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Abstract We propose a model that reflects two important processes in R&D activ-
ities of firms, the formation of R&D alliances and the exchange of knowledge as
a result of these collaborations. In a data-driven approach, we analyze two large-
scale data sets, extracting unique information about 7500 R&D alliances and 5200
patent portfolios of firms. These data are used to calibrate the model parameters for
network formation and knowledge exchange. We obtain probabilities for incumbent
and newcomer firms to link to other incumbents or newcomers able to reproduce
the topology of the empirical R&D network. The position of firms in a knowledge
space is obtained from their patents using two different classification schemes, IPC in
eight dimensions and ISI-OST-INPI in 35 dimensions. Our dynamics of knowledge
exchange assumes that collaborating firms approach each other in knowledge space
at a rate μ for an alliance duration τ . Both parameters are obtained in two different
ways, by comparing knowledge distances from simulations and empirics and by ana-
lyzing the collaboration efficiency Ĉn. This is a new measure that takes in account the
effort of firms to maintain concurrent alliances, and is evaluated via extensive com-
puter simulations. We find that R&D alliances have a duration of around two years
and that the subsequent knowledge exchange occurs at a very low rate. Hence, a
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firm’s position in the knowledge space is rather a determinant than a consequence of
its R&D alliances. From our data-driven approach we also find model configurations
that can be both realistic and optimized with respect to the collaboration efficiency
Ĉn. Effective policies, as suggested by our model, would incentivize shorter R&D
alliances and higher knowledge exchange rates.

Keywords Inter-firm network · R&D alliances · Patents · Knowledge exchange ·
Agent-based model

JEL Classification C63 · D85 · O31

1 Introduction

The last three decades have been characterized by a growing number of inter-
firm alliances, aimed at Research and Development (R&D) purposes. While this
phenomenon has especially affected highly technological industries such as IT,
Pharmaceuticals or Medical Supplies (Ahuja 2000; Hagedoorn 2002), all indus-
trial sectors have simultaneously experienced an increased number of such alliances
(Tomasello et al. 2017b). Consequently, scholars have investigated the mechanisms
behind the formation of R&D alliances (Powell et al. 2005), the complex networks
they generate (Rosenkopf and Schilling 2007; Tomasello et al. 2014), and the way
their evolution can be modeled (König et al. 2012; Garas et al. 2017).

From a theoretical point of view, it has been shown that firms engage in alliances
for several reasons. They can gain access to more and diverse assets (Liebeskind
1996; Das and Teng 2000). In addition, alliances foster the exchange of knowledge
between firms: by joining their technological resources, firms can actually enlarge
their knowledge bases faster than they could individually (Baum et al. 2000; Mow-
ery et al. 1998; Rosenkopf and Almeida 2003). Finally, firms can share the costs
and risks of a project, especially when this is expensive or with an uncertain out-
come (Hagedoorn et al. 2000). All of these aspects result in a learning process of the
involved firms, making R&D alliances an important part of every firm’s knowledge
management strategy.

The focus of the present study is indeed such a learning process, which we model
as a mutual exchange of knowledge occurring after the establishment of an alliance
between two firms. In particular, we develop an agent-based model to investigate
the determinants leading to the formation of inter-firm R&D collaborations and the
subsequent emergence of an R&D network. At the same time, we study the effect
that such collaborations have on the technological positions of the involved firms,
and we estimate the performance of such networked systems, in terms of explored
technological space.

The approach that we adopt in our study can be defined as data-driven modeling.
Starting from the empirical evidence, we design a set of realistic and theoretically
grounded microscopic interaction rules, which we incorporate in an agent-based
model; next, we implement the model through computer simulations, followed by
calibration and validation against empirical data. The fine-tuning of the model
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parameters gives us not only a deep understanding of the system under exami-
nation, but also an indication on how to optimize it. The model that we develop
here is based on previous empirical findings (Tomasello et al. 2017b; Hanaki et al.
2010; Rosenkopf and Schilling 2007), and combines two existing agent-based mod-
els (Tomasello et al. 2014; Tomasello et al. 2016), in order to reproduce both the
alliance formation and the knowledge exchange process in an R&D network.

1.1 Theoretical foundations: knowledge exchange in inter-firm R&D networks

Our agent-based model follows a number of extant works on bounded confidence
and continuous opinion dynamics (Axelrod 1997; Deffuant et al. 2000; DeGroot
1974; Hegselmann and Krause 2002; Groeber et al. 2009), in particular applied to
innovation networks (Fischer and Fröhlich 2001; Baum et al. 2010). In the wake of
this previous work, and similar to the model proposed by Tomasello et al. (2016),
we assume that the collaborating agents are characterized by an evolving knowledge
basis, one affected by the set of alliances involved. However, differently from the
studies that have been done so far, our model does not focus on the formation of
consensus clusters – see Axelrod (1997) and Schweitzer and Behera (2009) in the
case of social systems, or Fagiolo and Dosi (2003) for technology islands– but on
the exploration of a knowledge space (defined below). In addition, our work does not
consider the network of R&D alliances as fixed, but assumes a dynamically evolving
R&D network, the topology of which corresponds to those of empirically observed
networks (see Tomasello et al. 2017b; Gulati et al. 2012).

The knowledge-based view of the firm (Fischer and Fröhlich 2001) assumes
that every company is endowed with a knowledge base that uniquely identifies its
resources and capabilities. In other words, a firm can always be associated with a
vector consisting of several components (Sampson 2007), each of which represents
its level of knowledge in a given area. These vectors can in turn be associated with
a metric knowledge space in which the collaborations occur. Thus, every firm occu-
pies a point in this multi-dimensional space, the coordinates of which are given by
its knowledge vector. Such an approach is similar to a more general model (Axelrod
1997), proposed in the broader context of social influence. The concept of a metric
knowledge space has already been used in one (Groeber et al. 2009) and two dimen-
sions (Fagiolo and Dosi 2003; Baum et al. 2010); here, we generalize this approach
to metric spaces of arbitrary dimensionality.

On the other hand, R&D alliances have been conceptualized by several studies
(Mowery et al. 1998; Owen-Smith and Powell 2004; Grant and Baden-Fuller 2004;
Gomes-Casseres et al. 2006) as a means to exchange technological knowledge among
firms, and such an idea is at the heart of several agent-based models (Pyka and Fagi-
olo 2007; Gilbert 2004; Cowan et al. 2007). In these models, the agents’ knowledge
bases become more similar over time, as a consequence of R&D collaborations. The
speed at which the agents approach each other in the knowledge space represents one
of the fundamental parameters of this family of models, and our work is no excep-
tion. Besides, we rely on the assumption that knowledge spillovers occurring in a
R&D alliance cause the partners to exchange knowledge along every dimension of
their knowledge bases, not limiting the transfer to a specific R&D project they have
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in common (Baum et al. 2010). In other words, we study a scenario in which the two
partners approach with respect to all dimensions of the knowledge space.

Finally, we aim at studying the performance of the whole collaboration network
as a function of the relevant model parameters. To quantify it, we propose a measure
that takes into account the global knowledge exploration of the systems, i.e., it takes
into account the distances in knowledge space traveled by all agents during the evo-
lution of our simulated R&D network. In our model, we consider that the knowledge
exploration itself is represented by the motion in the knowledge space, which is fully
captured by such a measure. The underlying assumption is that a throughout explo-
ration of the knowledge space is beneficial for the R&D network, in that it allows the
agents to come in contact with many technological opportunities, potentially leading
to more frequent innovations (Fagiolo and Dosi 2003). We make use of an existing
performance indicator (Tomasello et al. 2016) and refine it by taking into account
the actual number of active collaborations in the system, in order to obtain a more
reliable measure.

1.2 Theoretical foundations: formation of inter-firm R&D networks

The extant literature on R&D networks has shown that two crucial types of mech-
anisms drive the formation of new R&D alliances (Rosenkopf and Padula 2008):
endogenous mechanisms and exogenous mechanisms. The endogenous mechanisms
depend on firms’ social capital which describe the firms’ positions in the network,
while the exogenous mechanisms are affected by firms’ technological and commer-
cial capital. Here, we refer to an alliance as “endogenous” if it involves a partner
that belongs already to the R&D network, while if it involves a partner that does not
belong to the R&D network, we refer to the alliance as “exogenous”.

Typically, empirical and theoretical studies have focused on the mechanisms
driving endogenous and exogenous alliances separately, also called “network endo-
geneity” (Walker et al. 1997; Powell et al. 1996; Gulati and Gargiulo 1999; Garas
et al. 2017) and “exogenous partner selection” (Burt 1992; Rosenkopf and Nerkar
2001; Cowan et al. 2004). However, to explain the observed empirical R&D net-
work, both types of mechanisms are needed. As matter of fact, network endogeneity
by itself would produce a more and more centralized network over time, which does
not occur in the real R&D network (Tomasello et al. 2017b). On the other hand, a
purely exogenous partner selection would lead to regular network topologies, which
also does not occur. A prominent example is represented by the “monogamous” net-
works analyzed by Tomasello et al. (2016). A notable exception is the agent-based
model developed by Tomasello et al. (2014), which incorporates both endogenous
and exogenous rules of alliance formation and successfully reproduce the structure of
a real R&D network. In fact, the model permits us to tune the weight of both endoge-
nous and exogenous mechanisms for alliance formation, and to test the outcome
against real data.

