

)

ẋn = xn

(
Fn − xT F̄ (x)

)
, (20)

which has seven fixed points.20 Three of them,

{xe = 1, xo = 0, xn = 0} ,

{xe = 0, xo = 1, xn = 0} ,

{xe = 0, xo = 0, xn = 1} ,

are corner solutions in which the whole population either evades, optimizes or non-
optimizes, respectively. It turns out that all corner solutions are unstable source nodes.
Both alternative strategies deliver excess return; thus, the population shares of tax-
payers playing these strategies would increase to their equilibrium values x∗

e and x∗
o

once some taxpayers started to play these strategies. Then there is one fixed point,
{
xe = 0, xo = x∗

o , xn = 1 − x∗
o

}
,

in which the population share x∗
o optimizes and the rest of the population non-

optimizes with no one evading. This is the Nash equilibrium of the two-strategy game
elaborated on in Section 2. In the three-strategy model, it is an unstable saddle point:
excess return could be generated by evading taxes. Thus, xe would reach x∗

e once a
single taxpayer started tax evasion. Another fixed point,

{
xe = x∗

e , xo = 0, xn = 1 − x∗
e

}
,

is given for a population share of x∗
e evading taxes and the rest non-optimizing with

no one optimizing. This would be the Nash equilibrium of a two-strategy model with-
out the possibility to “optimize”, but the strategies “evasion” and “non-optimization”
only. This fixed point is also an unstable saddle point in the three-strategy model
because optimizing delivers excess return. If no one non-optimizes, the fixed point

{
xe = x†

e , xo = x†
o , xn = 0

}

20A stability analysis is given in Appendix A.3.1.
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can be reached. This fixed point is stable if Conditions (17) and (18) hold, that is, if
the parameters are such that the “non-optimization” strategy in equilibrium delivers a
payoff that is worse than “evasion” and “optimization”, and thus “non-optimization”
becomes extinct. Otherwise, the fixed point is an unstable saddle point because “non-
optimization” delivers excess return. Finally, the Nash equilibrium

{
xe = x∗

e , xo = x∗
o , xn = 1 − x∗

o − x∗
e

}

elaborated on above is a stable fixed point of the system (20). See Appendix A.3.1
for a detailed stability analysis of all fixed points. Figure 4 shows the flow pattern in
the three-strategy space. At the corners of the simplex, the whole population either
evades, optimizes or non-optimizes, respectively. The respective corner solutions (A,
E, C) are source nodes: all arrows point away from the corners. All population states
on the edges require the strategy of the opposite corner to be non-existent within the
population. In this example, the Nash equilibrium requires all three strategies to be
played by positive population shares. Thus, all rest points on the edges (B, D, F) are
saddle points. The arrows point from the corners towards those rest points; however,
they are unstable. If the third strategy is played by a single individual, the population
state moves towards the Nash equilibrium indicated by a black circle in the bottom-
left corner of the simplex (G), which involves all strategies to be played by a fraction
of all individuals.

While the saddle point (B) on the right-hand edge of Fig. 4 – where no one opti-
mizes – is not stable if the “optimization” strategy is available, it would be stable if
such an alternative did not exist. The “optimization” strategy can also be interpreted
in a more specific way as a particular (legal) tax avoidance model rather than general
tax planning. A popular example of such a model is the Double Irish arrangement.
The former tax law reaction function o(xo) could then be interpreted as the probabil-
ity of such a model being accepted by the tax authority. The assumption that o(xo)

is strictly decreasing would still be reasonable: the more prominent such a model

Fig. 4 Flow pattern for the three-strategy game. Red (blue) colors indicate fast (slow) movement. White
circles indicate the unstable rest points; the black circle shows the stable rest point. The figure was created
using the Mathematica application “Dynamo” by Sandholm et al. (2012)
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becomes, the higher the probability that it will be rejected by the tax authority or a fis-
cal court. Fo would then be the expected value of the (uncertain) income after tax. The
model can then capture the behavior of the population if a specific tax savings model
is invented by a single taxpayer at time t�. Figure 5 (top) illustrates the behavior of
the system over time for a population of 4 000 taxpayers. Starting from an (arbitrarily
chosen) initial population state of 1/2 evaders and 1/2 non-optimizing taxpayers, the
system approaches the rest point with x∗

e evaders and 1− x∗
e non-optimizing individ-

uals and remains there. At time t� one formerly non-optimizing taxpayer develops a
particular tax optimization model. Since the initial population share of optimizers is
only 1/4 000, some time elapses until the strategy starts to spread to other parts of
the population. Then, xo increases quickly and the population state approaches the
Nash equilibrium of the three-strategy game. The equilibrium population share of
evaders is the same in both the two-strategy (evasion and non-optimization only) and
the three-strategy game. There is just a small dent in xe shortly after the invention of
the optimization model during the adjustment process towards the new equilibrium.