Inspired by these works, the agent-based model that we develop in the present
study includes all the microscopic rules introduced in Tomasello et al. (2014),
and combines them with the knowledge exchange rules briefly discussed above.
Our model allows us to modulate the weight of both endogenous and exogenous



Quantifying knowledge exchange in R&D networks... 465

mechanisms for alliance formation, and to study the knowledge exchange in R&D
networks.

1.3 Our contribution

As mentioned, we combine, and extend, two existing agent-based models in a
straightforward, yet effective, manner. The model introduced by Tomasello et al.
(2016) represents a first attempt to investigate the process of knowledge exchange
occurring in a dynamic collaboration network; it has identified a mechanism of
volatile alliances to help the collaborating agents better explore a knowledge space,
using the approximation of monogamous (i.e. sparse) collaboration networks. On the
other hand, the model developed by Tomasello et al. (2014) can realistically repro-
duce the complex topology of real R&D networks, but without considering the effect
of alliances on the firms’ knowledge positions.

The agent-based model we introduce here constitutes an important step toward a
general framework that combines two dynamic processes, the formation of alliances
and the knowledge exchange in collaboration networks. The microscopic interac-
tion rules of our model and its calibration involve a two-step procedure that can be
described as follows. The firms form R&D collaborations based on their network fea-
tures and their social capital; the model parameters related to these mechanisms are
estimated through a comprehensive inter-firm alliance data set. Next, we assume that
the formation of each network link causes a process of knowledge exchange between
the involved firms, which consequently move toward each other in the knowledge
space; the model parameters related to this mechanism are estimated through a sec-
ond data set on firm patents. Remarkably, the underlying knowledge space that we
consider in our study is defined by real patent classes, allowing for a precise quantifi-
cation of every firm’s technological position. In this paper, we also investigate how
the dimensionality of the knowledge space impacts our results.

Our findings point out a predominance of the endogenous network mechanisms
(over the exogenous ones) for the alliance formation; in other words, previous
network structures and alliance history matter when selecting new collaboration part-
ners. Next, we find that real R&D alliances have a duration of around two years, and
that the subsequent knowledge exchange between the partners occurs at a very low
rate. Most of the alliances, indeed, have no consequence on the partners’ knowledge
position: this suggests that a firm’s position – evaluated through its patents – is rather
a determinant than a consequence of its R&D alliances. Finally, we investigate the
performance of such a network in terms of explored knowledge trajectories, and we
check whether the real R&D network under examination maximizes our proposed
performance indicator. Interestingly, we find that this is the case: effective policies
to obtain an optimized collaboration network – as suggested by our model – would
incentivize shorter R&D alliances and higher knowledge exchange rates.

The rest of the paper is organized as follows. Section 2 presents the data sets and
the methodology used to build the network, as well as to measure the firms’ knowl-
edge positions. Section 3 describes all the microscopic interaction rules defining our
agent-based model. Sections 4.1 and 4.2 present the results of our computer simula-
tions and the model calibration on the alliance and the patent data sets, respectively. In
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Section 5, we introduce a quantification of the collaboration efficiency and study the
optimality of the real R&D network under examination. Finally, Section 6 concludes.

2 Data and methodology

2.1 Network reconstruction, activities and patents

We define an R&D network as a set of nodes or agents (the firms), and links (the
alliances between them). By R&D alliance (or collaboration), we refer to an event of
partnership between two firms that can span from formal joint ventures to more infor-
mal research agreements, specifically aimed at research and development purposes.
To detect such events, we use the SDC Platinum database, provided by Thomson-
Reuters (2013), that reports all publicly announced alliances from 1984 to 2009
between several kinds of economic actors (including manufacturing firms, investors,
banks and universities). In our network representation, we draw an undirected link
connecting two nodes every time an alliance between the corresponding firms is
announced in the data set. When an alliance involves more than two firms (consor-
tium), all the involved firms are connected pairwise, resulting into a fully connected
clique. This procedure is consistent with a previous empirical study (Tomasello et al.
2017b), where there is no conceptual difference between a consortium and a “stan-
dard” two-partner alliance, which is only a special case of it (and can be thought of as
a fully connected clique of size 2). Figure 1 shows a visualization of the time aggre-
gated R&D network, where each node is a firm and links are alliances listed in the
above mentioned dataset.

Fig. 1 The R&D network: each node is a firm and its color refers to the domain where the firm has filed
more patents between 1984 and 2009. For a we used the main eight IPC-sections to classify the patents,
while for b we used the main five areas from ISI-OST-INPI classification scheme. For a discussion about
the colors of the nodes, see Section 2.2. We use the layout algorithm of Fruchterman and Reingold (1991)
for both networks
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A quantity that we measure directly from the data prior to the implementation
of our agent-based model is the firm’s activity distribution.1 The activity expresses
the probability that a firm takes part in any alliance event occurring in a given time
window. For the calibration of the present model, we use the overall firm activity,
measured on the entire observation period of the data set. We define such activity
ai of firm i as the number of alliance events ei involving firm i divided by the total
number of alliance events E involving any firm reported in the data set. We then
assign such empirical activities ai to the agents in our computer simulations.

The SDC Platinum database (Thomson-Reuters 2013) reports approximately
672,000 publicly announced alliances in all countries with a granularity of one day.
We apply two filters: first, to select only the alliances characterized by the “R&D”
flag; with this, we obtain a list of 14,829 alliances, connecting 14,561 firms. Second,
we keep in our network representation only firms that have a corresponding entry in
the patent data set such that we can determine their knowledge positions. The patent
database used is the Patent Citations Data by the U.S.A. National Bureau of Eco-
nomic Research (NBER), which contains detailed information on patents granted
in the U.S.A. and other contracting countries, from 1971 to present. Obviously, we
select only the entries that have a match with the SDC alliance data set, both with
respect to assignees and time period, thus obtaining a total of around 1,400,000 listed
patents. Every patent is associated with one or more assignees and with an Inter-
national Patent Classification (IPC) class. Companies are associated with a unique
identifier, and a relatively big part of them (5168 firms, precisely) are matched to the
SDC alliance data set. These firms take part in 7417 distinct R&D alliances.

2.2 Firms positions in knowledge space

Classification schemes In this paper we use – and compare – different approaches
to determine the knowledge position of a firm. Both approaches compute the shares
of patents of a firm with respect to two different classification schemes, the Indus-
trial Patent Classification (IPC) and the Fraunhofer ISI, Observatoire des Sciences
et des Techniques (OST) and French patent office (INPI) classification (ISI-OST-
INPI). These classifications differ in the number of classes taken into account, which
will correspond to the dimensionality of the knowledge space in which the firms
are located. IPC operates on eight dimensions, while ISI-OST-INPI considers 35
dimensions. More details are given in the following.

The IPC, introduced in 1971 by the Strasbourg Agreement, is a hierarchical system
of symbols for the classification of patents according to the different areas of technol-
ogy to which they pertain.2 A generic IPC category consists of a letter, the so-called
“section symbol”, followed by two digits, the so-called “class symbol”, and a final
letter, the “subclass”. This four-character term is then followed by a group/subgroup

1For a more detailed definition and more empirical examples on agents’ activities in collaboration
networks, see Tomasello et al. (2014) and its Supplementary Information.
2For more information on the International Patent Classification, see http://www.wipo.int/classifications/
ipc.

http://www.wipo.int/classifications/ipc
http://www.wipo.int/classifications/ipc


468 G. Vaccario et al.

Table 1 International Patent Classification (IPC) sections and their description

IPC Section Title Patents

A Human Necessities 152,974

B Performing Operations, Transporting 244,791

C Chemistry, Metallurgy 309,675

D Textiles, Paper 12,914

E Fixed Constructions 17,842

F Mechanical Engineering, Lighting, Heating, Weapons 119,581

G Physics 508,815

H Electricity 476,437

The last column reports the number of patents registered in our data set for the corresponding IPC section

indication, represented by additional digits. A typical IPC term can be written as
follows: B34H 6/99. The sections identified by the IPC are historically stable and
amount to eight, from A (human necessities) to H (electricity). The lower levels are
instead subject to more frequent revisions; the eighth and last IPC edition consists of
more than 120 classes, 600 subclasses, 7000 main groups and 60,000 subgroups.

The titles of the eight sections, as well as a patent count for each section in our data
set, is reported in Table 1. We find that the number of patents in all sections reflects
their technological dynamism (Rosenkopf and Schilling 2007). Indeed, all sections
are not equally represented. For example, the two sections with the lowest patent
counts are Textiles, Paper and Fixed Constructions, two typical mature industries,
while the sections of Physics and Electricity has the highest patent count. In these
sections, patents are often filed by firms belonging to industrial sectors where product
innovation and radical innovations play a major role (e.g., from firms working on
computer hardware, computer software and electronic components).

In contrast to the IPC, the ISI-OST-INPI classification scheme is more adapted
to the technological knowledge space for patent data (Schmoch 2008). As suggested
above, this scheme was developed by the Fraunhofer ISI, the Observatoire des Sci-
ences et des Techniques (OST) and French patent office (INPI) in order to overcome
problems in the IPC and the US classification scheme. There exist various versions
of ISI-OST-INPI classification and we chose to use the most updated one, available
from PATSTAT, Patent Statistical Database.3 In this version, the scheme groups dif-
ferent IPC codes into five technology areas, which are again divided in a total of 35
fields. The main five areas are: 1) Electrical engineering 2) Instruments, 3) Chem-
istry, 4) Mechanical engineering and 5) Other fields. In Table 2, we report as an
example the classification scheme for the technology area Electrical engineering, as
provided from table tls901 techn field ipc available in PATSTAT Online,
edition Autumn 2016. In each entry of the table there is an ISI-OST-INPI code with
the corresponding name of the field and IPC codes . We have created similar tables

3https://www.epo.org/searching-for-patents/business/patstat.html

https://www.epo.org/searching-for-patents/business/patstat.html
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Table 2 ISI-OST-INPI classification scheme based on the IPC, for the technology area of Electrical
engineering

Electrical engineering

1 Electrical machinery, apparatus, energy F21H, F21K, F21L, F21S, F21V, F21W, F21Y, H01B,

H01C, H01F, H01G, H01H, H01J, H01K, H01M, H01R,

H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N,

H02P, H02S, H05B, H05C, H05F, H99Z

2 Audio-visual technology G09F, G09G, G11B, H04N 3, H04N 5, H04N 7,

H04N 9, H04N 11,H04N 13, H04N 15, H04N 17,

H04N 19, H04N 101, H04R, H04S, H05K

3 Telecommunications G08C, H01P, H01Q, H04B, H04H, H04J, H04K,

H04M, H04N 1, H04Q

4 Digital communication H04L, H04N 21, H04W

5 Basic communication processes H03B, H03C, H03D, H03F, H03G, H03H, H03J,

H03K, H03L, H03M

6 Computer technology G06C, G06D, G06E, G06F, G06G, G06J, G06K,

G06M, G06N, G06T, G10L, G11C

7 IT methods for management G06Q

8 Semiconductors H01L

The first column is the ISI-OST-INPI code, the second gives the name of the field and the third column
groups the different IPC codes corresponding to the same ISI-OST-INPI code

also for the other four technology areas (not shown). Using these tables, we assigned
to the patents present in our database with one or more IPC codes new ISI-OST-INPI
codes. Our matching procedure was successful since it worked for about 99% of the
patents.

We intend to test our model on a broad set of firms, belonging to several indus-
trial sectors, and therefore exhibiting patent activities distributed across all sections,
classes and subclasses. For this reason, we have only considered the eight dimen-
sions (i.e. the first letter) of the IPC code, and the 35 dimensions of the ISI-OST-INPI
code. Choosing a more refined class- or subclass-level division would result in an
excessive patent granularity, meaning an even higher dimensionality for the corre-
sponding knowledge space. However, comparing the results for the eight- and the
35-dimensional knowledge space already allows us to draw conclusions about the
robustness of our findings with respect to the dimensionality of the knowledge space.

Knowledge position To ensure a match with our model representation, we define
the knowledge position of a firm xi ≡ (xi1, xi2, . . . , xiD) as the set of normalized
patent counts xis in each class s = 1, 2, . . . D (where D is the maximum number of
dimensions in the respective classification scheme, i.e. either eight or 35):

xis ≡ Nis
∑

s Nis

s = 1, . . . , D (1)
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Nis is the number of patents that the firm i has in a given class s. In order to compute
knowledge distances between pairs of firms, we use the Euclidean metric, similar to
Tomasello et al. (2016). This means that the knowledge distance between two firms
i and j reads as:

∣
∣xi − xj

∣
∣ =

√
√
√
√

D∑

s=1

(xis − xjs)2 (2)

In Fig. 1a, b we provide a visualization of the knowledge positions of firms using the
two patent classification schemes. In the time-aggregated R&D network, nodes rep-
resent firms and their colors depend on the patents they have filed between 1984 and
2009. In Fig. 1a, we have assigned to each firm the color of IPC-section where it has
filed more patents. With this, we approximate the knowledge position of each firm
for visualization purposes. In Fig. 1b, we apply the same procedure but considering
the five main areas of the ISI-OST-INPI classification scheme. From both figures,
we find that the two main clusters, which are comprised mainly by pharmaceutical
companies (bottom cluster) and firms working on computer hardware, software and
communications (top cluster), are dominated by few colors. This shows that most
alliances occur among firms with a similar knowledge base; alliances with different
knowledge bases occur only in specific combinations.

Distributions of pre-alliance knowledge distances Using the definitions provided
in Eqs. 1 and 2, we can now compute the knowledge positions of the 5,168 firms
listed in our data set for the two different classification schemes together with the
knowledge position of their alliance partners. This allows us to calculate the distri-
bution of the knowledge distances between every pair of allied firms at the moment
of alliance formation (which we know precisely). We save these pre-alliance dis-
tances together with the positions of the firms in knowledge space, to later use this
information for setting up the computer simulations.

In Fig. 2 we report the distributions of pre-alliance knowledge distances for the
two different classification schemes. The minimum observed value of knowledge dis-
tance is zero, while the maximum equals

√
2 (see Eq. 2), for normalization reasons.

We find, for both schemes, that the distribution is peaked around an intermediate dis-
tance and right-skewed, i.e. shifted toward small values. Interestingly, we observe
that the counts drop when such distances approach zero, meaning that firms with the
exact same patenting activity tend not to form alliances. In addition, it is important to
remark that the granularity of the different schemes does not impact the distributions.

When computing the empirical knowledge position xi of a firm at a given date t ,
we consider all the patents for which the firm has applied in a preceding time window
[t − �t, t]. In order to have a reliable and updated measurement, without losing at
the same time too much patent information due to a short time window, we use �t =
five years. We have tested different time windows, ranging from one to 10 years, and
have found that this only increases the number of missing observations or the noise
in the distributions, with no effect on our results.
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Fig. 2 Empirical knowledge distance between every pair of partnered firms, as of the day preceding the
alliance formation, calculated in (a) the eight dimensional knowledge space defined by the IPC scheme
and in (b) the 35 dimensional knowledge space defined by the ISI-OST-INPI classification scheme

3 The model

We now describe the microscopic interaction rules of our agent-based model. In a
first phase, the agents form links based on their network features and their social
capital; we call this the “exploration (link formation)” phase. Subsequently, they
exchange knowledge through these links, thus approaching each other in a met-
ric knowledge space; we call this “exploitation (knowledge transfer)” phase. While
exchanging knowledge, agents can also form new links; in addition, each link can be
terminated with a given probability. Hence, the exploration and exploitation phases
are not separated in time.

3.1 Exploration: link formation

Activation We consider a network composed of N agents. Each agent represents a
firm endowed with two fundamental attributes, an activity and a label. The activity
ai of agent i defines his propensity to engage in a collaboration event. We obtain ai

from the distribution of empirical activities extracted from the SDC alliance data set
(see Section 2). At every time step, agent i initiates an alliance with probability pi =
ηaidt . Consequently, the number of active agents per time step is NA = η〈a〉Ndt .
Here 〈a〉 is the average agent activity and η is a rescaling factor that allows us to
adjust the activation rates. We fix η = 0.0115 to obtain NA close to two which is
the number of active firms per day reported in the alliance data set. More details will
follow on the interpretation of the time step duration dt .

Alliance size Upon activation, an agent selects the number of partners for a collab-
oration. We simulate this selection by sampling without replacement a value n from
the empirical distribution of alliance sizes, directly measured from the SDC Platinum
data set. With this, we assume that the number of partners, m = n − 1, with whom
the alliance is formed is independent of any characteristic of the active agent.
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Label propagation The second key attribute, called label, is used to model the
belonging of firms to communities that are implicitly defined through shared prac-
tices and/or behaviors. In other words, a label can be thought of as a membership to
a well defined and recognized “club” or “circle of influence”. We assume that such
membership is unique and fixed, i.e. an agent cannot change it nor have more than
one. At the beginning of each simulation, all agents are non-labeled. They can obtain
a label in two different ways, (i) by being selected as partner for an alliance or (ii) by
initiating one. In the former case, the non-labeled agent receives the label of the ini-
tiator of the alliance, while in the latter he receives a new label that no other agent has
in the network. Both cases are illustrated in Fig. 3. It was shown that the described
label propagation mechanism can very effectively explain the presence of clusters, or
communities, in R&D networks (Tomasello et al. 2014).