Fig. 5 Evolution of the population state over time for 4 000 individuals. Top: the initial population state is
1
2 evaders and 1

2 non-optimizing taxpayers. At time t� the optimization strategy is invented by one formerly
non-optimizing taxpayer. Bottom-left: the population initially consists of 39 evaders, 3 960 non-optimizers,
and 1 optimizer. Bottom-right: the population initially consists of 3 960 evaders, 39 non-optimizers, and 1
optimizer
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The equilibrium share of optimizers goes entirely to the detriment of the share of
non-optimizing taxpayers. Figure 5 (bottom-left) shows a situation where the sys-
tem is out of equilibrium at the time of the invention of the optimization strategy,
t�, with 0.01− 1/4 000 evading, 0.99 non-optimizing (bottom-right: vice versa), and
1/4 000 optimizing. The situation with an initially very high share of tax evaders
(bottom-right) shows that the evolution can be surprising: the invention of the opti-
mization strategy causes the share tax evaders to drop and the share of non-optimizers
to rise very fast, initially; shortly after the invention of “optimization”, an observer
could suspect that this (also) promotes non-optimizing behavior (which might be
preferable from the viewpoint of the government). Yet, after some time, the share of
non-optimizers declines as taxpayers “learn” to optimize.

3.4 Delayed amendments and tax evasion

In Section 2.4 it was argued that the tax authority may not be able to amend the
tax code immediately. Thus, a delay δ is introduced to the “optimization” strategy
in the extended model, too. Of course, the tax authority may not be able to adjust
the audit rate immediately as well, since the population share of evaders is not
known before actually having audited the population. On the other hand, adjusting
the audit rate seems to be far easier than amending the code. If the tax authority, while
auditing, realizes that a lot of tax reports are incorrect, it could immediately decide
to broaden its audit activities, possibly following a Bayesian updating inference.
Therefore, in this section it is assumed that the audit rate can be adjusted instantly,
whereas the tax code is adjusted with delay.21 This gives the new payoff vector field

F̄δ = (
Fe(x), F̂o(x), Fn

)T
where F̂o(x) includes the delay δ as stated in Eq. 9. The

replicator dynamic including delay is given by the system

ẋe = xe

(
Fe − xT F̄δ(x)

)

ẋo = xo

(
F̂o − xT F̄δ(x)

)

ẋn = xn

(
Fn − xT F̄δ(x)

)
. (21)

Again, introducing a delay to the “optimization” strategy causes the population state
to oscillate over time. The analysis is carried out for the case that in equilibrium all

21Some readers might object that increasing the audit rate also involves delay because it may require
the tax authority to recruit and train additional staff. On the other hand, closing tax loopholes by means
of anti-tax avoidance doctrines can possibly be done fast. Thus, in Appendix A.3.3, I provide a version
of the model that includes delay in the “evasion”-strategy instead of the “optimization”-strategy. It turns
out that there also exists a critical delay such that the system is asymptotically stable for smaller delay
values and unstable afterwards. It is also possible to integrate a delay into both strategies. While I do not
formally investigate this case, numerical examples suggest that results do not change qualitatively, while
both critical delay values are smaller.
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three strategies are played by positive population shares, i. e., it is assumed that the
Conditions (17) and (18) do not hold.

Proposition 5 If the strategy “optimization” is delayed by δ, the system (21) is
asymptotically stable for all 0 ≤ δ < δ̂,

δ̂ = 1

ω+
arccot

(
ω+(d − al)

ad + lω2+

)

,

where

a = (
1 − x∗

e

)
x∗
e τ (1 + θ)yp′ (x∗

e

)
> 0,

l = (
1 − x∗

o

)
x∗
o τy

(−o′ (x∗
o

))
> 0,

d = x∗
e x∗

o

(
1 − x∗

e − x∗
o

)
(1 + θ)τ 2y2 (−o′ (x∗

o

))
p′ (x∗

e

)
> 0,

ω+ =
(
1

2

(
(l2 − a2) +

√
(l2 − a2)2 + 4d2

))1/2

> 0.