Selection of the partner categories The presence of labels allows us to distinguish
between different types of alliances, dependent on the initiator. If the initiator is a
labeled agent, he can link to an agent with the same label (with probability pL

s ), to an
agent with a different label (pL

d ), or to an agent without a label (pL
n ). If the initiator

is a non-labeled agent, i.e. he is a newcomer in the collaboration network, he can link
to a labeled agent (with probability pN

l ), or to another non-labeled agent (pN
n ). The

link formation with a labeled agent (described by the probabilities pL
s , p

L
d and pN

l )
describes endogenous mechanisms, because the initiator of the alliance has informa-
tion about the network position (i.e. social capital) of its potential partners. For this
case, the two linking probabilities pL

s and pL
d allow us to tune the importance of

the cohesiveness as an endogenous driver. The connection with a non-labeled agent

Fig. 3 A representative example of network evolution in a bi-dimensional (D = 2) knowledge space.
The position of the agents in the plot corresponds to their coordinates in the knowledge space. At time
t + dt , all existing links cause the respective agents to approach in the knowledge space. Furthermore, we
illustrate two collaboration events occurring at time t . The first one is initiated by a labeled agent (in green)
who has linked to m = 3 new partners, forming a fully connected clique. The second one is initiated by
a non-labeled agent who has linked to m = 2 new partners and has taken a new arbitrary label (red). At
time t +dt , the alliance initiators propagate their labels (respectively, the green one and the red one) to the
partners that were not labeled at time t yet. Finally, we illustrate the termination of three links (depicted
with red dashed lines) at time t
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(events pL
n and pN

n ) describes exogenous mechanisms because, in this case, the ini-
tiator has no information about the social capital of an agent who is not yet part of
the network.

Link formation Once the category (label) of each partner is determined, the initiator
of the alliance selects the specific partner. To do this, we employ a linear preferential
attachment rule, where an agent j is selected with probability proportional to his
degree kj (i.e., the number of previous collaborations with distinct partners). This
rule is chosen to capture the prominence of a firm, namely the history of its previous
alliances, as an endogenous driver. Obviously, this does not apply when the initiator,
labeled or not, decides to connect to a non-labeled agent, who has by definition no
previous partners (kj = 0). In this case, the partner is selected among all non-labeled
agents with equal probability. When the selection process is complete, the initiator
connects to his m partners, who accept the offer. (A variant of the model in which
partners can also reject the offer is discussed in Tomasello et al. 2017a). In agreement
with our representation of the R&D network, we assume that all the m partners will
also link to each other, forming a fully connected clique of size n = m + 1 with
m(m + 1)/2 links (see Fig. 3).

3.2 Exploitation: knowledge transfer

The second set of microscopic rules models the process of knowledge exchange
between pairs of collaborating agents, similar to what has been investigated in
Tomasello et al. (2016). Basically, we assume that every agent in the network is
located in a metric knowledge space and, as a consequence of its collaborations,
approaches its partners in this space. In case of multiple partners, the motion of the
focal agent is determined by the vectorial sum of the effects of all of its partners.

Location in a metric knowledge space Here we refer to the description of the (two
different) knowledge spaces given in Sect. 2.2. Every agent i (i = 1, . . . , n) is char-
acterized by a D-dimensional vector xi ≡ (xi1, xi2, . . . , xiD), where the components
xi1, xi2, ... are real numbers ranging from 0 to 1. In the case of R&D networks, these
numbers are given by the ratios of patents, reflecting the firm’s expertise in each of
theD dimensions. OnlyD−1 values of the xis are independent because of the bound-
ary condition that the patent fractions have to sum up to 1. The dimension of the
knowledge space, D, is a structural characteristic of the system and fixed depending
on the classification scheme and granularity selected to classify the patents.

Approaching in themetric knowledge space We assume that the existence of a link
causes the involved agents to exchange knowledge with their partners and to align
their knowledge bases. Hence, as a result of this exchange, they should approach each
other in knowledge space. To capture this dynamics, every agent is characterized by
a learning rate μ. This parameter is, in first approximation, constant over time and
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the same for all agents in the collaboration network. The model dynamics equation
can be written as follows:

ẋi (t) = μ
∑

j∈Ni (t)

[xj (t) − xi (t)] (3)

whereNi (t) is the set of partners of the agent i at time t . For implementing the model
in computer simulations, we use discrete time steps of length dt . The evolution of
every agent’s position xi can then be expressed as:

xi (t + dt) = xi (t) + μ
∑

j∈Ni (t)

[xj (t) − xi (t)] dt (4)

It should be noted from Eq. 3 that the speed at which a collaborating agent moves in
the knowledge space is given by the product of two factors: μ – the approach rate –
and the distance from the partners. With this dynamics, the farther agents are in the
knowledge space, the faster they move toward each other. When the agents’ distance
decrease, the potential for new learning from the collaboration and consequently the
approaching speed decrease as well. This, eventually, motivates them to cancel the
collaboration and to terminate the alliance after some time.

Although the dynamics of knowledge exchange is quite simple, it has a number of
implications we would like to point out. First of all, in the present model, proximity
in knowledge space is not a precondition for the agents’ interactions. This is different
from other existing models (see, for instance, Groeber et al. 2009; Baum et al. 2010;
Tomasello et al. 2016) where some sort of “similarity” is assumed for a possible
collaboration. In our model, collaboration is determined by the network formation
mechanisms, where the different link probabilities are independent of the agents’
knowledge positions.

Second, in our model, every link (i.e. every collaboration) necessarily implies that
the involved partners approach each other in the knowledge space. This reflects the
purpose of the network formation, namely, exchange of knowledge. Our dynamics
assumes that agents approach each other in all dimensions of the knowledge space,
not just in one particular dimension representing their area of collaboration. This
reflects the effect of knowledge spillovers (Baum et al. 2010), i.e. agents profit from
the collaboration not just by the exchange of specific knowledge, but also by gaining
more general experience.

Alliance termination R&D alliances have been proven to have a finite duration
(Phelps 2010; Tomasello et al. 2017b). In order to develop a realistic model, we
introduce as a key parameter the characteristic life time τ of a link. Assuming that
the durations of alliances are distributed according to a Poisson process with rate
1/τ , the mean duration is obviously equal to τ . In our computer simulations, which
use discrete time steps of length dt , this translates into the use of a fixed termination
probability pT = dt/τ for any link at any time step.

To keep a simplistic set of rules, we assume that the parameter τ is a constant,
independent of any other features of the network or of the agents. One possible exten-
sion would be to link τ to the knowledge distance of the two partners, or some other
network-related feature.
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To sum up, in this section we have described a set of microscopic rules that aim
at reproducing the formation of links in a collaboration network, together with the
approach of the agents in an underlying knowledge space. We summarize the model
microscopic rules by means of a visual example in Fig. 3 and report the nomenclature
of all parameters in Table 3.

4 Model calibration with a two-step procedure

We now calibrate our model against the data, to estimate the value of its parameters.
As already mentioned, this is performed in two steps, for network formation and
knowledge exchange, by using two data sets, R&D alliances and patents.

4.1 Network formation parameters

In the first step, calibrating the network formation model, we fix a set of parameters
that we can directly measure from the data, namely, the number of agents N =5,168,
the distribution of the agents activities ai , and the distribution of number of partners
m per alliance event.

We then estimate the remaining parameters, i.e. pL
s , p

L
d and pN

n , by running a set
of computer simulations, to identify the simulated collaboration network that matches
best with the alliance data set. We stop every computer simulation when the total
number of formed alliances equals the number of alliance events reported in the SDC
data set, E =7,417. We vary the values of pL

s , p
L
d and pN

n in discrete steps spaced by
0.05, in the interval (0, 1). The parameters pL

s and pL
d are bounded by the condition

pL
n = 1 − pL

s − pL
d ≥ 0, meaning that their sum has to be less or equal to 1. This

condition translates into 3249 points to explore in the three-dimensional parameter
space, for each of which we run 100 simulations (for a total of 324,900 runs).

The networks that we generate by means of computer simulations are matched
to the data with respect to three global indicators: average degree 〈k〉, average path

Table 3 Model parameters and their description

Parameter Explanation Category

pL
s Probability that a Labeled agent chooses an agent with same label Network formation

pL
d Probability that a Labeled agent chooses an agent with different label Network formation

pN
n Probability that aN on-labeled agent chooses a non-labeled agent Network formation

μ Approaching rate in the knowledge space Knowledge exchange

τ Link characteristic life time Knowledge exchange

The “network formation” parameters are associated with the creation of new links in the collaboration
network. The “knowledge exchange” parameters are associated with the approach of the agents in a metric
knowledge space, occurring as a consequence of a collaboration
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length 〈l〉, and global clustering coefficient C.4 For the empirically observed R&D
network, we denote such measures as 〈k〉OBS , 〈l〉OBS and COBS , respectively, and
their values are 〈k〉OBS = 3.45, 〈l〉OBS = 5.05 and COBS = 0.11.5

In order to identify which parameter combination is able to give the best match
with the real R&D network, we use a Maximum Likelihood approach, similar to
Tomasello et al. (2014). We do not have a set of observations against which we
can calibrate our model; instead, we only have one empirical point: the real R&D
network. In particular, we cannot consider the three measures 〈k〉, 〈l〉 and C as
independent; therefore the Likelihood function L reads as:

L(p|netOBS) = f (netOBS |p) (5)

where f (·) is the joint density function of all parameter combinations p result-
ing in a network that is equivalent to the observed one, netOBS . Both p and
netOBS are vectors with three components, expressing respectively the three model
parameters p ≡ (pL

s , pL
d , pN

n ) and the three global network measures netOBS ≡
(〈k〉OBS, 〈l〉OBS, COBS

)
. Therefore, we need to find the parameter combination

(pL
s , pL

d , pN
n ) maximizing the Likelihood L(p|netOBS) to generate a network the

macroscopic properties of which are sufficiently similar to the real network netOBS .
By this we mean that the relative errors from the observed values for the average
degree ε〈k〉, the average path length ε〈l〉 and the global clustering coefficient εC have
to be smaller than a certain threshold ε0.

We empirically compute the Likelihood function L for each point in the parameter
space by counting the fraction of its 100 simulation realizations that fulfill the criteria
ε〈k〉 < ε0; ε〈l〉 < ε0; εC < ε0. This way, we obtain values that can range from
0 (no realization of that parameter combination fulfills the criteria) to 1 (all of its
realizations fulfill the criteria). For the choice of the error threshold ε0, we take a
conservative approach and use ε0 = 0.02, that ensures a good matching with the real
R&D network, without cutting out too many points in the parameter space.

We find that the point in the parameter space with the highest likelihood score
has coordinates: p∗L

s = 0.45, p∗L
d = 0.2 and p∗N

n = 0.1. This means that labeled
agents show a fairly balanced alliance strategy, with p∗L

s = 0.45, p∗L
d = 0.2, and

consequently p∗L
n = 0.35, while non-labeled agents connect rarely with other non-

labeled agents (p∗N
n = 0.1) and prefer to link with labeled ones (p∗N

l = 0.9). In
Table 4, we report the full set of parameter values maximizing the likelihood score,
together with the values of average degree, average path length and global clustering
coefficient for the simulated and the real R&D networks.

These results are in line with those presented by Tomasello et al. (2014). However,
the R&D network with patent data, used here, exhibits an even stronger tendency to

4For a rigorous definition of these measures, see Tomasello et al. (2014).
5We find that the present network is slightly denser, more clustered, with a shorter average path length
than the R&D network analyzed in Tomasello et al. (2014). This happens because we now consider only
the firms for which patent data are available, not just any firm reported in the SDC alliance data set. These
firms typically have more alliance partners than average, thus making the resulting network more dense
and connected.
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Table 4 Link formation parameters p∗ defining the optimal simulated R&D network

Optimal simulated R&D network Real R&D network (with patents)

Model parameter Value Measure Value Measure Value

p∗L
s 0.45 〈k〉∗ 3.48 ± 0.01 〈k〉OBS 3.45

p∗L
d 0.2 〈l〉∗ 5.02 ± 0.08 〈l〉OBS 5.05

p∗L
n 0.35 C∗ 0.111 ± 0.007 COBS 0.109

p∗N
n 0.1

p∗N
l 0.9

The average degree, average path length and global clustering coefficient of the 100 realizations of the
optimal R&D network are compared to their empirical counterparts

favor connections with labeled agents (i.e. incumbent firms) than the pooled R&D
network including all firms, irrespective of their patenting activity. Let us spend a
few words on the comparison between these two networks.

Due to the fact that our analysis in now restricted only to firms for which patent
data are available, one could expect either an increase in the importance of network
endogenous mechanisms, given that we are considering, on the one hand, larger and
more active firms, or an increase in the importance of exogenous mechanisms, given
that we are considering, on the other hand, firms for which the technological dimen-
sion could be more relevant in the alliance formation strategy. Our data confirm the
first hypothesis, that is, the increase in the relevance of network endogenous mecha-
nisms, which results in higher probabilities for the agents to collaborate with agents
who are already part of the network, and therefore already labeled. This behavior
is present irrespective of whether the alliance event is initiated by a labeled or a
non-labeled agent: precisely, 65% of the collaborations initiated by labeled agents
(p∗L

s + p∗L
d ), as well as 90% of the collaborations initiated by non-labeled agents

(p∗N
l ), involve a labeled agent as a partner.

4.2 Knowledge exchange parameters

In the second step, we fix the network formation parameters to the values obtained in
the first step, and run a second set of computer simulations. This time we estimate the
knowledge exchange parameters, i.e. μ and τ , by identifying the simulated collabo-
ration network that best matches with the patent data set. To quantify the knowledge
space, we use either the eight main sections of the IPC scheme or the 35 technolog-
ical fields of the ISI-OST-INPI classification scheme, i.e. the dimensions are set to
D = 8 or D = 35.

Pre-alliance conditions In order to calibrate the dynamics of knowledge transfer,
we need to assign to the agents a current position in the respective knowledge space,
to calculate their future positions. Following the model of network formation, we
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Fig. 4 Pre-alliance distance distributions from the empirical and a randomized R&D network. In a we
used the IPC scheme to calculate the firms positions, while in b the ISI-OST-INPI scheme

need to distinguish between the agent that initiates a collaboration (when becoming
active), and the m collaborators chosen by the initiator.

A naive approach would assume that we first randomly choose an initiator with
its initial position in knowledge space, then randomly choose m collaborators, their
distances in knowledge space randomly sampled from the empirical distribution of
pre-alliance distances shown in Fig. 2. Second, we run the knowledge exchange
dynamics of Eq. 2 to calculate the expected movement in knowledge space for a
given set of parameters τ , μ. Eventually, we compare the distribution of distances for
various τ , μ with the empirical distribution of post-alliance knowledge distances, to
find out which set of parameters matches best.

While the second part of the procedure is correct, the first part is based on the
wrong assumption that firms randomly choose their collaboration partners from the
knowledge space. Figure 4 shows, for the two different knowledge metrics used, how
the distribution of pre-alliance distances should look if every possible knowledge
distance would be realized. We note the strong deviations between the random and
the empirical distributions. First, the random distributions appear left-skewed while
the empirical are right-skewed. Second, the average pre-alliance distance are around
0.9 in the random case, while the averages of the empirical pre-alliance distances is
much smaller, around 0.6.

With this, we can conclude that the empirical pre-alliance distance distributions
cannot be explained by assuming that firms create alliances without considering the
position of their possible collaborators in the knowledge space. Hence, we need
essentially to consider the full agent-based model – not to calibrate the dynam-
ics of knowledge exchange, but to determine correctly the initial conditions for the
knowledge exchange dynamics. This lends strong support to consider the combined
processes of network formation and knowledge exchange, as is proposed in our
model, instead of investigating knowledge exchange in isolation.

In order to determine the pre-alliance conditions in knowledge space for our model
at a given time t , we distinguish between agents who are not currently, at time t ,
involved in any collaboration and those who are currently involved. Agents who
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are involved already have a position in knowledge space that reflects their previous
interaction with other agents during the simulation up to time t . Thus, we decide
to keep these (simulated) positions at time t as a starting point for their knowledge
exchange in the new alliance. For those agents not involved in a collaboration at time
t , we obtain the initial conditions from sampling from the empirical data. Precisely,
the position of an initiator not currently involved in an alliance is sampled from the
distribution of pre-alliance positions obtained from the real patent data. For the col-
laborating agents not involved in any other alliance at time t , we assign a knowledge
distance by sampling with replacement from the empirical distribution of pre-alliance
distances given in Fig. 2.

This procedure of determining the pre-alliance distance distribution mixes up two
conceptually different information sets. Part of it is obtained from simulations, taking
into account the path dependence of the recent history in collaborations, i.e. the active
partners in alliances and their influence on knowledge exchange. Another piece of
information comes from the empirical distribution of pre-alliance knowledge posi-
tions/distances that reflects, e.g., preferences of agents in choosing partners at shorter
distances. Further, it captures the fact that firms not engaged in any R&D alliance can
still perform related activities and thus move in knowledge space, which is reflected
by their new position assigned when engaging in a new alliance. We emphasize again
that, without the empirical information, we would randomly pair agents who likely
had not chosen to collaborate or we would assume that agents do not move in knowl-
edge space by themselves. Without the simulations, on the other hand, we would
create problematic artifacts in all cases where agents already involved in a collab-
oration are chosen to participate in a new alliance. In such cases, we cannot assign
two positions in knowledge space to the same agent or randomly switch between
profiles. Thus, the best solution is to keep the evolution of agents during existing
collaborations into account, as a precondition for new ones.

This leads us to an important question that we need to answer before we can dis-
cuss the details of the parameter calibration: What is the error that we may introduce
by mixing these two source of information for determining the initial conditions?
In Fig. 5a, we show the distribution of pre-alliance distances that follows from the
constraint of respecting current knowledge positions in comparison to the empirical
distribution. We find that the simulated distribution matches the empirical one over a
large range; however, the simulations overestimate the probability of having alliances
among firms separated by a small knowledge distance. This deviation is significant
only in the range of distances between 0.2 and 0.4, where the distribution has its
maximum.

Obviously, such deviations in the initial conditions are amplified during the simu-
lated knowledge exchange, as can be seen in Fig. 5b, which shows the post-alliance
distance distribution. Precisely, compared to the empirical distribution of pre-alliance
distances, in the empirical distribution of post-alliance distances the probability to
have a small knowledge distances has decreased, whereas it has increased in the cor-
responding simulations. We will comment on this interesting observation further in
Section 6.