For higher delay values δ > δ̂ the system becomes unstable and stability cannot be
regained with increasing delay further.

Proof See Appendix A.3.2.

Figure 6 shows the evolution of the population state for different values of delay.
While the main shift takes place between optimizers and non-optimizers, the adaption
process causes the share of evaders to oscillate, as well. Whereas the state of the
tax law is hard to measure empirically, the fraction of tax evaders is easy to assess.
Thus, it is an empirically testable hypothesis whether tax evasion rates oscillate over
time. In the sense of this model, such a finding could be an indication that (hard-to-
observe) optimization activities and the (almost unobservable) state of the tax law
also change over time.

0

1

t

δ 0

δ δ̂

0

1

t

δ δ̂

xe xo xn

Fig. 6 Evolution of the population state x(t) for different values of delay
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4 Conclusion

This article aims to contribute to the scarce theoretical literature on the strategic inter-
dependency between taxpayers and tax authority relating to legal tax avoidance. It
is assumed that taxpayers can legally avoid taxes by searching for appropriate legal
norms in the tax code, which is associated with optimization costs. The tax author-
ity reacts by closing certain loopholes if they are exploited by too many taxpayers.
It emerges that the share of optimizing taxpayers increases if the tax rate increases,
optimization costs decrease and tax law gets less tight. If the legislation reacts to
changed taxpayer behavior with a delay, the population shares of optimizers and the
tax law oscillate over time. It is shown that the tax law can change endogenously by
explicitly modeling the adaption process towards equilibrium. If the delay is not too
large, the oscillation is dampened over time. Otherwise, however, the population state
keeps oscillating and the Nash equilibrium cannot be reached. As a policy implica-
tion, it is recommended to accelerate the legislation process in order to avoid costly
repeated amendments to the tax code.

Then, tax evasion is introduced as a third strategy. Depending on parameter values,
there exist two Nash equilibria. The first equilibrium consists of all three strategies
being played by positive population shares. It turns out that the population shares of
optimizers and evaders are not interdependent; instead, an increase in both groups
goes fully to the detriment of the share of non-optimizing taxpayers. A second equi-
librium is reached if the payoff to non-optimization is worse than the payoffs of both
optimization and evasion; then, no one applies the “non-optimization”-strategy. The
share of optimizers increases to the detriment of the share of evaders if the tax rate
or the penalty rate increase. Introducing a delay again causes the population shares
and the tax law to oscillate over time. The oscillation is not dampened if the delay
exceeds a certain threshold. This confirms the policy implication found above.

Of course, there are several limitations to the model. First, if the crowding effect
in the “optimization”-strategy is interpreted as tax complexity, the fact is neglected
that increasing tax complexity also affects the payoffs of non-optimizing taxpayers
and of audited evading taxpayers since they need to spend more resources on coping
with a complex tax code. This holds no longer, however, if the reduction in tax sav-
ings after an increase in the share of optimizers is interpreted as anti-tax avoidance
doctrines or legal norms that reduce the profitability of certain tax shelters but do
not bother individuals who pay their taxes regularly. The assumption that the tax law
reaction function is continuous is also a simplified one. A more realistic tax law reac-
tion function would be likely to jump if the number of optimizers exceeds a certain
threshold. Future research could implement a discontinuous tax law reaction func-
tion. Then, the assumptions that tax savings possibilities decrease if more taxpayers
optimize and that audit probability increases if more taxpayers evade taxes are not
empirically tested. However, neither is it certain that the crucial assumption of some
other tax compliance models is valid, namely, that audit probability depends on the
amount of reported income. Both assumptions taken in this model seem plausible;
whether or not they are true is ultimately an empirical question.

The main results of this paper could also be empirically tested: increasing the
tax rate ought to leave the extent of tax evasion unaffected; instead, optimization
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activities – which could be measured by offsets of tax consultancy costs – ought to
increase. While the state of the tax law is hard to measure, amendments to the tax
code are easy to observe. It can also be empirically tested if audit rates vary over
time, which could be an indirect indication of a changing tax law.