At this point, we just emphasize that the empirical distribution of pre-alliance dis-
tances is much better matched by the distribution obtained from our simulations that
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Fig. 5 Empirical and simulated distances between firms at the moment of alliance formation and at the
assumed termination of alliances after τ = 700 days. In both plots the distances are calculated in the 35
dimensional space defined by the ISI-OST-INPI classification, the blue circles correspond to the mean
values and the error bars correspond to the standard deviations of all the measures we study on the 100
realizations of the optimal simulated R&D network

use the selection process described above (see Fig. 5a) compared to the distribution
obtained assuming a random selection process (see Fig. 4b). Indeed, when we per-
form a two-sided Kolmogorov-Smirnov (KS) test between our simulated distribution
of pre-alliance distances and the empirical one, we find an average D-statistic 10
times smaller, i.e. better, compared to the D-statistic coming from the KS-test per-
formed between the distributions shown in Fig. 4b. We disregard the p-value of the
KS-test, because we are not interested in statistically inferring the provenience of
the two distributions from a hypothetical common distribution. Our aim is instead to
quantify the similarity between pairs of distributions, a measure that is already fully
captured by the D-statistics of a two-sided KS-test. Hence, in the following we will
take the distribution of pre-alliance distances shown in Fig. 5a as a good proxy for
the initial condition at the moment of alliance formation.

Optimal parameters In the subsequent computer simulations, we vary the values
of the two remaining knowledge exchange parameters, i.e. the agents’ approaching
rate μ and the characteristic alliance life time τ . We consider the values 5 × 10−8,
10−7, 5 × 10−7, 10−6, 5 × 10−6, 10−5 for the parameter μ and the values 700,
1000, 1500 and 2000 for the parameter τ , thus having a total of 24 points to explore
in the parameter space. The interpretation of the parameter τ is straightforward: as
explained in Section 3.1, we adjust the activation rate of the agents such that the
length of a time step dt can be directly interpreted as one day. Therefore, the value of
τ , which is by design expressed in time steps, can be thought of as the characteristic
duration of a real alliance in days.

For each of the 24 parameter combinations, we run 100 simulations that combine
the network formation process (using the optimal parameters determined) and the
knowledge exchange dynamics. This results in a total of 2400 simulation runs only
to complete the second step of our calibration procedure, namely, to determine the
optimal knowledge exchange parameters. We store the distributions of post-alliance
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knowledge distances and knowledge distance shifts in each run. Similar to the first
step, we stop every computer simulation when the total number of collaborations
equals the number of alliance events reported in the SDC data set, E = 7417.

As explained, the distribution of pre-alliance distances shown in Fig. 5a is used as
an input of the simulations. Thus, we use the distribution of post-alliance knowledge
distances, obtained from each of the 100 simulations for every parameter combina-
tion, to compare it to the respective distance distribution obtained from the empirical
R&D network. This comparison relies on determining the post-alliance time. It
becomes a problem for the empirical data because the termination dates of alliances
are not available. In the simulations, however, we have assumed that alliances have
a duration τ and are terminated stochastically afterwards. To allow for comparison,
we compute, from the empirical data, the knowledge distance between every pair
of linked firms after the same time period τ , in days, as used in the corresponding
simulation.

To compare the two distributions of simulated and empirical knowledge distances,
we use the two-sided KS-test that assigns a score, theD−statistics, to each simulated
distribution. The value of the D−statistics decreases as the simulated and the empir-
ical distributions become more similar; hence, it is used here as goodness score for
each simulation. We finally average the 100 score values for the 100 simulations, for
each combination of the parameters.

The resulting goodness scores are presented in the heat map plot of Fig. 6. It shows
the bi-dimensional parameter space of alliance duration τ and learning rate μ. As the
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Fig. 6 Goodness score for every point in the parameter space, depicted by means of a heat-map. The color
scale corresponds to the score value; the lower the score, the closer the simulated distribution of post-
alliance distances is to the empirical one. The simulations and the distances have been obtained considering
the 35 dimensional space defined by the ISI-OST-INPI classification scheme



482 G. Vaccario et al.

color code indicates, we find an entire region of parameters with maximized goodness
score for parameter combinations with medium to large μ, but low τ values.

Although many parameter combinations exhibit a similar, low goodness score,
i.e. they are fairly equally able to reproduce the empirical post-alliance knowledge
distance distribution, the best parameter sets can be ranked quantitatively. We find
that the parameter point yielding the best goodness score is identified by the fol-
lowing coordinates: μ = 10−7 and τ = 700. This means the optimal simulated
collaboration network exhibits a low approaching rate, and a characteristic alliance
duration slightly shorter than two years. This is close to previous theoretical and
empirical observations (Phelps 2010; Inkpen and Ross 2001), and in line with our
previous assumption to terminate alliances after three years in the empirical network
representation (Tomasello et al. 2017b). Taking into account that we have obtained
this result here by using two different data sets and an involved agent-based model,
the agreement is even more remarkable.

4.3 Robustness analysis

Distribution of post-alliance knowledge distances Already for the model calibra-
tion, we addressed the problem that the exact durations of R&D alliances are not
known from the data set. This leads to the above estimations of the optimal duration
τ conditional on the knowledge transfer rate μ. However, we can also indepen-
dently investigate how sensitive the distribution of post-alliance distances responds
to changes of the (unknown) duration of alliances. This is done in the following two
steps for both of the knowledge space metrics used.

In the first step, we analyze the empirical distribution of knowledge distances for
different alliance durations. The NBER patent data set has a time-granularity of one
year. This forces us to use time increments of one year with a minimum window
of one year. In Fig. 7 we show the post-alliance knowledge distance distribution
for different time windows: one, three, five and 10 years. We find that, for both

Fig. 7 Empirical knowledge distance between every pair of partnered firms, computed one, three, five
and 10 years after the date of the alliance formation. In a we have calculated the distance using the eight
dimensional knowledge space defined by the IPC scheme and in b used the 35 dimensional knowledge
space defined by the ISI-OST-INPI classification scheme
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knowledge space metrics, the shape of the knowledge distance distribution appears
to have the same shape, irrespective of the time window chosen. This allows for two
conclusions. First, an assumed increase of the alliance duration does not considerably
impact the post-alliance distance distribution, most likely because firms do not move
much in knowledge space over time. Second, because of this, our modeling approach
is robust against the (unknown) duration of alliances. There is a firm relation between
τ and μ as discussed in Fig. 6. But even for larger durations τ , the properly calibrated
model can be used to reproduce the empirical distribution of post-alliance knowledge
distances.

Changes of knowledge distances In the second step, we calculate the changes of
the knowledge distances between the empirical pre-alliance distance distribution
shown in Fig. 2 and the empirical post-alliance distance distribution shown in Fig. 7.
Because the time of alliance termination is not known, we have to vary the duration
again in time steps of one year. Our results are shown in Fig. 8a for the ISI-OST-INPI
classification scheme. The results for the IPC scheme are rather similar and therefore
not shown here.

There are two remarkable observations in Fig. 8a. First, the distributions are
clearly centered around zero, i.e. small changes of knowledge distances are very
frequent. Larger changes of knowledge distances are rare, but not unlikely. This is
in line with the broad distributions we find for both the pre- and the post-alliance
knowledge distances. Second, the results for the changes in knowledge distances are
robust against choosing a longer duration for alliances. We note that positive changes
are more prominently seen for the ISI-OST-INPI classification scheme, whereas they
look symmetric for the IPC scheme.

In order to see whether these findings are captured by our model of knowledge
exchange, we have calculated the changes in distances also in the computer simula-
tions (using optimal parameters). The result is shown in Fig. 8b, where we compare
the changes in the empirical knowledge distances (also shown on the left side) with
the changes in the simulated knowledge distances. We see that the (rather) symmetric
distribution peaked at zero can be reproduced by our model, even with the long tails.

Fig. 8 a Empirical shift of knowledge distance between every pair of partnered firms, computed one,
three, five and 10 years after the date of the alliance formation. b Empirical and simulated distance shifts
between all allied firms for τ = 700days and μ = 10−7days−1. In both plots, we report results obtained
considering the 35 dimensional space defined by the ISI-OST-INPI classification scheme
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Some deviations occur close to zero, where the empirical distribution is more peaked,
to decay faster than the simulated one. These deviations are in line with the devia-
tions already discussed for Fig. 7, where small distances are slightly overrepresented
in the simulated initial conditions.

More interesting is the fact that both the empirical and the simulated distributions
of distance changes exhibit tails on both sides, i.e., some alliances cause the partners
to move significantly closer in the knowledge space, while during other alliances the
partners move significantly farther away. In our model of knowledge exchange, how-
ever, we have only assumed that alliance partners approach each other in knowledge
space, which would lead to a left skew distribution of (mostly negative) changes.
The explanation comes from the fact that firms, while forming new alliances, can
be still engaged in existing alliances or establish new ones. The resulting change
in the knowledge distance with respect to a given partner is thus the superposition
of all influences to which a firm is subject at the time of alliance termination. In
other words, there exists a nonlinear (and nontrivial) feedback of the network forma-
tion process on the knowledge exchange dynamics, which we further comment on in
Section 6. At this point, we just emphasize that this influence is correctly captured
in our agent-based model, as it also reflects the movement of agents farther away in
knowledge space.