Future research should allow taxpayers to be heterogenous with respect to their
income and possibly other individual characteristics, such as risk aversion. Also, a
social disutility from behaving “immorally” could be integrated. Finally, it would
be desirable to drop the mean field assumption and instead to incorporate a social
network model.

Acknowledgements Many thanks to the participants of the 2015 Annual Congress of the European
Accounting Association in Glasgow, and the participants of the 2015 Annual Meeting of the German
Academic Association for Business Research in Vienna, especially Martin Fochmann, as well as two
anonymous referees for helpful comments.

Compliance with Ethical Standards

Conflict of interests The author declares that he has no conflict of interest.

Appendix

A Exemplary reaction functions and parameters

The reaction functions and parameters used for illustration purposes in this article are
chosen according to Table 1.

B.1 Stability of the replicator dynamic with two strategies and delay

Since xn = 1 − xo, it suffices to study the stability of ẋo. Let z(t) = xo(t) − x�
o . The

linear variational system of (10) is then

z′(t) + x�
o(1 − x�

o)τy(−o′(x�
o))z(t − δ) = 0. (22)

Table 1 Reaction functions and parameters used in the illustrations

Pre-tax income y 10

Tax rate τ 0.3

Penalty rate θ 3

Optimization cost function c(y) 0.1y

Tax law reaction function o(xo) 1 − xo

Audit reaction function p(xe) xe
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The fixed point {xn = x�
n, xo = x�

o} is asymptotically stable for the system (10) if the
trivial solution of Eq. 22 is asymptotically stable (Bellman and Cooke 1963, p. 336).
As shown by Freedman and Kuang (1991, p. 195), (22) is stable if δ < δ, where

δ = π

2x�
o(1 − x�

o)τy(−o′(x�
o))

.

B.2 Replicator dynamic with three strategies

B.2.1 Stability without delay

To evaluate the stability of the fixed points of the system (20), it suffices to study the
system of two equations, ẋe and ẋo only, where xn = 1−xe −xo. Since ẋn = ẋe − ẋo

it must be that ẋn is stable whenever ẋe and ẋo are stable. The eigenvalues of the
Jacobian J (xe, xo) of the system are examined at the respective fixed points (Bellman
and Cooke 1963, p. 338).

The first fixed point requires all taxpayers to evade. The eigenvalues of J (1, 0) are
given by {θτy, (1 + θ)τy − c(y)}. Since τy > c(y) by assumption, all eigenvalues
are positive; the first fixed point is an unstable source node.

The second fixed point is reached if all taxpayers optimize. It is also a source node
since the eigenvalues of J (0, 1), {c(y), τy + c(y)}, are positive.

The third corner solution requires all taxpayers to non-optimize: the shares of
evaders and optimizers are zero. The eigenvalues of J (0, 0) are given by {τy, τy −
c(y)}. Since they are positive, the population state with all taxpayers non-optimizing
is an unstable source node, as well.

The next fixed point requires the share x∗
o to optimize whereas the remainder,

1−x∗
o , non-optimizes with no one evading. The eigenvalues of J (0, x∗

o ) are given by{
τy, τ

(
1 − x∗

o

)
x∗
oyo′ (x∗

o

)}
. The first eigenvalue is positive, the second is negative;

the fourth fixed point is thus an unstable saddle point.
Another fixed point is given if the share x∗

e evades and the remainder, 1 −
x∗
e , non-optimizes. The eigenvalues of J (x∗

e , 0) are given by {τy − c(y), −(1 +
θ)τy

(
1 − x∗

e

)
x∗
e p′ (x∗

e

)}. Again, the eigenvalues have opposite signs. The fifth fixed
point is thus also a saddle point.

If no one non-optimizes, a fixed point can be reached in which the share x
†
e evades

and the share x
†
o = 1 − x

†
e optimizes. The eigenvalues of J (x

†
e , x

†
o) are given by

{
τy

(
(1 + θ)p

(
x†
e

)
− 1

)
, τy

(
1 − x†

e

)
x†
e

(
o′ (1 − x†

e

)
− (1 + θ)p′ (x†

e

))}
.

The second eigenvalue is always negative. The first is negative if the condition (17)
holds strictly. The fixed point is then a stable sink node; it is an unstable saddle point
otherwise.