5 Estimating the performance of knowledge exchange

One of the most prominent reasons for R&D collaborations, seen from the perspec-
tive of the firm, is the exchange of knowledge, as already argued in Section 1. The
formation of R&D alliances between individual firms results in a large-scale R&D
network pictured in Fig. 1. This network represents one projection of the systemic, or
“macroscopic”, perspective. The complementary projection of the systemic perspec-
tive is given by the knowledge space made up by the patent portfolios of individual
firms. Only the dimensions of that space are defined by the (two different) patent
classification schemes. Firms collectively shape, and explore, this knowledge space
by forming alliances and exchanging knowledge with their partners.

The collective exploration of the knowledge space is beneficial for the whole sys-
tem (Fagiolo and Dosi 2002). Therefore, we now want to evaluate the performance
of this collective exploration, by analyzing different indicators. We do not intend
directly to match these indicators to any possible empirical counterpart. Rather, we
address the question of to what extent the empirical R&D network corresponds to a
simulated network that is optimal with respect to such indicators.

As the possibly simplest performance indicator for our simulated networks, we
investigate the total distance that all agents have traveled in knowledge space
(Tomasello et al. 2016). For an individual agent, the length Li(t) of the path traveled
in the knowledge space is defined by the sum of all distances that the agent traveled
in every time step of the simulation until time t :

Li(Tmax) =
∫ Tmax

t=0
|ẋi (t)| dt (6)
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For our convenience Tmax is the duration of the entire computer simulation. It should
be noted that the measure |ẋi (t)| dt is a positive scalar and expresses the actual dis-
tance traveled by the agent i, differently from its net displacement ẋi (t) dt , which is
a vectorial quantity.

The measure Li(t) is then averaged over all the agents in the network to obtain the
averaged total distance in knowledge space, 〈L(t)〉 = N−1∑N

i Li(t). This is shown
in Fig. 9a as a heat map of the bi-dimensional (τ, μ)−parameter space. We argue that
a higher value of 〈L〉, i.e. a better exploration of the knowledge space, corresponds
to a higher systemic performance, because, as already discussed in Section 1.1, firms
are proven to innovate more when they come in contact with more technological
opportunities.

At the same time, using 〈L〉 as performance indicator does not give us detailed
insights because, as Fig. 9a shows, higher approach rates μ always lead to larger
distances traveled in knowledge space, for any alliance duration τ . This motivates us
to propose a more refined performance indicator, C, that also takes into account the
number of active collaborations, kacti (t), that cause firms to move in knowledge space
at a given time t . I.e. in our model kacti (t) is the degree of agent i at time t . We remind
that not all collaborations are active at a given time; some are terminated and become
inactive after a characteristic time τ . As firms engaged in alliances incur costs, we
consider that C should decrease with increasing number of active collaborations:

C =
∫ Tmax

t=0

∑N
i=1 |ẋi (t)|

∑N
i=1 kacti (t)

dt = 1

2

∫ Tmax

t=0

∑N
i=1 |ẋi (t)|
Mact(t)

dt (7)

C is called collaboration efficiency because it considers how much output, i.e. move-
ment in knowledge space, the system achieves for a given input, covering e.g. the
costs to maintain collaboration links. The ratio of the two sums in Eq. 7 gives the
total distance traveled per active collaboration during a given time step dt . This
ratio is then integrated over the duration Tmax of the simulation to obtain the over-
all collaboration performance C of the network. The sum of all agents’ degrees,∑

i kacti (t) = 2 · Mact(t), gives us twice the total number of active links, Mact(t),
in the network at time t because every link connects two agents. By plugging this
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Fig. 9 The heatmap for the average total distance, 〈L〉, traveled by the agents is reported in (a). In b we
report the heatmap for network collaboration efficiency, C, and in c the heatmap for its normalized and
rescaled version version, Ĉn. For all the three plots, we report results obtained using the 35 dimensional
space defined by the ISI-OST-INPI classification scheme
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into Eq. 7, we obtain the second expression for the collaboration efficiency. It means
that, given equal total knowledge distances

∑N
i Li(t), an R&D network with fewer

alliances would explore the knowledge space more efficiently.
We use Eq. 7 to compute the collaboration efficiency C for every network gen-

erated during the simulations. C is then averaged over 100 simulations for every
combination of parameters. The results are shown in the heat map of Fig. 9b for
simulations using the 35 dimensional knowledge space, where we plot the collabora-
tion efficiency C against the two parameters characterizing the knowledge exchange,
exchange rate μ and alliance duration τ . Comparing this to Fig. 9a, we find again
that μ has a strong impact, i.e. the larger the knowledge exchange rate, the better the
performance. However, the influence of τ has reversed. Now, performance increases
with shorter alliance durations, which is understandable because we take the costs of
alliances into account. The larger τ , the more alliances exist concurrently and have
to be maintained. This causes the overall performance to drop.

To further investigate the strong impact of μ, we plot in Fig. 10 for a fixed alliance
duration τ = 700 days how the collaboration efficiency C changes with the knowl-
edge exchange rate. We find that there is a linear relation between these two quantities
(similar for other values of τ , not shown). This is agreement with the definition of
C, (7), where the leading term of the numerator is linear in μ. Non-linear terms of
the order O(μ2) play a less important role since μ is small. Hence, for a better com-
parison of the collaboration efficiency across different values of τ , we rescale C as
Ĉ = C/μ. In addition, to obtain a dimensionless quantity that varies between 0 and 1,
we normalize Ĉ by its maximum value obtained for a given set of parameters μ, τ , i.e.

Ĉn = Ĉ
maxμ,τ Ĉ

= C/μ

maxμ,τ (C/μ)
(8)

In Fig. 9c, we show Ĉn for all combinations of the knowledge exchange parameters.
We confirm, even after normalization, the tendency that the performance increases
with smaller values of τ , i.e., for the range of parameters considered the best value of
τ is 700 days. But for the knowledge exchange rate, we obtain a more detailed and
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Fig. 10 Collaboration efficiency C dependent on the knowledge exchange rate μ for a fixed alliance
duration of τ = 700 days. The knowledge of the agents was embedded in the 35 dimensional space defined
by the ISI-OST-INPI classification scheme
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heterogeneous dependency. Given τ = 700 days, the optimal value of μ is now at
5 × 10−7 days−1.

In conclusion, we find that the highest efficiency in knowledge exchange is
obtained for medium exchange rates and short alliance durations. These results are
found by means of computer simulations of our model. In order to transfer such
insights to firms in real R&D networks, some restrictions apply.

It is understandable that a shorter collaboration is more beneficial because it
implies, as already mentioned, that, in a given time interval, a smaller number of con-
current alliances exist. A reduced number of collaborations, on the other hand, allows
a firm to move efficiently along one or a few directions in the knowledge space.

In order to keep the performance of exploring the knowledge space high, firms
have to compensate shorter alliance durations by larger knowledge exchange rates.
While this is feasible in our model, it may not hold under practical circumstances
because firms have limits of how much new knowledge they can absorb at a given
time. So, there are upper limits for the knowledge exchange rate μ.

On the other hand, it is obvious that there is a lower bound for an optimal alliance
duration τ . Firms have to get to know each other, and have to establish procedures of
collaborations, which takes time. Hence, organizational and management arguments
suggest that τ cannot simply approach zero, because the knowledge exchange rate
cannot simply be increased to arbitrary large values.

Such arguments apply when choosing realistic ranges of parameters τ and μ in
our model. Thus, via the choice of parameters our model takes these limitations into
account. In addition, it is useful to understand the impact of these model parameters
on the systemic performance in knowledge exploration. As we have shown, there is a
nonlinear, and non-trivial, relation between knowledge exchange rate μ and alliance
duration τ . With an increasing alliance duration, more links become active at the
same time, thus forcing firms to cope with the effect of multiple partnerships. This
results in a reduced motion, i.e. a reduced collective exploration, in the knowledge
space. In other words, the density of the collaboration network increases with τ and,
after a certain threshold, the addition of a new link has a negative marginal effect on
the overall exploration of the knowledge space.

6 Discussion and conclusions

This paper aims at a quantitative understanding of knowledge exchange in R&D net-
works. “Quantitative” means, (i) we propose a model that reflects the two tightly
connected processes of forming R&D alliances and knowledge exchange, (ii) we
analyze large-scale data sets capturing R&D alliances and knowledge bases of firms
to calibrate the model parameters, (iii) we perform extensive computer simulations
to analyze the performance of knowledge exchange in R&D network. Instead of
repeating our findings, in this section we highlight a few points for further discussion.

Partner selection and network formation We proposed an agent-based model that
consists of two interlinked phases: (1) the formation of the R&D network, which is
called the exploration phase because agents explore the social capital of potential
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partners, and (2) the exchange of knowledge on the formed network, which is called
the exploitation phase because agents utilize the collaboration with partners to move
in knowledge space.

The calibration of our model against real data was performed through a two-step
procedure. By means of an alliance data set, we estimated a set of link probabilities
that allow us to reproduce the topology of the R&D collaboration network. Subse-
quently, through a second data set on firm patents, we estimated parameters for the
knowledge exchange between firms and the duration of R&D alliances.

For the formation of the R&D network, we found that firms exhibit a strong
tendency to connect to network incumbents. Precisely, 65% of the collaborations ini-
tiated by incumbents, as well as a surprising 90% of the collaborations initiated by
newcomers, are addressed to another incumbent. In this regard, the validation of our
model brings additional support to the theory of the importance of existing network
structures in the formation of new R&D collaborations (see Podolny 1993; Raub and
Weesie 1990).

Dynamics of knowledge exchange Because the model part related to the network
formation was already investigated by Tomasello et al. (2014), in this paper we
mainly focus on modeling knowledge exchange as a motion of agents in a prede-
fined knowledge space. The knowledge base of agents is estimated by the patent
portfolio of firms. Therefore, the dimensionality of the knowledge space is given by
the patent classifications for which we use two different schemes, (a) IPC and (b)
ISI-OST-INPI. With respect to our model, their difference is mainly in the number
of dimensions, (a) eight and (b) 35. Thus, we can also address the question how an
expansion of the number of dimensions of the knowledge space affects the results of
our model.

Firms are characterized by a position in this knowledge space, which changes over
time as they obtain new patents. As the focus of our paper is on R&D collaborations,
the model does not assume that firms can change their position by independent R&D
activities. But we have indirectly covered this by the fact that, in our model, each
time a new alliance starts agents get assigned a new position if they are not already
involved in existing alliances. Differently from the model introduced by Tomasello
et al. (2016), where the motion of every agent was driven by only one partner at
every time step, in the present model the agents are subject to a motion resulting from
interactions with multiple partners. As we have already discussed in Section 3.2, our
dynamics assumes that knowledge exchange causes agents to approach each other
in knowledge space, not just in one dimension but in all dimensions. This takes
into account the effect of knowledge spillovers that go beyond the exchange of very
specific knowledge.

Analyzing empirically the impact of R&D collaborations on firms’ knowledge
positions, we found that small changes in knowledge distances dominate the dynam-
ics in knowledge space (see Fig. 8), i.e., real firms do not significantly change their
knowledge positions as a consequence of their collaborations. This supports our con-
clusion that most alliances exert only a weak influence on the knowledge positions of
firms. However, we also find that some (non-negligible) alliances are able to cause a
strong movement in knowledge space.
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Interplay between network formation and knowledge exchange It is an interest-
ing observation that the empirical distribution of distance changes is rather symmetric
with respect to zero; although we note that positive changes are more prominently
seen in the ISI-OST-INPI classification scheme (see Fig. 8). This means that, in the
period elapsed during a specific R&D alliance, firms not only approach each other
in knowledge space (negative distance changes) but also move farther away (positive
distance changes).

This finding can be also reproduced by our agent-based model, which is remark-
able because there we assume only that agents approach each other. However, the
model of knowledge exchange considers the combined impact of all interactions on
the knowledge position of an agent. Our model can reproduce both negative and pos-
itive distance changes because they result not only from the knowledge dynamics,
but also from the network dynamics. This means that, while being engaged in one
alliance, agents start to form new alliances with other partners, which can drive them
away from their current partners. Hence, it is the complex interplay between net-
work formation and knowledge exchange that at the end can explain the collective
exploration of the knowledge space.

Pre- and post-alliance distance distributions For the calibration of our knowledge
exchange dynamics, special attention was given to the knowledge distances between
firms at two points in time, at the moment of alliance formation (which is known)
and at the moment of alliance termination (which is not known). Hence, the alliance
duration τ is considered as one free parameter of our model.

We emphasize that, in our model, proximity in knowledge space is not a precondi-
tion for agents to form alliances. Consequently, distances can be quite large, which is
in line with the empirical fact that the distribution of pre-alliance distances is clearly
different from zero for large distances. On the other hand, we have also shown that the
most frequent pre-alliance distance between firms are shorter than the one expected
at random (see Fig. 4). The most probable value (i.e. the maximum of the distribu-
tion) is clearly different from zero and could be interpreted as an optimal distance in
knowledge space for firms to engage in an alliance.

In our model, we have taken the distribution of pre-alliance distances as an input,
i.e. we sampled the knowledge positions of agents who are not engaged in an alliance
at that time from this distribution. Agents who are in an alliance at that time, however,
keep the knowledge position simulated by the model. The combined procedure of
sampling knowledge positions has two advantages: first, we retain information about
the similarity of collaborating firms in the knowledge space. For example, if firms
from the same industrial sector were more likely to have an alliance, this would be
captured in the pre-alliance distance distribution (e.g. smaller alliance distances are
more probable) and considered in our model. Second, by using the empirical knowl-
edge vectors, we also keep information about the technological areas in which firms
usually file patents. Thus, we partially account for the size and the heterogeneity of
firm portfolios of patents.

Regarding the distribution of post-alliance distances, we have shown that it is not
really different from the distribution of pre-alliance distances, which reflects the fact
that most changes in knowledge positions are rather small. This finding holds for both
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patent classification schemes, i.e. it is robust against the number of dimensions of the
knowledge space. It is also robust against the assumed alliance duration (see Fig. 7).

So, if firms do not move much in knowledge space, why is their position impor-
tant? Firms rather use the available information about knowledge positions of their
partners to establish new collaborations. Therefore, a firm’s position in knowledge
space is more a determinant than a consequence of its R&D alliances.

In our model, we used the distribution of post-alliance distances to compare
the outcome of our simulations with their empirical counterpart. Using optimized
parameters for the simulated network formation, we vary the parameters for knowl-
edge exchange to find the best match between the empirical and the simulation
post-alliance distance distribution (see Fig. 6). As the result, we obtain the values
μ = 1 × 10−7, .., 5 × 10−7 for the knowledge exchange rate and τ = 700 for the
alliance duration. μ has a relatively low value, which is in line with the fact that most
firms do not move much in knowledge space, while τ indicates a characteristic dura-
tion of around two years (700 days). The latter finding is consistent with our previous
theoretical assumptions and a number of previous studies (see Inkpen and Ross 2001;
Phelps 2010). We note that these optimal parameters for knowledge exchange are
obtained from a procedure that compares simulation and empirics. In the following,
we discuss that we have derived the same optimal parameters from a pure simulation
approach, using assumptions about performance.

Performance of knowledge exchange In this paper, we are not only interested in
the dynamics of knowledge exchange in R&D networks, but also in the performance.
The latter we define as a systemic property, i.e. we do not discuss the performance
of individual firms, but the collective performance of the whole R&D network in
efficiently exploring the knowledge space.

The dynamics assumed for knowledge exchange would suggest that higher
knowledge exchange rates μ and longer alliance durations τ are always better for
exploration. This, however, implies that firms cope with many concurrent alliances
at the same time and have an infinite capacity of absorbing new knowledge. A more
realistic scenario has to take into account that alliances are also costly, i.e. estab-
lishing and maintaining concurrent alliances is constrained by capacities. To capture
these influences, we proposed the (normalized) collaboration efficiency Ĉn, (7), (8),
as a new performance measure. Analyzing how Ĉn depends on the parameters for
knowledge exchange μ and τ , we find that the collaboration efficiency is maximized
for values μ = 5 × 10−7 and τ = 700 (see Fig. 9c), which match the above given
optimized parameters from Fig. 6. Because this result was found by comparing only
simulations, we regard this as an independent way to confirm the parameters found
by comparing the empirical and the simulated distribution of post-alliance distances.
This means that, using our approach, it is possible to obtain a configuration that is
both realistic and optimized with respect to the collaboration performance.

When discussing these findings, we already pointed out that, in real-world applica-
tions, the parameters μ and τ are rather determined by the firm’s abilities to quickly
establish a collaboration and to absorb new knowledge fast. Hence, organizational
and managerial constraints apply, which should be considered for choosing values
for these parameters.
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Nevertheless, with our model we are able to point toward policies aimed at system
optimization. Effective policies to obtain an improved collaboration network would
incentivize short R&D alliances and higher knowledge exchange rates. Practically, it
would be impossible to directly enforce shorter alliance durations or faster learning
rates. But measures could include, for instance, rewards for co-patenting activities if
these are carried out as early as possible after the establishment of an R&D alliance.
The goal would be to stimulate companies to explore other knowledge positions with
new partners while limiting the duration of a single alliance and to avoid having too
many active collaborations at the same time.

In conclusion, we argue that our model can successfully reproduce both network-
related and knowledge-related features of a real inter-organizational R&D network.
At the same time, our data-driven approach provides a unique method to estimate the
systemic performance of R&D collaborations. We note that our model is extendable
to other collaboration systems, beyond the domain of R&D networks, provided that
the agents can be unequivocally positioned in a knowledge space. Our approach thus
contributes to a comprehensive understanding of the effects of knowledge exchange
in dynamically evolving collaboration networks.
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