Finally, the eigenvalues of J (x∗
e , x∗

o ) are given by {ψ − √
ϕ, ψ + √

ϕ}, where

ψ = −1

2
τy

(
(1 − x∗

e )x∗
e (1 + θ)p′(x∗

e ) + (1 − x∗
o )x∗

o (−o′(x∗
o ))

)
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is clearly negative and the sign of

ϕ = τ 2y2 1

4

((−(1 − x∗
o )x∗

oo′(x∗
o ) + (1 − x∗

e )x∗
e (1 + θ)p′(x∗

e )
)2

− 4x∗
e x∗

o (1 − x∗
e − x∗

o )(1 + θ)
(−o′(x∗

o )
)
p′(x∗

e )
)

is not distinct. If ϕ is positive then ψ − √
ϕ is always negative. Further, ψ + √

ϕ is
negative if

√
ϕ < −ψ ⇔ ϕ < ψ2. This gives the condition

x∗
e (1 + θ)x∗

o τ 2y2(1 − x∗
e − x∗

o )(−o′(x∗
o ))p′(x∗

e ) > 0,

which is always fulfilled. It can be concluded that the fixed point is stable if ϕ is pos-
itive, that is, if the eigenvalues of J (x∗

e , x∗
o ) are real. If ϕ is negative, the eigenvalues

take the form {ψ − i
√−ϕ, ψ + i

√−ϕ}. Since the eigenvalues have negative real
parts, the system behaves as a damped oscillator; the fixed point is also stable.

B.2.2 Stability with delay in the strategy “optimization”

Again, only the stability of ẋe and ẋo needs to be studied. Let u(t) = xe(t) − x∗
e and

v(t) = xo(t) − x∗
o . The variational system of (21) about x∗ is given by

u′(t) = −au(t) + bv(t − δ)

v′(t) = ku(t) − lv(t − δ) (23)

(Bellman and Cooke 1963, p. 339), where

a = (
1 − x∗

e

)
x∗
e τ (1 + θ)yp′ (x∗

e

)
> 0,

b = x∗
e x∗

o τy
(−o′ (x∗

o

))
> 0,

k = x∗
e x∗

o τ (1 + θ)yp′ (x∗
e

)
> 0,

l = (
1 − x∗

o

)
x∗
o τy

(−o′ (x∗
o

))
> 0.

The system (23) can be written as

v′′(t) + av′(t) + lv′(t − δ) + dv(t − δ) = 0, (24)

where d = (al − kb). The characteristic equation (Laplace transform) of Eq. 24 is
given by

λ2 + aλ + lλe−λδ + de−λδ = 0. (25)

The roots of Eq. 25 are given by λ = iω, ω > 0. From equation (4.6) in Freedman
and Kuang (1991, p. 199) one has

ω2± = 1

2

(
(l2 − a2) ±

√
(l2 − a2)2 + 4d2

)
.

Theorem 4.1 of Freedman and Kuang (1991, p. 202) is applied. d �= 0 if

(τy − c(y))(τy − (1 + θ)c(y)) �= 0.

τy > c(y) by an assumption made in Section 2.1. The additional assumption
τy �= (1 + θ)c(y) has to be made. Since 0 < d2 only one imaginary root exists
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(Freedman and Kuang 1991, p. 200). Hence the system is stable if δ < δ̂, and unstable
afterwards, with

δ̂ = η

ω+
,

where

cos η = −alω2+ − dω2+
l2ω2+ + d2

,

sin η = daω+ + lω3+
l2ω2+ + d2

according to equations (4.13) and (4.14) of Freedman and Kuang (1991, p. 201); thus,

η = arccot

(
ω+(d − al)

ad + lω2+

)

.

B.2.3 Stability with delay in the strategy “evasion”

The procedure is similar to Appendix A.3.2. A delay γ is introduced to the “evasion”-
strategy. Thus, at time t , the tax authority audits with a probability according to the
number of tax evaders at time t − γ . Setting δ = 0 and introducing γ as described
above, the variational system of (21) about x∗ is given by

u′(t) = −au(t − γ ) + bv(t)

v′(t) = ku(t − γ ) − lv(t) (26)

which can be written as

u′′(t) + lu′(t) + au′(t − γ ) + du(t − γ ) = 0. (27)

Comparing (27) with (24), one finds that the variables a and l are simply inverted.
Thus,

ω2± = 1

2

(
(a2 − l2) ±

√
(a2 − l2)2 + 4d2

)
,

and the critical delay is given by

γ̂ =
arccot

(
ω+(d−al)

dl+aω2+

)

ω+
.
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